JPS63256129A - Method for controlling vehicular mixture and vehicular structure - Google Patents

Method for controlling vehicular mixture and vehicular structure

Info

Publication number
JPS63256129A
JPS63256129A JP9146687A JP9146687A JPS63256129A JP S63256129 A JPS63256129 A JP S63256129A JP 9146687 A JP9146687 A JP 9146687A JP 9146687 A JP9146687 A JP 9146687A JP S63256129 A JPS63256129 A JP S63256129A
Authority
JP
Japan
Prior art keywords
state
polyamino acid
group
bilayer membrane
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9146687A
Other languages
Japanese (ja)
Inventor
Yoshiharu Tsujita
義治 辻田
Akira Takizawa
滝沢 章
Takatoshi Kinoshita
隆利 木下
Shinko Higuchi
真弘 樋口
Kazuo Watanabe
和雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP9146687A priority Critical patent/JPS63256129A/en
Publication of JPS63256129A publication Critical patent/JPS63256129A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To optically control the solubility of a polyamino acid in a bimolecular film by introducing a photosensitive group into the side chain of the polyamino acid, and utilizing a change in the polarity due to the resulting photoisomeriza tion reaction. CONSTITUTION:The solubility of a membrane protein substance in a lipid bimolecular film is controlled by changing the bipolarity with the photoisome rization reaction of the polyamino acid wherein azobenzene as the photosensitive group is introduced into the side chain. In addition, a polyamino acid wherein a photosensitive group, the hydrophilic head group of a lipid bimolecular film forming substance, and an oppositely chargeable functional group are introduced into the side chain is used to change the bipolarity with the photoisomerization reaction of the photosensitive group, and the solubility of the polyamino acid in the lipid bimolecular film is changed. The interionic action between the functional group of the polyamino acid and the hydrophilic head group of the lipid bimolecular film is controlled, and the vehicular structure is controlled in an aggregated and dispersed state.

Description

【発明の詳細な説明】 〔概要〕 本発明は膜タンパク質モデル物質に、分子長が二分子膜
厚と同程度の低重合度ポリアミノ酸を用い、二分子膜形
成物質にカチオン性二本鎖型界面活性剤を用い、膜タン
パク質と脂質分子の相互作用を、特に膜タンパク質の極
性の違いによる脂質9益子相層への溶解性を制御する方
法に関する。
[Detailed Description of the Invention] [Summary] The present invention uses a low degree of polymerization polyamino acid with a molecular length comparable to the thickness of a bilayer membrane as a membrane protein model substance, and a cationic double-stranded polyamino acid as a bilayer membrane forming substance. This invention relates to a method of controlling the interaction between membrane proteins and lipid molecules using surfactants, particularly the solubility of membrane proteins in a lipid 9-mask phase layer due to differences in polarity.

又、本発明はポリアミノ酸の側鎖に光感応基であるアゾ
ベンゼンを導入して、その光異性化反応による極性の変
化を利用して、ポリアミノ酸の二分子膜への溶解性を光
制御する方法に関する。
Furthermore, the present invention introduces azobenzene, which is a photosensitive group, into the side chain of a polyamino acid, and utilizes the change in polarity caused by the photoisomerization reaction to photocontrol the solubility of the polyamino acid in a bilayer membrane. Regarding the method.

又、本発明はTc温度より低温でゲル状態、Tc温度以
上で液晶状態をとる、疏水性長鎖アルキル基と親水性ヘ
ッド基を有する脂質二分子膜形成物質と、 第1の励起光照射により、その極性を第1状態から第2
状態へ、第2の励起光照射により、極性を第2状態から
第1状態へ、可逆変化を行なう光感応基と、 親水性ヘッド基と逆荷電性の官能基を側鎖に導入したポ
リアミノ酸との混合物が、水もしくは水溶液中に微粒子
状に分相分散されたベシクルを含む混合物をTc温度よ
り低温とし、ベシクルの脂質二分子膜形成物質をゲル状
態とし、 第1の励起光を照射し、光感応基の極性を第2状態へ変
化させ、ポリアミノ酸の脂質二分子膜形成物質への溶解
性を変化させ、二分子膜からポリアミノ酸を溶出せしめ
、脂質二分子膜形成物質の親水性ヘッド基と溶出された
ポリアミノ酸の逆荷電性の官能基とのイオン相互作用に
より、ベシクルを凝集構造とし、 上記ベシクルが凝集構造にある混合物に、第2の励起光
を照射し、光感応基の極性を第1状態とし、 上記ベシクルが凝集構造にある混合物を、Tc温度以上
に加熱し、ベシクルの脂質二分子膜形成物質を液晶状態
とし、 ポリアミノ酸を二分子膜内に再溶解させることにより、
イオン相互作用の解除をなし、ベシクルを分解構造とす
るベシクル構造を制御する方法に関する。
The present invention also provides a lipid bilayer-forming substance having a hydrophobic long-chain alkyl group and a hydrophilic head group, which takes a gel state at a temperature lower than the Tc temperature and a liquid crystal state at a temperature higher than the Tc temperature, and , change its polarity from the first state to the second state
A polyamino acid having a photosensitive group that reversibly changes its polarity from the second state to the first state upon irradiation with a second excitation light, and a hydrophilic head group and an oppositely charged functional group introduced into the side chain. A mixture containing vesicles dispersed in fine particle form in water or an aqueous solution is heated to a temperature lower than the Tc temperature, the lipid bilayer membrane-forming substance of the vesicles is brought into a gel state, and the first excitation light is irradiated. , change the polarity of the photosensitive group to the second state, change the solubility of the polyamino acid in the lipid bilayer forming substance, elute the polyamino acid from the bilayer membrane, and improve the hydrophilicity of the lipid bilayer forming substance. The ionic interaction between the head group and the oppositely charged functional group of the eluted polyamino acid causes the vesicles to form an aggregated structure, and the mixture in which the vesicles are in the aggregated structure is irradiated with a second excitation light to release the photosensitive groups. heating the mixture in which the vesicles are in an aggregated structure above the Tc temperature to bring the lipid bilayer membrane-forming substance of the vesicles into a liquid crystal state, and redissolve the polyamino acid in the bilayer membrane; According to
This invention relates to a method for controlling the vesicle structure by releasing ionic interactions and making the vesicle a decomposed structure.

