JPS63257199A - Method of measuring anions in plasma - Google Patents

Method of measuring anions in plasma

Info

Publication number
JPS63257199A
JPS63257199A JP62090577A JP9057787A JPS63257199A JP S63257199 A JPS63257199 A JP S63257199A JP 62090577 A JP62090577 A JP 62090577A JP 9057787 A JP9057787 A JP 9057787A JP S63257199 A JPS63257199 A JP S63257199A
Authority
JP
Japan
Prior art keywords
negative ions
plasma
voltage
probe
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62090577A
Other languages
Japanese (ja)
Other versions
JPH0665191B2 (en
Inventor
雨宮 宏
清水 和男
雄一 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP62090577A priority Critical patent/JPH0665191B2/en
Publication of JPS63257199A publication Critical patent/JPS63257199A/en
Publication of JPH0665191B2 publication Critical patent/JPH0665191B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はプラズマ中の負イオンの温度、密度、エネルギ
ー分布等の負イオンに関する情報を測定する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for measuring information regarding negative ions such as temperature, density, and energy distribution of negative ions in plasma.

(従来の技術および問題点) 最近、プラズマプロセシングが盛んになり、種々の固体
面の改質に役立っている。これらプラズマを効率よく制
御するために荷電粒子特に電子のエネルギー分布の制御
は重要である。しかしながらプロセシング用プラズマで
は水素、酸素、ハイドロカーボン、ハロゲン等のガスが
用いられるためプラズマ中の負イオン密度が無視できな
い。従って、このようなプラズマを従来のプローブ法に
よって解析すると非常に誤った荷電粒子密度の評価を行
なう恐れがある。更に、プラズマ中の負イオンも、正イ
オンに劣らず表面改質に有用であるからその密度、温度
、エネルギー分布等を把握することは必要不可欠となる
ことが多い。しかしながら、プローブ電流のプローブ電
圧に対する1次、2次微分をとることによりイオンのエ
ネルギー分布を測定する従来のドリベステン法 (M、J、Druyvesteyn:Z、Physik
 64(1930)787)によっては、非常に限られ
た条件の下でしか負イオンのエネルギー分布を測定でき
なかった。即ち、雑音が少なく負イオン密度が電子密度
よりかなり大きい場合(J、B、 Thompson:
Proc、 Roy、 SOC,A262(1961)
503)、負イオンの質量が余り大きくない場合(H,
Amemiya:Jpn、J、App1、Phys、 
25 (1986)595)に限って負イオン特性の測
定が可能であり、負イオン密度/電子密度の比の小さい
場合や、負イオンの質量が大きい場合の負イオンの検出
は困難であった。
(Prior Art and Problems) Plasma processing has recently become popular and is useful for modifying various solid surfaces. In order to efficiently control these plasmas, it is important to control the energy distribution of charged particles, especially electrons. However, since processing plasma uses gases such as hydrogen, oxygen, hydrocarbon, and halogen, the density of negative ions in the plasma cannot be ignored. Therefore, if such a plasma is analyzed by the conventional probe method, there is a risk that the charged particle density will be highly erroneously evaluated. Furthermore, since negative ions in plasma are as useful for surface modification as positive ions, it is often essential to understand their density, temperature, energy distribution, etc. However, the conventional Drivestein method (M, J, Druyvestein: Z, Physik
64 (1930) 787), it was possible to measure the energy distribution of negative ions only under very limited conditions. That is, when the noise is low and the negative ion density is much larger than the electron density (J, B. Thompson:
Proc, Roy, SOC, A262 (1961)
503), when the mass of the negative ion is not very large (H,
Amemiya: Jpn, J, App1, Phys,
25 (1986) 595), it was difficult to detect negative ions when the ratio of negative ion density/electron density was small or when the mass of negative ions was large.

(問題点を解決するための手段) 一般に弱電離プラズマでは電子温度は数百0Kになるの
に比ベイオン温度は数百@Kから高々数千°にである。
(Means for Solving the Problems) In general, in weakly ionized plasma, the electron temperature is several hundred degrees K, but the specific baion temperature is from several hundred@K to several thousand degrees at most.

