JPS63256919A - Interlacing optical mechanism - Google Patents

Interlacing optical mechanism

Info

Publication number
JPS63256919A
JPS63256919A JP62092365A JP9236587A JPS63256919A JP S63256919 A JPS63256919 A JP S63256919A JP 62092365 A JP62092365 A JP 62092365A JP 9236587 A JP9236587 A JP 9236587A JP S63256919 A JPS63256919 A JP S63256919A
Authority
JP
Japan
Prior art keywords
mirror
polygon mirror
rotary
reflecting
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62092365A
Other languages
Japanese (ja)
Inventor
Hideto Ueno
秀人 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62092365A priority Critical patent/JPS63256919A/en
Publication of JPS63256919A publication Critical patent/JPS63256919A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the size of an image pickup device by forming the reflecting surfaces of a rotary polygon mirror so that light is reflected inside, and providing a fixed reflecting mirror in the internal rotary space of the rotary polygon mirror. CONSTITUTION:This optical mechanism consists of the rotary polygon mirror 13 constituted by supporting at least one couple of reflecting mirrors 15 having mirror surfaces in parallel to a rotary shaft 14 at positions axially symmetrically about a rotary member 9 fixed on the rotary shaft 14 and the fixed reflecting mirror 16 arranged in the space encircled with the minimum rotational track 17 of the rotary polygon mirror 13 while having a mirror surface to the rotary shaft 14. Incident light from an incidence opening 2 is therefore reflected by the rotary polygon mirror 13 through its reflecting mirror 15 so as to approach the rotary shaft 14, and the distance l between the center of the rotary shaft 14 and the optical axis of an image forming lens 7, i.e. optical axis of incidence on a linear multi-element photodetector 8 can be made shorter than before. Consequently, a housing 1 for storing device is reducible in size.

Description

【発明の詳細な説明】 〔概要〕 本発明は、直線型多素子光検知器を用いた撮像装置にお
けるインタレース走査において、従来外側に反射してい
た回転多面鏡の反射面を内側に反射するようにし、その
回転多面鏡の内部回転空間に固定反射鏡を設けることに
より、回転多面鏡の回転軸と光検知器の入射光軸との軸
間距離を縮小し、撮像装置の小型化を実現したものであ
る。
[Detailed Description of the Invention] [Summary] The present invention reflects inward the reflecting surface of a rotating polygon mirror, which conventionally reflected outward, in interlaced scanning in an imaging device using a linear multi-element photodetector. By installing a fixed reflector in the internal rotation space of the rotating polygon mirror, the distance between the rotation axis of the rotating polygon mirror and the incident optical axis of the photodetector can be reduced, making the imaging device more compact. This is what I did.

〔産業上の利用分野〕[Industrial application field]

本発明は、インタレース走査を行う撮像装置に係り、特
にインタレース光学機構に関する。
The present invention relates to an imaging device that performs interlaced scanning, and particularly to an interlaced optical mechanism.

赤外線撮像装置のようにインタレース走査を行う撮像装
置に用いられる光学機構は、特に小型化の要望が強い。
There is a strong demand for miniaturization of optical mechanisms used in imaging devices that perform interlaced scanning, such as infrared imaging devices.

これを実現するためには各構成部品の小型化と同時に、
各構成部品をコンパクトに配置し得る走査方式が必要と
される。
In order to achieve this, it is necessary to downsize each component and at the same time
A scanning method is needed that allows for compact arrangement of each component.

〔従来の技術〕[Conventional technology]

第4図は従来の撮像装置の平面配置図、第5図は第4図
の改造平面配置図を示す。第4図において、■は撮像装
置の筐体、2は被写体からの光の入射口、3は回転多面
鏡(本例は四面鏡)、4は回転多面鏡3の回転軸、5は
回転多面鏡3の各反射鏡、6は回転多面鏡から分離され
た固定反射鏡、7は結像レンズ、8は直線型多素子光検
知器、βは結像レンズ7の光軸(すなわち直線型多素子
光検知器8に対する入射光軸)に対する回転軸4の中心
点の距離を示す。
FIG. 4 shows a plan layout of a conventional imaging device, and FIG. 5 shows a modified plan layout of FIG. In Fig. 4, ■ is the housing of the imaging device, 2 is the entrance for light from the subject, 3 is a rotating polygon mirror (a four-sided mirror in this example), 4 is the rotation axis of the rotating polygon mirror 3, and 5 is a rotating polygon. Each reflecting mirror of the mirror 3, 6 is a fixed reflecting mirror separated from the rotating polygon mirror, 7 is an imaging lens, 8 is a linear multi-element photodetector, and β is the optical axis of the imaging lens 7 (i.e., a linear multi-element photodetector). The distance between the center point of the rotation axis 4 and the optical axis of incidence on the element photodetector 8 is shown.