(産業上の利用分野及び従来の技術〕 生体膜特有の能動輸送現象についてH″濃度勾えた高感
度膜センサーなどエネルギー変換機能に関連した機能性
膜の開発、生体膜機能発現の応用分野を考慮に入れた機
能の合目的的な抽出が始められている。
(Industrial fields of application and conventional technology) Development of functional membranes related to energy conversion functions such as high-sensitivity membrane sensors with gradient H'' concentration regarding active transport phenomena unique to biological membranes, and consideration of application fields of biological membrane function expression. Purposeful extraction of the functions put into the system has begun.

これらの膜機能は生体系においてつねに発現されている
わけではなく、必要なとき、必要なだけ特定分子の濃縮
・分離やエネルギー生産がなされている。このような生
体膜のもつ膜機能制御の機構をみのがすわけにはゆかな
い。これらの制御機構には、膜物質の構造変化が関与し
ている場合が多い。例えばコリシンKを含むリン脂質二
分子膜でKCI水溶液を隔て膜の両側に電位差をかける
と45mVをさかいにall or none的な電圧
−電流特性を示す。
These membrane functions are not always expressed in biological systems, but concentrate and separate specific molecules and produce energy when and as needed. We cannot afford to ignore the mechanism of membrane function control that biological membranes have. These control mechanisms often involve structural changes in membrane materials. For example, when a KCI aqueous solution is separated by a phospholipid bilayer membrane containing colicin K and a potential difference is applied to both sides of the membrane, an all or none voltage-current characteristic is exhibited after 45 mV.

Na″濃度勾配や光などが作用因子となって構造変化を
誘起し透過性が制御されている系も知られている。リン
パ球細胞にレクチンを作用させるとCa”の透過が制御
されるが、これはレクチンが膜タンパク質と結合するこ
とにより膜の構造変化が起こり、その結果、Ca”の輸
送に変化が生じると考えられている。1価陽イオンの透
過性制御に共役した神経膜興奮におけるカルシウムイオ
ンの作用は、構造変化と透過性の関連において古くから
知られている一例である。
A system in which permeability is controlled by inducing structural changes using Na'' concentration gradients or light as acting factors is also known. When lectins act on lymphocytes, Ca'' permeation is controlled. This is thought to be due to structural changes in the membrane caused by the binding of lectins to membrane proteins, resulting in changes in the transport of Ca. Neuronal membrane excitation coupled to the control of monovalent cation permeability. The effect of calcium ions on membranes is an example of the relationship between structural changes and permeability that has been known for a long time.

しかしながら、このような膜構造変化と透過性共役させ
ることにより、その透過性を制御する方法の解明と応用
が強く望まれている。(日本化学会誌、 868.19
83) 〔問題点を解決するための手段及び作用〕本発明は、膜
タンパク質物質の脂質二分子膜への溶解性を、側鎖に光
感応基を導入したポリアミノ酸の先具性反応により、双
極性(dipole  mo−men t )を変化さ
せ呑で制御する。
However, it is strongly desired to elucidate and apply a method for controlling the permeability by conjugating such changes in membrane structure and permeability. (Journal of the Chemical Society of Japan, 868.19
83) [Means and effects for solving the problems] The present invention improves the solubility of membrane protein substances in lipid bilayer membranes by using a pre-containing reaction of polyamino acids with photosensitive groups introduced into their side chains. It is controlled by changing the dipole mo-ment.

又、本発明は、側鎖に光感応基及び脂質二分子膜形成物
質の親水性ヘッド基と逆荷電性の官能基を導入したポリ
アミノ酸を用い、光感応基の光異性化反応により双極性
を変化させ、ポリアミノ酸の脂質二分子膜への溶解性を
変化させ、ポリアミノ酸の官能基と脂質二分子膜の親水
性ヘッド基とのイオン相互作用を制御し、ベシクル構造
を凝集状態・分散状態に制御する。
In addition, the present invention uses a polyamino acid into which a photosensitive group, a hydrophilic head group of a lipid bilayer membrane-forming substance, and an oppositely charged functional group are introduced into the side chain, and a dipolar by changing the solubility of polyamino acids in lipid bilayer membranes, controlling the ionic interaction between the functional groups of polyamino acids and the hydrophilic head groups of lipid bilayer membranes, and changing the vesicle structure into agglomerated or dispersed states. control to the state.

〔実施例〕〔Example〕

以下、本発明の実施例につき詳細に説明する。 Examples of the present invention will be described in detail below.