従って、負イオンの電流−電圧特性は電子のそれに比べ
飽和電流値はずっと小さいが電圧反発領域の立ち上がり
カ<遥かに急峻となる。
Therefore, in the current-voltage characteristics of negative ions, the saturation current value is much smaller than that of electrons, but the rise in the voltage repulsion region is much steeper.

本発明はこのことに着目し、電流の電圧に対する高次微
分を取って、負イオンの信号を電子の信号よりも上回ら
せ、これによってラングミニアブローブでも電子と負イ
オンを分離して測定することを可能とした。
The present invention focuses on this and takes the higher-order derivative of current with respect to voltage to make the signal of negative ions higher than the signal of electrons, thereby allowing the Langminiar probe to separate and measure electrons and negative ions. made possible.

(作 用) 平板状プローブをプラズマに挿入すると、印加したプロ
ーブ電圧■、に対して第2図に示すように非線形に変化
するプローブ電流特性tp(vp)が得られる。第2図
で■5 はプラズマ中プローブの位置する付近の空間電
位である。この非線形曲線の各領域r、  n、  m
、  の特性はプラズマ中の荷電粒子の速度分布がマス
クウェル分布に従うとき次式で表わされる。
(Function) When a flat probe is inserted into plasma, a probe current characteristic tp (vp) that changes non-linearly with respect to the applied probe voltage 2 as shown in FIG. 2 is obtained. In Fig. 2, ■5 is the space potential near where the probe is located in the plasma. Each region r, n, m of this nonlinear curve
The characteristics of , are expressed by the following equation when the velocity distribution of charged particles in the plasma follows the mask well distribution.

1 : i、=i+=n、eS exp(−1/2) 
(kTe/M+) ”2;Vp<<Vs  (1) II : i、=n、eS(kTa/2 yrm) ”
2exp (−e(Vs−Vp)/kTa )+n−e
S(kT−/2 πM−) ”’exp (−e(V、
−V、)/kTi   ;  V、<V、      
(2)III : i、=n*5(kTe/2 πm)
 ”’+n−eS(kT−/2yrlJ−) ””; 
Vp〉Vs   (3) ここで、n、、n、、n−はそれぞれ正イオン、電子、
負イオン密度でn。=n、 + n−、T+ + Ts
 +T−はそれぞれ正イオン、電子、負イオンの温度、
Mや、m、M−は正イオン、電子、負イオンの質量、S
はプローブ表面積、eは電子の電荷、kはボルツマン定
数である。次にtp(vp)  に対して高次微係数I
F”) N’p )をとるとき領域■、■では0となり
領域Hの部分でのみ信号が得られ次式となる。
1: i, = i + = n, eS exp (-1/2)
(kTe/M+) “2;Vp<<Vs (1) II: i,=n,eS(kTa/2 yrm)”
2exp (-e(Vs-Vp)/kTa)+ne-e
S(kT-/2 πM-) ”'exp (-e(V,
−V, )/kTi; V, <V,
(2) III: i, = n*5 (kTe/2 πm)
"'+n-eS(kT-/2yrlJ-)"";
Vp〉Vs (3) Here, n, , n, , n- are positive ions, electrons,
n in negative ion density. =n, + n-, T+ + Ts
+T- is the temperature of positive ions, electrons, and negative ions, respectively;
M, m, and M- are the masses of positive ions, electrons, and negative ions, and S
is the probe surface area, e is the electron charge, and k is the Boltzmann constant. Next, for tp(vp), the higher order differential coefficient I
F") N'p) becomes 0 in regions (2) and (2), and a signal is obtained only in region H, resulting in the following equation.