図示のように入射口2から入った被写体の入射光が、回
転多面鏡3の外側に作られた反射鏡5に反射し、さらに
固定反射鏡6によって反射し、結像レンズ7によって直
線型多素子光検知器8上に結像される。回転多面鏡3を
その回転軸4の回りに回転させることによって、回転軸
4に対して垂直な方向に走査することができる機構にな
っている。
As shown in the figure, the incident light from the object that enters from the entrance 2 is reflected on the reflecting mirror 5 made outside the rotating polygon mirror 3, further reflected by the fixed reflecting mirror 6, and then reflected by the linear polygon lens 7 through the imaging lens 7. An image is formed on the element photodetector 8. By rotating the rotating polygon mirror 3 around its rotation axis 4, it is a mechanism that can scan in a direction perpendicular to the rotation axis 4.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の方式では、回転多面鏡3の反射面がその回転体の
外側に設けられているため、回転多面鏡3の回転スペー
スおよび各構成部品による光束の蹴られを考慮すると、
固定反射鏡6の位置は回転多面鏡3の最大回転半径の外
側となり、回転軸4の中心と結像レンズ7の光軸との距
離lは、回転多面鏡3の最大回転半径と光束の半径を加
えた値よりも長くなる。
In the conventional system, the reflective surface of the rotating polygon mirror 3 is provided outside the rotating body, so considering the rotation space of the rotating polygon mirror 3 and the deflection of the light beam by each component,
The position of the fixed reflecting mirror 6 is outside the maximum rotation radius of the rotating polygon mirror 3, and the distance l between the center of the rotation axis 4 and the optical axis of the imaging lens 7 is equal to the maximum rotation radius of the rotating polygon mirror 3 and the radius of the light beam. It will be longer than the value added.

直線型多素子光検知器8の外形寸法は限定されているた
め、装置の小型化を図るためには前記距離βを小さくす
る必要がある。この距離eを小さくしようとすれば、第
5図に示すようにさらに固定反射鏡6を複数個加えて迂
回光路を形成しなければならないが、反面迂回光路調節
機構が増加し、そのための設置スペースが必要となり、
かつ反射重分の性能低下が欠点となる。
Since the external dimensions of the linear multi-element photodetector 8 are limited, it is necessary to reduce the distance β in order to downsize the device. In order to reduce this distance e, it is necessary to add a plurality of fixed reflecting mirrors 6 to form a detour optical path as shown in FIG. is required,
In addition, a disadvantage is that the performance of the reflection weight decreases.

本発明は上記従来の欠点に鑑みてなされたもので、回転
軸4の中心と結像レンス7の光軸との距離lを縮小可能
なインタレース光学機構の提供を目的とする。
The present invention has been made in view of the above-mentioned conventional drawbacks, and an object of the present invention is to provide an interlaced optical mechanism capable of reducing the distance l between the center of the rotating shaft 4 and the optical axis of the imaging lens 7.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のインタレース光学機構は第1図の原理図に示す
ように、回転軸14に固定された回転部材9の軸対称位
置に、当該回転軸14に平行する鏡面を有する反射鏡1
5を互いに平行に対向するように少なくとも一対支持し
てなる回転多面鏡13と、前記回転多面鏡13の最小回
転軌跡17で囲まれた空間に前記回転軸14と平行な鏡
面を持って配置された固定反射鏡16とから構成されて
いる。
As shown in the principle diagram of FIG. 1, the interlace optical mechanism of the present invention has a reflecting mirror 1 having a mirror surface parallel to the rotating shaft 14 at an axially symmetrical position of the rotating member 9 fixed to the rotating shaft 14.
A rotary polygon mirror 13 is arranged with a mirror surface parallel to the rotation axis 14 in a space surrounded by a minimum rotation locus 17 of the rotary polygon mirror 13 and a rotating polygon mirror 13 formed by supporting at least one pair of polygon mirrors 5 so as to face each other in parallel. It is composed of a fixed reflecting mirror 16.

〔作用〕[Effect]

本発明の回転多面鏡13では、入射口2からの入射光は
その反射鏡15によって回転軸14に近づく方向に反射
され、この結果回転軸14の中心と結像レンズ7の光軸
(すなわち直線型多素子光検知器8に対する入射光軸)
との距離lを従来より短縮でき、装置を格納する筐体1
の小型化が容易となる。
In the rotating polygon mirror 13 of the present invention, the incident light from the entrance 2 is reflected by the reflecting mirror 15 in a direction approaching the rotation axis 14, and as a result, the center of the rotation axis 14 and the optical axis of the imaging lens 7 (i.e., a straight line type multi-element photodetector 8)
The distance l between the device and the device can be shortened compared to the conventional case
This makes it easier to downsize.