〔1〕実験、膜タンパク質モデル物質である低重コポリ
(γ−メチル−L−グルタメート/L−グルタミン酸)
  (MG/GA) 、及びポリ(L−グルタミン酸)
  (PGA) (重合度72)を用いた。二分子膜形
成物質にはジステアリルジメチルアンモニウムクロライ
ド(DSACL)を用いた。
[1] Experiment, low-density copoly(γ-methyl-L-glutamate/L-glutamic acid), a membrane protein model substance
(MG/GA), and poly(L-glutamic acid)
(PGA) (degree of polymerization 72) was used. Distearyldimethylammonium chloride (DSACL) was used as a bilayer membrane forming substance.

PIIIG、 MG/GA、 PGA、 DSACLの
分子構造は下記の通りである。
The molecular structures of PIIIG, MG/GA, PGA, and DSACL are as follows.

4NH−CH−CO)4NH−CH−Co弁−IH−C
I−Co) (Nl(−C8−CO矢PMG     
    MG/GA          PGAまた蛍
光測定に用いた試料は、PMG端末をANSでラベルし
たterm、ANS−PMG、側鎖をANSでラベルし
た5ide、ANe−PGA、5ide、ANS−MG
/GA 、及び側鎖をピレンでラベルした、5ide、
Pyrene−(87/13 MG/GA)を用いた。
4NH-CH-CO) 4NH-CH-Co valve-IH-C
I-Co) (Nl(-C8-COarrow PMG
MG/GA PGA Also, the samples used for fluorescence measurements were term, ANS-PMG, in which the PMG terminal was labeled with ANS, 5ide, ANe-PGA, 5ide, and ANS-MG in which the side chain was labeled with ANS.
/GA, and 5ide, whose side chain was labeled with pyrene,
Pyrene-(87/13 MG/GA) was used.

また光応答性ポリアミノ酸として側鎖にアゾベンゼンを
13%含むzao−MG/GAを用いた。
Furthermore, zao-MG/GA containing 13% azobenzene in its side chain was used as a photoresponsive polyamino acid.

蛍光分光光度測定には、島原製作所製RF −54ot
用い、(DSACL ) =8.5 XIOM−”で蛍
光スペクトルを測定した。蛍光偏光解消測定には、UN
ION技研製FS−501Aを用い、(DSACL )
 =8.5 Xl0M −’<7)ベシクルにジフェニ
ル−1,3,5−ヘキサトリエンDPHを2.2 XI
OM−’加え測定した。
For fluorescence spectrophotometry, RF-54ot manufactured by Shimabara Manufacturing Co., Ltd.
Fluorescence spectra were measured using (DSACL) = 8.5 XIOM-''.
Using ION Giken FS-501A, (DSACL)
= 8.5 Xl0M −'<7) 2.2
OM-' was added and measured.

ベシクル系でのイオン透過実験には、グルコン酸ナトリ
ウム0.1Mを含むTris −HEPES緩衡液でp
H6,8に調整したベシクルをゲルろ過の後、同じくT
ris −HEPES緩衡液でpH6,8に調整した0
、1Mのグルコン酸カリウム水溶液に加え、ベシクル外
水溶液のナトリウムイオン濃度の変化を掘場製作所製N
−7ion H形イオンメータを用いて測定した。さら
に、光刺激(ウシ第500W、 D−33Sまたはし−
39をフィルターとして用いた。)による13−12/
75azo−MG/GAの極性の変化を利用した二分子
膜への溶解性の変化を蛍光法により測定し、あわせてベ
シクルの形態的な変化を位相差顕微鏡(オリ≠バス製B
HR)を用いて観察した。
For ion permeation experiments in vesicle systems, a Tris-HEPES buffer containing 0.1M sodium gluconate was used.
After gel filtration of the vesicles adjusted to H6,8, the same T
0 adjusted to pH 6.8 with ris-HEPES buffer.
In addition to 1M potassium gluconate aqueous solution, changes in the sodium ion concentration of the aqueous solution outside the vesicles were measured using Horiba Seisakusho N.
Measurements were made using a -7ion H-type ion meter. Furthermore, optical stimulation (bovine No. 500W, D-33S or Shi-
No. 39 was used as a filter. ) by 13-12/
Changes in the solubility of 75azo-MG/GA in bilayer membranes using changes in polarity were measured using a fluorescence method, and morphological changes in vesicles were also observed using a phase contrast microscope (Oli≠Bass B).
HR).