U : ip” (Vp)=ts (″)(Vp)”t
−” (Vp)    (4a)r s ”’ (vp
) =n、eS (k’r、/2 xmν” (e/k
T、) ”xexp (−e(V、−V、)/kT、 
)  (4b)i−(h) (V、)=n−eS (k
T−/2 yr M−) ’ /2(e/kT−) ”
xexp (−e(Vs−V、)/kT−3(4C)(
4a)ないしく4c)式から分かる様に、n次微分をと
っても電子、負イオン共に■、に対し各温度T a +
T−で決まる指数関数的な変化は変わらないが、そのピ
ークの値は微分毎に温度の低い方が大きくなる様な変化
をする。即ち、1@ ”’ (Vp)、 i−(れ’ 
(V、)のピーク値をio ”’ max、 l−”’
 max とするとその比は次式となる。
U: ip” (Vp)=ts (″)(Vp)”t
−” (Vp) (4a)rs ”' (vp
) = n, eS (k'r, /2 xmν" (e/k
T,) ”xexp (-e(V,-V,)/kT,
) (4b)i-(h) (V,)=n-eS (k
T-/2 yr M-) '/2(e/kT-) ”
xexp (-e(Vs-V,)/kT-3(4C)(
As can be seen from equations 4a) and 4c), even if you take the nth derivative, both electrons and negative ions are ■, and each temperature T a +
Although the exponential change determined by T- does not change, the value of its peak changes with each differentiation such that it becomes larger at lower temperatures. That is, 1@”' (Vp), i-(re'
The peak value of (V,) is io "' max, l-"'
max, the ratio becomes the following formula.

i−(+″’max/  i、”)max=(n−/n
、)(m7M−ν″X(Ta/TJ −”2(5) この式から電子、負イオンの高次微分の比はT8>>T
−の場合、微分毎に(T、/T)倍、負イオンピークは
電子よりも大きなピークとなって現れることが分かる。
i-(+″'max/i,”)max=(n-/n
, )(m7M−ν″X(Ta/TJ −”2(5)) From this equation, the ratio of higher order differentials of electrons and negative ions is T8
It can be seen that in the case of −, the negative ion peak appears as a peak larger than the electron peak by a factor of (T, /T) for each differentiation.

この微分電流値を得るための具体的な手段である微小交
流法を以下に説明する。プローブ電圧■。
The minute alternating current method, which is a specific means for obtaining this differential current value, will be explained below. Probe voltage■.

に微小交流電圧■を重畳するときテーラ−展開により1
.は次のように変化する。
When a minute AC voltage ■ is superimposed on the Taylor expansion, 1
.. changes as follows.

ここで、v=a−s inωtとしてこれを(6)式%
式% に比例する周波数成分はそれぞれ5in3ωt。
Here, let v=a−s inωt and convert this into equation (6)%
The frequency components proportional to the formula % are each 5in3ωt.

5in4ωt、5in5ωt、−となる。さらに、v=
aIsinω、t+b−sina+2  tとすると、
1、(3)  、  1、(U  、  1、(s) 
 、・・・に比例する周波数成分はそれぞれs i n
(2ω1−C2)t(又は5in(2ω2−ω、)t)
、sir+(C13ω2)t(又はS l n(2ω、
  2 Q)2) t、 s i n(3ω、 −(I
J2) t )、 s 1n(3ω、  2 ω、) 
t (又は5in(3ω2−2co、)t、  s  
1n(4ω、−ω、)t、s  i  n(4ω1−C
2)t)、  ・・・となる。従って、これら高周波成
分を受信することにより各高次微係数が得られることに
なる。ここで厳密には上記周波数成分は各々高次微係数
よりも更に高い高次微分を含んでいる。例えば5in3
ωを成分はI、(3)に主として依存するが、この他に
i、(S)、  i、(’l)。
5in4ωt, 5in5ωt, -. Furthermore, v=
If aI sin ω, t+b-sina+2 t, then
1, (3) , 1, (U , 1, (s)
,... are each frequency components proportional to s i n
(2ω1-C2)t (or 5in(2ω2-ω,)t)
, sir+(C13ω2)t(or S l n(2ω,
2 Q) 2) t, sin(3ω, −(I
J2) t), s 1n(3ω, 2ω,)
t (or 5in(3ω2-2co,)t, s
1n(4ω, -ω,)t, sin(4ω1-C
2) t), .... Therefore, each high-order differential coefficient can be obtained by receiving these high-frequency components. Strictly speaking, each of the frequency components includes higher-order differentials higher than higher-order differential coefficients. For example 5in3
The components of ω mainly depend on I, (3), but also i, (S), i, ('l).