〔実施例〕〔Example〕

以下本発明の実施例を図面によって詳述する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

なお、構成、動作の説明を理解し易くするために全図を
通じて同一部分には同一符号を付してその重複説明を省
略する。
Note that, in order to make the explanation of the configuration and operation easier to understand, the same parts are given the same reference numerals throughout all the figures, and repeated explanation thereof will be omitted.

第2図は本発明の実施例のインタレース光学機構の平面
配置図、第3図は第2図の回転多面鏡と固定反射鏡の斜
視図を示す。以下、第3図を参照しながら第2図の説明
を行う。
FIG. 2 is a plan layout view of an interlace optical mechanism according to an embodiment of the present invention, and FIG. 3 is a perspective view of the rotating polygon mirror and fixed reflecting mirror shown in FIG. 2. Hereinafter, FIG. 2 will be explained with reference to FIG.

24は回転軸であって図示しない回転駆動部に連結され
、走査周期に同期した一定の回転速度で矢印P方向に回
転する。10は回転軸24に固定された回転部材であっ
て、その回転部材10上の回転軸24を基準とする対称
位置に、当該回転軸24に平行する鏡面を有する反射鏡
25a、25bを互いに平行に対向するようにように一
対支持してなる鏡面2枚の回転多面鏡23を構成してい
る。
Reference numeral 24 denotes a rotation shaft, which is connected to a rotation drive unit (not shown) and rotates in the direction of arrow P at a constant rotation speed synchronized with the scanning period. Reference numeral 10 denotes a rotating member fixed to the rotating shaft 24, and reflective mirrors 25a and 25b having mirror surfaces parallel to the rotating shaft 24 are mounted parallel to each other at symmetrical positions on the rotating member 10 with respect to the rotating shaft 24. A rotating polygon mirror 23 with two mirror surfaces is supported in pairs so as to face each other.

前記回転多面鏡23の最小回転軌跡27で囲まれた空間
に、前記回転軸24と平行な鏡面を持って対向配置され
た固定反射鏡26と、前記回転多面鏡23とから本実施
例のインタレース光学機構は構成されている。なお、2
8は固定反射鏡26を支持するための固定台である。
The interface of this embodiment is formed from the rotating polygon mirror 23 and a fixed reflecting mirror 26 which is disposed facing each other with mirror surfaces parallel to the rotation axis 24 in a space surrounded by the minimum rotation locus 27 of the rotating polygon mirror 23. Lace optics are configured. In addition, 2
8 is a fixed base for supporting the fixed reflecting mirror 26.

第2図において、入射口2から入った被写体の入射光は
、回転多面鏡23の反射鏡25aまたは25bと固定反
射鏡26によってそれぞれ反射され、結像レンズ7を介
して直線型多素子光検知器8に結像される。
In FIG. 2, the incident light from the object that enters through the entrance opening 2 is reflected by the reflecting mirror 25a or 25b of the rotating polygon mirror 23 and the fixed reflecting mirror 26, and then passes through the imaging lens 7 to linear multi-element light detection. The image is formed on the device 8.

回転多面鏡23の反射鏡25aまたは25bで反射され
た光束は回転軸24に近つく方向に反射されるため、従
来例に比して距離lを小さくすることができる。この回
転多面鏡23が回転軸24を中心にして回転することに
より1回転当たり2度の走査が可能である。
Since the light beam reflected by the reflecting mirror 25a or 25b of the rotating polygon mirror 23 is reflected in a direction approaching the rotation axis 24, the distance l can be made smaller than in the conventional example. By rotating this rotating polygon mirror 23 around a rotation shaft 24, scanning can be performed twice per rotation.