〔2]結果、第1図にジフェニル−1,3,5−ヘキサ
トリエンDPHを用いて蛍光偏光解消法により測定した
ポリアミノ酸を含まないベシクルとポリアミノ酸を含ん
だベシクルの長鎖アルキル鎖部分の流動性を測定した結
果を示す。いずれの系においてもTc (40°C)を
境として流動性が大きく変化し、またポリアミノ酸を導
入することによって、ゲル状態、液晶状態のいずれにお
いても系の流動性を高めているが、この傾向はPGAで
より顕著に見られた。ポリアミノ酸の二分子膜中への溶
解については、媒体の極性に応じてその最大蛍光波長を
シフトさせるANSをポリアミノ酸側鎖に修飾した試料
を用いて測定した。(第2図)。その結果term、A
NS−PMGのλ、 maxが親水側に、5ide、八
NS−PMGのλ、maxが流水側に位置するのでPM
G分子は改組に溶解し、二分子膜を貫く様に存在し、一
方5ide、ANS−PGAのλ、n+axが親水側に
存在することからPGA分子は二分子膜ヘッド基近傍に
存在していることが考えられる。以上の結果よりPMG
分子が二分子膜中でDSACL分子の長鎖アルキル基と
疏水性相互作用しそのバッキング構造を乱しその流動性
を高め、PGA分子は側鎖カルボ゛キシルキとD S 
A CLの四級アンモニウムとのイオン相互作用によっ
てこの二分子膜構造を乱しているものと考えられる。
[2] As a result, Figure 1 shows the relationship between long-chain alkyl chain moieties of vesicles not containing polyamino acids and vesicles containing polyamino acids measured by fluorescence depolarization method using diphenyl-1,3,5-hexatriene DPH. The results of measuring fluidity are shown. In both systems, the fluidity changes significantly at Tc (40°C), and by introducing polyamino acids, the fluidity of the system is increased in both the gel state and liquid crystal state. The trend was more pronounced in PGA. The dissolution of polyamino acids into bilayer membranes was measured using samples in which polyamino acid side chains were modified with ANS, which shifts the maximum fluorescence wavelength depending on the polarity of the medium. (Figure 2). As a result, term, A
PM
The G molecule dissolves in the rearrangement and exists as if penetrating the bilayer membrane, while 5ide, ANS-PGA's λ, and n+ax exist on the hydrophilic side, so the PGA molecule exists near the bilayer membrane head group. It is possible that From the above results, PMG
The molecule interacts hydrophobically with the long chain alkyl group of the DSACL molecule in the bilayer membrane, disrupting its backing structure and increasing its fluidity, and the PGA molecule interacts with the side chain carboxylic group and D S
It is thought that this bilayer membrane structure is disturbed by the ionic interaction of ACL with quaternary ammonium.

5ide、ANS−(88/12  MG/GA)、5
ide、ANS−(80/20  MG/GA)につい
て同様な測定を行なった結果第3図の様にただ−のピー
クではなく、高波長側と低波長側に2つにピークが現れ
たそこで低波長側の発光を二分子膜中での発光、高波長
側の発光をヘッド基近傍での発光としてこの強度比から
次の様な平衡反応の平衡定数を求め熱力学的な考察を試
みた。
5ide, ANS-(88/12 MG/GA), 5
Similar measurements were made for IDE and ANS- (80/20 MG/GA), and as a result, there were two peaks, one on the high wavelength side and one on the low wavelength side, instead of just a - peak as shown in Figure 3. The emission on the wavelength side is assumed to be the emission in the bilayer membrane, and the emission on the high wavelength side is assumed to be the emission near the head group, and from this intensity ratio, the equilibrium constant of the equilibrium reaction as shown below was determined and a thermodynamic consideration was attempted.

この際ANSは媒体の極性に応じてその蛍光強度が変化
するので、その補正もおこなった。
At this time, since the fluorescence intensity of ANS changes depending on the polarity of the medium, correction was also made for this.

MG/GA     □  MG/GAat  mem
bran  5urface         in 
 membraneside、ANS−(80/20 
MG/GA)の結果を示す(第4図)。これによりin
kがゲル状態で正の値、液晶状態での負の値であるので
80/20 MG/GAはゲル状態では主に二分子膜ヘ
ッド基近傍に存在し液晶状態では二分子膜内に存在して
いると考えられる。
MG/GA □ MG/GA at mem
bran 5 surface in
membraneside, ANS-(80/20
MG/GA) (Fig. 4). This allows in
Since k is a positive value in the gel state and a negative value in the liquid crystal state, 80/20 MG/GA exists mainly near the bilayer membrane head group in the gel state and within the bilayer membrane in the liquid crystal state. It is thought that

また次の式によってMG/GAの二分子膜への溶は込み
によるエントロピー変化、エントロピー変化をもとめた
Furthermore, the entropy change due to the incorporation of MG/GA into the bilayer membrane and the entropy change were determined using the following equation.

R、T     R これによりΔHはゲル、液晶画状態で2.9KJ/mo
l。
R, T R As a result, ΔH is 2.9 KJ/mo in gel and liquid crystal display states.
l.

と一定であるがΔSはゲル状態で、7.5J/mo1.
にであるのに対し液晶状態で12J/mo1.にと太き
く80/20 MG/GAの二分子膜への溶は込みは主
にエントロピー項が関与していると言える。88/12
 MG/GAについても同様な測定を行ない、ΔHと液
晶状態と、に増加するものと考えられる。一方ベシクル
系でTable、1.Thermodynamfcpa
ramater  ΔH1Δ(ΔS)、for  th
etransfer of MG/GA copoly
merfrom  the  membrane  5
urfaceto  the  1nterior。
is constant, but ΔS is 7.5 J/mol in gel state.
12J/mo1. in liquid crystal state. It can be said that the entropy term is mainly involved in the incorporation of the thick 80/20 MG/GA into the bilayer membrane. 88/12
A similar measurement was made for MG/GA, and it is thought that it increases with ΔH and the liquid crystal state. On the other hand, in the vesicle system Table, 1. Thermodynamfcpa
ramater ΔH1Δ(ΔS), for th
etransfer of MG/GA copoly
merfrom the membrane 5
surface to the interior.

MG/GA12   MG/GA20 のナトリウムイオン透過測定には、陰イオンとしてその
流出、人を防ぐため分子サイズの大きいグルコン酸C6
HIZO?を用いた。すなわちイシクル内液にはpH6
,8のグルコン酸ナトリウムO,1M水溶液をベシクル
外液には、pH6,8のグルコン酸カリウム0.1M水
溶液を用いて浸透圧差をゼロにした。
For sodium ion permeation measurement of MG/GA12 MG/GA20, gluconate C6, which has a large molecular size, is used as an anion to prevent its leakage and human exposure.
HIZO? was used. In other words, the internal solution of the icicle has a pH of 6.
The osmotic pressure difference was brought to zero by using a 0.1 M aqueous solution of potassium gluconate at pH 6 and 8 as the external liquid of the vesicle.