・・・にも依存する。しかし、マクスウェル分布の場合
(4)式より明らかなように、各高次微分は全て同じよ
うな指数関数項を有するためピークの形は1p(3)の
みの場合と同じに保たれこれら高次歪は問題とならない
It also depends on... However, in the case of the Maxwellian distribution, as is clear from equation (4), each higher-order differential has a similar exponential function term, so the shape of the peak is kept the same as in the case of only 1p(3), and these higher-order derivatives Distortion is not a problem.

(発明の効果) 本発明によると、従来困難であった負イオンの密度、温
度、エネルギー分布等の特性値の検出がより容易に達成
される。
(Effects of the Invention) According to the present invention, detection of characteristic values such as density, temperature, and energy distribution of negative ions, which has been difficult in the past, can be more easily achieved.

(実施例) 本発明の一実施例を第1図に示す。Fvは可変周波数発
生器で周波数fvの交流信号5ln2πfvtを発生す
る。Fcは周波数fcが固定(好ましくは水晶)の発振
器で交流信号5in2πfctを発生する。但し、fv
>fcとする。FvとFcからの信号は搬送波除去ミキ
サMに導入され、周波数fv+fcとfv−fcの2つ
の交流信号が発生される。これら2つの交流信号の位相
は一定の関係にある。Bは上記2つの交流信号からなる
信号の振幅をある一定値に設定するためのバッファ増幅
器である。バッファ増幅器Bの出力はコイルT2の1次
側に印加され2次側には上記交流信号が一定の振幅で現
れ、可変直流電圧(プローブ電圧)■、に重畳される。
(Example) An example of the present invention is shown in FIG. Fv is a variable frequency generator that generates an alternating current signal 5ln2πfvt of frequency fv. Fc is an oscillator whose frequency fc is fixed (preferably crystal) and generates an alternating current signal 5in2πfct. However, fv
>fc. The signals from Fv and Fc are introduced into a carrier removal mixer M, and two alternating current signals with frequencies fv+fc and fv-fc are generated. The phases of these two alternating current signals have a fixed relationship. B is a buffer amplifier for setting the amplitude of the signal composed of the two AC signals to a certain constant value. The output of the buffer amplifier B is applied to the primary side of the coil T2, and the above AC signal appears with a constant amplitude on the secondary side, and is superimposed on the variable DC voltage (probe voltage).