回転多面鏡が2面構成の場合の小型化効果は、装置の横
幅をLとし、直線型多素子光検知器8の横幅Mが781
TIII+、従来の最大回転半径を30mm、第2図の
最大回転半径を44mmとしたときの縮小率は約0.7
5L程度の小型化が実現できる。
The miniaturization effect when the rotating polygon mirror has a two-sided configuration is that the width of the device is L, and the width M of the linear multi-element photodetector 8 is 781 mm.
TIII+, the reduction ratio is approximately 0.7 when the conventional maximum rotation radius is 30 mm and the maximum rotation radius in Figure 2 is 44 mm.
Miniaturization of about 5L can be achieved.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明のインタレース光学機
構によれば、回転多面鏡の中心位置と、直線型多素子光
検知器の入射光軸との距離lを、反射回数の増加による
性能低下なしに縮小し、装置筐体を小型化し得る効果が
ある。
As explained in detail above, according to the interlaced optical mechanism of the present invention, the distance l between the center position of the rotating polygon mirror and the incident optical axis of the linear multi-element photodetector is reduced by the increase in the number of reflections, resulting in a decrease in performance. This has the effect of reducing the size of the device housing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理図、 第2図は本発明の実施例のインタレース光学機構の平面
配置図、 第3図は第2図の回転多面鏡と固定反射鏡の斜視図、 第4図は従来の撮像装置の平面配置図、第5図は第4図
の改造平面配置図を示す。 第1図において、9は回転部材、13は回転多面鏡、1
4は回転軸、15は反射鏡、16は固定反射鏡をそれぞ
れ示す。
Fig. 1 is a diagram of the principle of the present invention, Fig. 2 is a plan view of an interlace optical mechanism according to an embodiment of the present invention, Fig. 3 is a perspective view of the rotating polygon mirror and fixed reflecting mirror shown in Fig. 2, and Fig. 4 The figure shows a plan layout of a conventional imaging device, and FIG. 5 shows a modified plan layout of FIG. 4. In FIG. 1, 9 is a rotating member, 13 is a rotating polygon mirror, 1
4 is a rotating shaft, 15 is a reflecting mirror, and 16 is a fixed reflecting mirror.

Claims (1)

【特許請求の範囲】 回転軸(14)に固定された回転部材(9)の軸対称位
置に、当該回転軸(14)に平行する鏡面を有する反射
鏡(15)を互いに平行に対向するように少なくとも一
対支持してなる回転多面鏡(13)と、 前記回転多面鏡(13)の最小回転軌跡(17)で囲ま
れた空間に前記回転軸(14)と平行な鏡面を持って配
置された固定反射鏡(16)とから構成されてなること
を特徴とするインタレース光学機構。
[Claims] Reflecting mirrors (15) having mirror surfaces parallel to the rotation axis (14) are placed at axially symmetrical positions of the rotation member (9) fixed to the rotation axis (14) so as to face each other in parallel. at least one pair of rotating polygon mirrors (13) supported by the rotary polygon mirror (13); and a mirror surface parallel to the rotation axis (14) arranged in a space surrounded by the minimum rotation locus (17) of the rotating polygon mirror (13). An interlaced optical mechanism characterized in that it is comprised of a fixed reflecting mirror (16).
JP62092365A 1987-04-14 1987-04-14 Interlacing optical mechanism Pending JPS63256919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62092365A JPS63256919A (en) 1987-04-14 1987-04-14 Interlacing optical mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62092365A JPS63256919A (en) 1987-04-14 1987-04-14 Interlacing optical mechanism

Publications (1)

Publication Number Publication Date
JPS63256919A true JPS63256919A (en) 1988-10-24

Family

ID=14052388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62092365A Pending JPS63256919A (en) 1987-04-14 1987-04-14 Interlacing optical mechanism

Country Status (1)

Country Link
JP (1) JPS63256919A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017097199A (en) * 2015-11-25 2017-06-01 株式会社リコー Polygon mirror, optical deflector, optical scanner, and image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017097199A (en) * 2015-11-25 2017-06-01 株式会社リコー Polygon mirror, optical deflector, optical scanner, and image forming apparatus

Similar Documents

Publication Publication Date Title
US4538181A (en) Optical scanner
JP4326946B2 (en) Scanning sensor system with multiple rotating telescope subassemblies
US3602571A (en) Optical beam scanner providing angular displacements of large beam diameters over wide fields of view
US5724171A (en) Optical scanning apparatus
JPS63256919A (en) Interlacing optical mechanism
GB2344168A (en) Optical interferometer
JP2690591B2 (en) Optical scanning device
JPH0843726A (en) Variable focal length lens system and image reader
JP3500214B2 (en) Optical encoder
JP2761300B2 (en) Tracking actuator for optical disk drive
KR20190112424A (en) Tripod MEMS scanner using electromagnetic Force Drive
JP2751644B2 (en) Optical scanning device
JPH0634910A (en) Laser scanning optical system
JPH0376463A (en) Facsimile equipment
JPH03148968A (en) Two boards type electronic camera
JPH0312285B2 (en)
JPS60200217A (en) Optical scanner
JPS6138923A (en) Hologram scanner
SU1120272A1 (en) Single-coordinate scanning device
JPS6136720A (en) Hologram scanner
JPS63129313A (en) Interlacing optical mechanism
JP2002122800A (en) Synchronous signal detecting device for laser scanning device
JPH10178526A (en) Reflection optical unit and scanner optical system
JPH0312288B2 (en)
JPS61143718A (en) Hologram scanner