88/12 MG/GAのDMF溶液(1mg/cc)
の添加前後でのナトリウムイオン放出速度を、イオンメ
ーターを用いて測定した結果を第5図に示した。ゲル状
態での88/12 MG/GA添加後の放出速度が添加
前の約2.1倍であるのに対して液晶状態では添加後の
放出速度が添加後の約3.0倍へと増加している。また
5ide、Pyrene−(87/13 MG/GA)
のベシクル中での会合に基づくエキシマ−発光強度のモ
ノマー発光強度に対する比を測定したところの比はゲル
状態に比べ液晶状態で大きいことから87/13MG/
 GAは液晶状態で会合傾向が強まっていると考えられ
る(第6図)。これらの結果は液晶状態での88/12
 MG/GAの添加によるイオン放出速度の増加は液晶
状態の二分子膜中への88/12 MG/GAの溶解性
の増加に伴い膜中の88/12 MG/GAが会合しチ
ャネル様のイオンの透過路が形成されたことを示唆する
。以上の結果よりポリアミノ酸の極性の違いにより二分
子膜中へのその溶解性の異なることが定量に的に確かめ
られたので、光刺激により極性を変化させるアゾベンセ
ンで側鎖を修飾したポリアミノ酸を用いてポリアミノ酸
の二分子膜への溶解性の光制御を試みた。二分子膜中で
のazo−MG/GAは励起波長を290nm・最大蛍
光波長を445nmに持ち、この最大蛍光波長445n
mがANSの励起波長450nmとほぼ一致するので、
ANSをベシクル溶液に″加えazo−MG−/GAの
励起(290nm)に基づ<470nmのANSの蛍光
強度の光及び熱刺激に対する応答性を調べた。これはア
ニオン性のANSがカチン性の二分子膜ヘッド基近傍に
存在するために、光あるいは熱刺激によってazo−M
G/GAの二分子膜への溶解性が変わり、ANS近傍に
存在するazo−MG/GAの蛍光がANSを励起させ
るのを利用してazo−MG/GAの二分子膜への溶解
性を検討したものであり結果を第7図に示す。20°C
ゲル状態でUVを照射することによって、アゾベンゼン
はトランス体からシス体へと光異性化しazo−MG/
GAの極性が増加し二分子膜から溶は出しANSの蛍光
強度の増加(第7図B −+ b)が見られる。しかし
この温度で可視光を照射し再びトランス体を回復しても
azo−MG/GAはゲル状態の二分子膜への再溶解し
ないが(第7図b)、温度をTc以上の55°Cに増加
させるとazo−MG/GAは再び二分子膜中に溶は込
みANSの蛍光強度は減少した第7図C)。この一連の
光及び熱刺激のサイクルでのベシクルの形態の変化を位
相差顕微鏡を用いて観察した。Tc以下のゲル状態では
azo−MG/GAが二分子膜中に存在し個々のベシク
ルは分散しているが#姦=糎;#、UV照射によりaz
o−MGをとるキ#零堀=イ。これに可視光を照射しち
てもこの凝集構造に変化は見られないがTc以上の造に
戻ったもに)目h#。つまり330nmの光刺激はベシ
クル間会合という型で固定され、これは390nm以上
の光刺激では乱されないがその後の? 昇温により消去されることになる(第ヰ図)。
88/12 MG/GA DMF solution (1mg/cc)
Figure 5 shows the results of measuring the sodium ion release rate before and after addition using an ion meter. In the gel state, the release rate after addition of 88/12 MG/GA is about 2.1 times that before addition, whereas in the liquid crystal state, the release rate after addition increases to about 3.0 times after addition. are doing. Also 5ide, Pyrene- (87/13 MG/GA)
The ratio of the excimer emission intensity to the monomer emission intensity based on the association in the vesicles was measured, and the ratio was larger in the liquid crystal state than in the gel state, so it was 87/13MG/
It is thought that GA has a stronger tendency to aggregate in the liquid crystal state (Figure 6). These results are 88/12 in liquid crystal state.
The increase in the ion release rate due to the addition of MG/GA is due to the increase in the solubility of 88/12 MG/GA in the bilayer membrane in the liquid crystal state. This suggests that a permeation path was formed. From the above results, it was quantitatively confirmed that the solubility in the bilayer membrane differs depending on the polarity of polyamino acids. We attempted to control the solubility of polyamino acids in bilayer membranes using light. azo-MG/GA in a bilayer film has an excitation wavelength of 290 nm and a maximum fluorescence wavelength of 445 nm;
Since m almost matches the excitation wavelength of ANS, 450 nm,
ANS was added to the vesicle solution, and the response of the fluorescence intensity of <470 nm to light and thermal stimulation was investigated based on the excitation of azo-MG-/GA (290 nm). Due to its presence near the bilayer membrane head group, azo-M can be stimulated by light or heat.
The solubility of G/GA in the bilayer membrane changes, and the solubility of azo-MG/GA in the bilayer membrane is increased by utilizing the fact that the fluorescence of azo-MG/GA existing near the ANS excites the ANS. The results are shown in Figure 7. 20°C
By irradiating UV in the gel state, azobenzene photoisomerizes from the trans form to the cis form, forming azo-MG/
As the polarity of GA increases, it is eluted from the bilayer membrane, and an increase in the fluorescence intensity of ANS is observed (FIG. 7B-+b). However, even if the trans isomer is restored by irradiation with visible light at this temperature, azo-MG/GA does not re-dissolve into the bilayer membrane in a gel state (Fig. 7b), but when the temperature is increased to 55°C, which is higher than Tc. When the temperature was increased, azo-MG/GA re-incorporated into the bilayer membrane and the fluorescence intensity of ANS decreased (Fig. 7C). Changes in vesicle morphology during this series of cycles of light and heat stimulation were observed using a phase contrast microscope. In the gel state below Tc, azo-MG/GA exists in the bilayer membrane and individual vesicles are dispersed;
Ki to take o-MG #Reihori = I. Even after irradiating this with visible light, no change was observed in this aggregated structure, but it returned to a structure higher than Tc). In other words, the 330 nm light stimulus is fixed in the form of intervesicle association, which is not disturbed by the 390 nm or higher light stimulus, but after that? It will be erased by increasing the temperature (Figure 3).