この重畳により形成された電圧はフラズマ内に挿入され
たプローブPに印加される。抵抗rの両端には印加電圧
に対して非線型に変化する第2図に示される様なプロー
ブ特性が得られる。プローブ電圧に交流電圧が重畳され
ていると、これに伴って、プローブ電流も交流成分を持
つがこの交流成分はコイルT、の2次側に生ずる。本実
施例においては交流成分の内3次、4次、5次微分に対
応する上記周波数成分を各選択増幅器A3.Δ4.A5
により選択増幅−する。この場合その前に前置された帯
域除去フィルタBEFで重畳周波数成分ω1 /2π=
fv〒f c、 C2/2π=f v−f cが測定系
に影響することが十分防止される。fvが可変なので生
ずる2周波数fv+fcは可変となる。それ故帯域除去
フィルタBEFとしてはプログラマブルフィルタを用い
fvの値に応じてfv+fc成分を除去するよう除去周
波数を設定する。選択増幅器A3.A4.A5を通過し
た信号は位相敏感検波器LOCKの第一の入力端子1に
導入される。一方、可変周波数発振器Fvと固定周波発
振器Fcからの信号を3次、4次、5次微分に対応する
上記周波数を作成するビートは発生回路C3,C4゜C
5に通し、ここで上記高次微分に対応する周波数成分を
発生する。これら信号を上記位相検波器りの他の入力端
子2に導入する。入力1.2からの信号は位tU検波器
して乗算され(位相同期検波)各高次微分i、(3)、
  i 、(4)  、  i 、(S)  ・・・に
対応する信号が出力される。この場合ビート波発生回路
C3,C4,C5は上記高次微分に対応する周波数成分
を正弦波形から方形波ないし幅の狭いパルス状方形波と
し、短い時間で位相検波器りの人力1への人力信号1を
位相同期サンプリングすることにより信号対雑音比を向
上させることができろ。第3図に高次微分i、(2) 
、  i、(4)  、  i、(5ゝの例を示す。a
は負イオンピーク、bは電子のピークである。
The voltage formed by this superposition is applied to the probe P inserted into the plasma. A probe characteristic as shown in FIG. 2 is obtained at both ends of the resistor r, which changes non-linearly with respect to the applied voltage. When an alternating current voltage is superimposed on the probe voltage, the probe current also has an alternating current component, and this alternating current component occurs on the secondary side of the coil T. In this embodiment, the frequency components corresponding to the 3rd, 4th, and 5th derivatives of the AC components are transmitted to each selection amplifier A3. Δ4. A5
Selective amplification is carried out by. In this case, the superimposed frequency component ω1 /2π=
fv〒f c, C2/2π=f v−f c is sufficiently prevented from influencing the measurement system. Since fv is variable, the resulting two frequencies fv+fc are variable. Therefore, a programmable filter is used as the band elimination filter BEF, and the removal frequency is set so as to remove the fv+fc component according to the value of fv. Selection amplifier A3. A4. The signal passed through A5 is introduced into the first input terminal 1 of the phase sensitive detector LOCK. On the other hand, the beat generating circuits C3 and C4°C generate the frequencies corresponding to the third, fourth, and fifth derivatives of the signals from the variable frequency oscillator Fv and fixed frequency oscillator Fc.
5 to generate frequency components corresponding to the higher-order differentials. These signals are introduced into the other input terminal 2 of the phase detector. The signal from input 1.2 is multiplied by a phase tU detector (phase synchronized detection) for each higher order differential i, (3),
Signals corresponding to i, (4), i, (S), . . . are output. In this case, the beat wave generation circuits C3, C4, and C5 convert the frequency component corresponding to the above-mentioned higher-order differential into a square wave or a narrow pulsed square wave from a sine waveform, and convert the frequency component corresponding to the above-mentioned higher-order differential into a square wave or a narrow pulsed square wave in a short time. The signal-to-noise ratio can be improved by phase-locked sampling of signal 1. Figure 3 shows the higher order differential i, (2)
, i, (4) , i, (5ゝ example is shown.a
is a negative ion peak, and b is an electron peak.

位相検波器りの出力はプローブ特性を示す第2図の■の
領域において、電子及び負イオンについての情報を分離
した形で与えるが、微分の次数が高い程電子が抑制され
負イオンが強調された曲線、、(nl   ypが得ら
れることになる。測定上からは微分の次数の低い程信号
出力が大きい反面、電子の抑圧比が(T−/T、 )”
だけ低い。実際上は3−5次微分を測定し適当なデータ
を得るよう次数を選択すればよい。上記方法は3−5次
微分に限定したが電子回路が許される限りより高次微分
をとることを行なってもよいことは言うまでもなく本発
明の思想は3−5次までに限定されるものではない。更
に、上記実施例では平板型プローブを用いたが本発明は
円筒型、球型プローブについても可能である。
The output of the phase detector gives information about electrons and negative ions in separate form in the region (■) in Figure 2, which shows the probe characteristics, but the higher the order of differentiation, the more the electrons are suppressed and the negative ions are emphasized. The obtained curve, , (nlyp) is obtained. From a measurement perspective, the lower the order of differentiation, the larger the signal output, but the electron suppression ratio is (T-/T, )"
Only low. In practice, it is sufficient to measure the 3rd to 5th order differential and select the order to obtain appropriate data. Although the above method is limited to the 3rd to 5th order differentiation, it goes without saying that higher order differentiation may be taken as long as the electronic circuit permits, and the idea of the present invention is not limited to the 3rd to 5th order. do not have. Further, although a flat probe was used in the above embodiment, the present invention is also applicable to a cylindrical or spherical probe.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例である負イオン検出のための
回路図であり、プローブ特性とその高次微分i、(3)
 、  i、(4)  、  i、(5)  を測定す
る回路図、 第2図はプローブ特性を示す図、 第3図は第1図の回路により得られるプローブ電流の高
次微分i、(3) 、  i、(4)、  1p(S)
  を示す図。 P・・・平板プローブ、A・・・対向電極、Fv・・・
可変周波数発生器、Fc・・・固定発振器、B・・・バ
ッファ増幅器、T2・・・コイル、A3.A4.A5・
・・選択増幅器、 L・・・位相検波器、 C3,C4,C5・・・ピー)1発生回路。
FIG. 1 is a circuit diagram for negative ion detection according to an embodiment of the present invention, and shows the probe characteristics and their higher-order differential i, (3)
, i, (4) , i, (5) Figure 2 is a diagram showing the probe characteristics, Figure 3 is the higher order differential of the probe current obtained by the circuit in Figure 1, i, (3 ), i, (4), 1p(S)
Diagram showing. P...Flat probe, A...Counter electrode, Fv...
Variable frequency generator, Fc...fixed oscillator, B...buffer amplifier, T2...coil, A3. A4. A5・
...Selection amplifier, L...Phase detector, C3, C4, C5...P)1 generation circuit.