〔発明の効果) ポリアミノ酸の側鎖に光感応基を導入して、その先具性
反応による極性の変化を利用して、ポリアミノ酸の二分
子膜への溶解性の光制御をなしうる。
[Effects of the Invention] By introducing a photosensitive group into the side chain of a polyamino acid and utilizing the change in polarity caused by the tactile reaction, the solubility of the polyamino acid in a bilayer membrane can be optically controlled.

二分子膜形成物質に上記ポリアミノ酸を含ませることに
よりベシクル構造の光制御をなしうる。
By including the above-mentioned polyamino acids in the bilayer membrane-forming substance, the vesicle structure can be optically controlled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はポリアミノ酸を含まないベシクルとポリアミノ
酸を含んだベシクルの長鎖アルキル鎖部分の流動性を示
す図、 第2図は媒体の極性に応じて最大蛍光波長(λmax)
をシフトさせるANSをポリアミノ酸側鎖に修飾した試
料を用いて測定したZ値(極性)とλmaxの関係を示
す図、 第3図はANSをポリアミノ酸側鎖に修飾した試料巻の
異なる温度での蛍光スペクトルを示す図、第4図は80
/20 MG/GAコポリマの膜表面から膜内への転移
の為のInkの温度依存性を示す図、第5図は88/1
2 MG/GAコポリマを含むベシクルの、ゲル及び液
晶相状態におけるイオン放出速度を示す図、 第6図は5ide Pyrene−(87/13 MG
/GA)のベシクル中での会合に基づくエキシマ−発光
強度のモノマー発強度に対する比の温度依存性を示す図
、第7図はazo−MG/GAを含むDSACLベシク
ル中のANSの290nm励起光による発光スペクト昂 ルのベシクルのゲル・液唱和状態依存性を示す図、? 第務図は本発明原理によるベシクルの、光及び熱刺激の
サイクルでのベシクルの形態変化を示す図である。 o  term AN3−psi/〆es/c/eb 
Jtde ANj−Pu / Iesic/eOJJt
le 4〜5− PMli/ Vex/evel 0α
ane        5 1so−prapaner
/ご CMOrafllrm    ≦ ethano
13 ρCetoyre      ?  metMn
o/4  N、N−dernelhyl  l  ef
hy/erel/y(DI)OrIn 1117d e
   9  y 、y (、。 /aAe/ed  polypeptides 。 八/nm 聾−1旧、  Fluorescence jpctr
avcstcle   Wrth  excitati
on  t2t  ど9ρntnremp/’C the  vesicle。 第2図、δcJrematlcplcture erf
poto−and fermolnducedchnn
les of the vest(:It  JtrllCtllre。
Figure 1 shows the fluidity of the long alkyl chain portion of vesicles that do not contain polyamino acids and vesicles that contain polyamino acids. Figure 2 shows the maximum fluorescence wavelength (λmax) depending on the polarity of the medium.
Figure 3 shows the relationship between the Z value (polarity) and λmax measured using a sample in which ANS was modified to a polyamino acid side chain. Figure 4 shows the fluorescence spectrum of 80
/20 A diagram showing the temperature dependence of Ink for the transition from the film surface to the inside of the MG/GA copolymer film, Figure 5 is 88/1
Figure 6 shows the ion release rate of vesicles containing MG/GA copolymer in the gel and liquid crystal phase states.
Figure 7 shows the temperature dependence of the ratio of excimer emission intensity to monomer emission intensity based on the association of Azo-MG/GA) in vesicles. A diagram showing the dependence of the luminescence spectrum on the gel/liquid state of vesicles. The diagram shows the change in the morphology of vesicles according to the principles of the present invention during cycles of light and heat stimulation. o term AN3-psi/〆es/c/eb
Jtde ANj-Pu / Iesic/eOJJt
le 4~5- PMli/Vex/evel 0α
ane 5 1so-prapaner
/ CMOrafllrm ≦ ethano
13 ρCetoyre? metMn
o/4 N, N-dernelhyl l ef
hy/erel/y(DI)OrIn 1117d e
9 y, y (,. /aAe/ed polypeptides. 8/nm deaf-1 old, Fluorescence jpctr
avcstcle Wrth excitati
on t2t do9ρntnremp/'C the vesicle. Figure 2, δcJrematlcplcture erf
poto-and fermolnducedchnn
les of the best(:It JtrllCtllre.

Claims (7)

【特許請求の範囲】[Claims] (1)Tc温度より低温でゲル状態、Tc温度以上で液
晶状態をとる、疏水性長鎖アルキル基と親水性ヘッド基
を有する脂質二分子膜形成物質と、第1の励起光照射に
より、その極性を第1状態から第2状態へ、第2の励起
光照射により、該極性を該第2状態から該第1状態へ、
可逆変化を行なう光感応基と、該親水性ヘッド基と逆荷
電性の官能基を側鎖に導入したポリアミノ酸との混合物
が、水もしくは水溶液中に微粒子状に分相分散されたベ
シクルを含むことを特徴とするベシクル混合物。
(1) A lipid bilayer-forming substance having a hydrophobic long-chain alkyl group and a hydrophilic head group, which assumes a gel state at a temperature lower than the Tc temperature and a liquid crystal state at a temperature higher than the Tc temperature, and the first excitation light irradiation. changing the polarity from the first state to the second state, and changing the polarity from the second state to the first state by irradiation with a second excitation light;
A mixture of a photosensitive group that undergoes a reversible change and a polyamino acid having a hydrophilic head group and an oppositely charged functional group introduced into its side chain contains vesicles dispersed in fine particles in water or an aqueous solution. A vesicle mixture characterized by:
(2)Tc温度より低温でゲル状態、Tc温度以上で液
晶状態をとる、疏水性長鎖アルキル基と親水性ヘッド基
を有する脂質二分子膜形成物質と、第1の励起光照射に
より、その極性を第1状態から第2状態へ、第2の励起
光照射により、該極性を該第2状態から該第1状態へ、
可逆変化を行なう光感応基と、該親水性ヘッド基と逆荷
電性の官能基を側鎖に導入したポリアミノ酸とを溶解し
た有機溶液に、水もしくは水溶液を加え、液々分相した
混合物に超音波を照射し、該脂質二分子膜形成物質と該
ポリアミノ酸を含む混合物が、水もしくは水溶液中に微
粒子状に分散された、ベシクルを形成する第1の工程と
、 上記ベシクルを含む混合物を該Tc温度より低温とし、
該ベシクルの該脂質二分子膜形成物質をゲル状態とする
第2の工程と、 上記脂質二分子膜形成物質がゲル状態にある、該ベシク
ルを含む混合物に、該第1の励起光を照射し、該光感応
基の極性を該第2状態へ変化させ、該ポリアミノ酸の該
脂質二分子膜形成物質への溶解性を変化させ、二分子膜
から該ポリアミノ酸を溶出せしめ、かつ、該脂質二分子
膜形成物質の親水性ヘッド基と溶出された該ポリアミノ
酸の該逆荷電性の官能基とのイオン相互作用により、該
ベシクルを凝集構造とする第3の工程と、 上記ベシクルが凝集構造にある混合物に、該第2の励起
光を照射し、該光感応基の極性を該第1状態とする第4
の工程と、 上記ベシクルが凝集構造にある混合物を、該Tc温度以
上に加熱し、該ベシクルの該脂質二分子膜形成物質を液
晶状態とし、該ポリアミノ酸を該二分子膜内に再溶解さ
せることにより、該イオン相互作用の解除をなし、該ベ
シクルを分散構造とする第5の工程とを有することを特
徴とするベシクル構造の制御方法。
(2) A lipid bilayer-forming substance having a hydrophobic long-chain alkyl group and a hydrophilic head group that assumes a gel state at a temperature lower than the Tc temperature and a liquid crystal state at a temperature higher than the Tc temperature, and changing the polarity from the first state to the second state, and changing the polarity from the second state to the first state by irradiation with a second excitation light;
Water or an aqueous solution is added to an organic solution in which a photosensitive group that undergoes a reversible change and a polyamino acid in which a hydrophilic head group and an oppositely charged functional group are introduced into the side chain are dissolved, and the liquid-liquid phase is separated. A first step of forming vesicles in which the mixture containing the lipid bilayer membrane-forming substance and the polyamino acid is dispersed in water or an aqueous solution in the form of fine particles by irradiating ultrasonic waves; The temperature is lower than the Tc temperature,
a second step of bringing the lipid bilayer membrane-forming substance of the vesicle into a gel state; and irradiating the mixture containing the vesicles in which the lipid bilayer membrane-forming substance is in a gel state with the first excitation light. , changing the polarity of the photosensitive group to the second state, changing the solubility of the polyamino acid in the lipid bilayer membrane-forming substance, and eluting the polyamino acid from the bilayer membrane, and a third step of forming the vesicles into an aggregated structure through ionic interaction between the hydrophilic head group of the bilayer membrane-forming substance and the oppositely charged functional group of the eluted polyamino acid; A fourth method of irradiating the mixture with the second excitation light to bring the polarity of the photosensitive group into the first state.
heating the mixture in which the vesicles are in an aggregated structure above the Tc temperature to bring the lipid bilayer membrane-forming substance of the vesicles into a liquid crystal state, and redissolve the polyamino acid in the bilayer membrane; A method for controlling a vesicle structure, comprising a fifth step of releasing the ionic interaction and forming the vesicle into a dispersed structure.
(3)上記脂質二分子膜形成物質がカチオン性二本鎖型
界面活性剤であることを特徴とする第2項記載の方法。
(3) The method according to item 2, wherein the lipid bilayer membrane-forming substance is a cationic double-stranded surfactant.
(4)上記ポリアミノ酸の分子長が上記二分子膜の厚さ
と同程度の低重合度ポリアミノ酸であることを特徴とす
る第2項記載の方法。
(4) The method according to item 2, wherein the polyamino acid is a low polymerization degree polyamino acid having a molecular length comparable to the thickness of the bilayer membrane.
(5)上記光感応基がアゾベンゼンであることを特徴と
する第2項記載の方法。
(5) The method according to item 2, wherein the photosensitive group is azobenzene.
(6)上記官能基がカルボキシル基であることを特徴と
する第2項記載の方法。
(6) The method according to item 2, wherein the functional group is a carboxyl group.
(7)上記脂質二分子膜形成物質がジステアリルジメチ
ルアンモニウムクロライドであり、 上記ポリアミノ酸が側鎖にアゾベゼン基を有するコポリ
(γ−メチル−L−グルタメート/L−グルタミン酸)
(azo−MG/GA)であり、上記第1の励起光が波
長330nm以下の光であり、上記第2の励起光が波長
390nmより長い波長の光であることを特徴とする第
2項記載の方法。
(7) The lipid bilayer membrane-forming substance is distearyldimethylammonium chloride, and the polyamino acid is a copoly(γ-methyl-L-glutamate/L-glutamic acid) having an azobenzene group in its side chain.
(azo-MG/GA), and the first excitation light is light with a wavelength of 330 nm or less, and the second excitation light is light with a wavelength longer than 390 nm. the method of.
JP9146687A 1987-04-14 1987-04-14 Method for controlling vehicular mixture and vehicular structure Pending JPS63256129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9146687A JPS63256129A (en) 1987-04-14 1987-04-14 Method for controlling vehicular mixture and vehicular structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9146687A JPS63256129A (en) 1987-04-14 1987-04-14 Method for controlling vehicular mixture and vehicular structure