Claims (7)

【特許請求の範囲】[Claims] (1)プラズマ中に挿入されたプローブに加わる直流プ
ローブ電圧に微小交流電圧を重畳し、プローブ電流のプ
ローブ電圧に対する3次以上の微係数に対応する信号を
検出して、前記プラズマ中の負イオンの情報を得るプラ
ズマ中の負イオン測定法。
(1) A minute AC voltage is superimposed on the DC probe voltage applied to the probe inserted into the plasma, and a signal corresponding to the third or higher differential coefficient of the probe current with respect to the probe voltage is detected, and negative ions in the plasma are detected. A method for measuring negative ions in plasma to obtain information on
(2)前記交流電圧が正弦波電圧であることを特徴とす
る特許請求の範囲第(1)項記載のプラズマ中の負イオ
ン測定法。
(2) The method for measuring negative ions in plasma according to claim (1), wherein the alternating current voltage is a sine wave voltage.
(3)前記N(3以上の整数)次以上の微係数に対応す
る信号の検出が、前記正弦波電圧周波数のN倍以上の倍
調波の検出により行われることを特徴とする特許請求の
範囲第(2)項記載のプラズマ中の負イオン測定法。
(3) The detection of the signal corresponding to the differential coefficient of order N (an integer of 3 or more) or higher is performed by detecting a harmonic of N times or more the sine wave voltage frequency. A method for measuring negative ions in plasma according to scope (2).
(4)前記交流電圧が周波数f_1の正弦波電圧と周波
数f_2の正弦波電圧との和信号であることを特徴とす
る特許請求の範囲第(1)記載のプラズマ中の負イオン
測定法。
(4) The method for measuring negative ions in plasma according to claim 1, wherein the AC voltage is a sum signal of a sine wave voltage of frequency f_1 and a sine wave voltage of frequency f_2.
(5)3次微係数に対応する信号の検出が、2f_1−
f_2又は2f_2−f_1なる周波数成分を検出する
ことにより行われる特許請求の範囲第(4)項記載のプ
ラズマ中の負イオン測定法。
(5) Detection of the signal corresponding to the third-order differential coefficient is 2f_1−
A method for measuring negative ions in plasma according to claim (4), which is carried out by detecting a frequency component of f_2 or 2f_2-f_1.
(6)4次微係数に対応する信号の検出が、f_1−3
f_2、3f_1−f_2又は2f_1−2f_2なる
周波数成分を検出することにより行われる特許請求の範
囲第(4)項記載のプラズマ中の負イオン測定法。
(6) Detection of the signal corresponding to the fourth-order differential coefficient is f_1-3
A method for measuring negative ions in plasma according to claim (4), which is carried out by detecting frequency components f_2, 3f_1-f_2, or 2f_1-2f_2.
(7)5次微係数に対応する信号の検出が、3f_1−
2f_2、3f_2−2f_1、4f_1−f_2又は
4f_2−f_1なる周波数成分を検出することにより
行われる特許請求の範囲第(4)項記載のプラズマ中の
負イオン測定法。
(7) Detection of the signal corresponding to the fifth-order differential coefficient is 3f_1-
The method for measuring negative ions in plasma according to claim 4, which is carried out by detecting frequency components 2f_2, 3f_2-2f_1, 4f_1-f_2, or 4f_2-f_1.
JP62090577A 1987-04-13 1987-04-13 Negative ion measurement method in plasma Expired - Fee Related JPH0665191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62090577A JPH0665191B2 (en) 1987-04-13 1987-04-13 Negative ion measurement method in plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62090577A JPH0665191B2 (en) 1987-04-13 1987-04-13 Negative ion measurement method in plasma