Publications (1)

Publication Number Publication Date
JPS63256129A true JPS63256129A (en) 1988-10-24

Family

ID=14027156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9146687A Pending JPS63256129A (en) 1987-04-14 1987-04-14 Method for controlling vehicular mixture and vehicular structure

Country Status (1)

Country Link
JP (1) JPS63256129A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001096010A1 (en) * 2000-06-12 2001-12-20 Mcmaster University Photostimulated phase separation encapsulation
WO2022085473A1 (en) * 2020-10-19 2022-04-28 株式会社 資生堂 Vesicle composition, production method therefor, and cosmetic base containing vesicle composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001096010A1 (en) * 2000-06-12 2001-12-20 Mcmaster University Photostimulated phase separation encapsulation
WO2022085473A1 (en) * 2020-10-19 2022-04-28 株式会社 資生堂 Vesicle composition, production method therefor, and cosmetic base containing vesicle composition

Similar Documents

Publication Publication Date Title
Yaroslavov et al. Effect of polylysine on transformations and permeability of negative vesicular membranes
Düzgüne § et al. Calcium-and magnesium-induced fusion of mixed phosphatidylserine/phosphatidylcholine vesicles: effect of ion binding
Lasic et al. Transmembrane gradient driven phase transitions within vesicles: lessons for drug delivery
Nicoletta et al. Light responsive polymer membranes: A review
Beginn et al. Functional membranes containing ion‐selective matrix‐fixed supramolecular channels
Yaroslavov et al. Reversibility of structural rearrangements in the negative vesicular membrane upon electrostatic adsorption/desorption of the polycation
Khan et al. Liquid crystal-based glucose biosensor functionalized with mixed PAA and QP4VP brushes
Pritzl et al. Photolipid bilayer permeability is controlled by transient pore formation
Dencher et al. [56] Determination of the net proton-hydroxide ion permeability across vesicular lipid bilayers and membrane proteins by optical probes
JPS63256129A (en) Method for controlling vehicular mixture and vehicular structure
Jarvinen et al. Drug release from pH and ionic strength responsive poly (acrylic acid) grafted poly (vinylidenefluoride) membrane bags in vitro
Tirrell Macromolecular switches for bilayer membranes
US5085749A (en) Dynamically controlled membrane
Yoshikawa et al. Transport of amino acids through synthetic polymer membranes containing pyridinium cationic charge sites
Wang et al. Water-soluble multifunctional red luminescent materials constructed by macrocycle–ligand–lanthanide synergetic assembly strategy
Buta et al. Properties of electrode-supported lipid cubic mesophase films with embedded gramicidin A: Structure and ion-transport studies
Åkerman et al. Influence of ionic strength on drug adsorption onto and release from a poly (acrylic acid) grafted poly (vinylidene fluoride) membrane
Park et al. Aggregation processes of a weak polyelectrolyte, poly (allylamine) hydrochloride
Xiaofang et al. Interaction of DNA with cationic gemini surfactant trimethylene-1, 3-bis (dodecyldimethyl-ammonium bromide) and anionic surfactant SDS mixed system
Feng et al. Controlled compaction and decompaction of DNA by zwitterionic surfactants
Eklund et al. Effects of polyamines on the thermotropic behaviour of dipalmitoylphosphatidylglycerol
Bhise et al. Liquid membrane phenomena in chlorpromazine action
Smith et al. Self‐Assembly of Responsive Surfactants
Kim et al. Dual stimuli-responsive copolymers comprising poly (N-isopropylacrylamide) and poly (cyano malachite green)
Giustini et al. Effect of ionic strength on intra-protein electron transfer reactions: The case study of charge recombination within the bacterial reaction center