Publications (2)

Publication Number Publication Date
JPS63257199A true JPS63257199A (en) 1988-10-25
JPH0665191B2 JPH0665191B2 (en) 1994-08-22

Family

ID=14002285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62090577A Expired - Fee Related JPH0665191B2 (en) 1987-04-13 1987-04-13 Negative ion measurement method in plasma

Country Status (1)

Country Link
JP (1) JPH0665191B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000024235A1 (en) * 1998-10-20 2000-04-27 Tokyo Electron Limited Method for measuring negative ions in plasma, and plasma treating method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000024235A1 (en) * 1998-10-20 2000-04-27 Tokyo Electron Limited Method for measuring negative ions in plasma, and plasma treating method and apparatus
US6452400B1 (en) 1998-10-20 2002-09-17 Tokyo Electron Limited Method of measuring negative ion density of plasma and plasma processing method and apparatus for carrying out the same

Also Published As

Publication number Publication date
JPH0665191B2 (en) 1994-08-22

Similar Documents

Publication Publication Date Title
Braithwaite et al. An electrostatic probe technique for RF plasma
Pécseli Solitons and weakly nonlinear waves in plasmas
Oberberg et al. The magnetic asymmetry effect in geometrically asymmetric capacitively coupled radio frequency discharges operated in Ar/O2
Lee et al. Wave nature of moving striations
JPS63257199A (en) Method of measuring anions in plasma
JPS6348447A (en) Method of removing noxious charged particle from measuring cell for icr spectrometer
Hamza et al. A fully self‐consistent fluid theory of anomalous transport in Farley‐Buneman turbulence
Hooper Jr Correlation techniques in experimental plasma physics
Diomede et al. Rapid calculation of the ion energy distribution on a plasma electrode
Braithwaite Electron energy distribution functions in processing plasmas
JPS59173714A (en) Exciting system of electromagnetic flowmeter
Lakhina et al. Ion cyclotron instability in the auroral F region
Mao et al. Decoupling the complex amplitudes of partial waves in two-photon ionization
Bešić et al. Adaptable Frequency Counter with Phase Filtering for Resonance Frequency Monitoring in Nanomechanical Sensing
Špatenka et al. Langmuir Probe Characterization of a RF Discharge Excited in Ar/C2F3Cl Mixtures during Plasma Deposition Processes
Moiseiwitsch Elastic scattering of electrons
Sobolewski et al. Electrical measurements for monitoring and control of rf plasma processing
JPH0230098A (en) Method of measuring high frequency plasma electron temperature
JPS60155982A (en) Partial discharge measuring apparatus
JPH0743957B2 (en) Sample and hold circuit
JPS5914860B2 (en) Mass spectrometry tube pulse or AC modulation automatic correction method
JPS59163520A (en) Electromagnetic flow meter
Sobolewski In situ measurement of electron emission yield at Si and SiO2 surfaces exposed to Ar/CF4 plasmas
Sarfaty et al. Wave-particle resonance in magnetized plasma
Uhm et al. Influence of beam head effects on high-power klystron amplifier

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees