JPS6325566B2 - - Google Patents

Info

Publication number
JPS6325566B2
JPS6325566B2 JP57113458A JP11345882A JPS6325566B2 JP S6325566 B2 JPS6325566 B2 JP S6325566B2 JP 57113458 A JP57113458 A JP 57113458A JP 11345882 A JP11345882 A JP 11345882A JP S6325566 B2 JPS6325566 B2 JP S6325566B2
Authority
JP
Japan
Prior art keywords
hydrogen gas
unsaturated hydrocarbons
highly unsaturated
hydrocarbons
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57113458A
Other languages
Japanese (ja)
Other versions
JPS595127A (en
Inventor
Masashi Araki
Yasuhiko Too
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP11345882A priority Critical patent/JPS595127A/en
Publication of JPS595127A publication Critical patent/JPS595127A/en
Publication of JPS6325566B2 publication Critical patent/JPS6325566B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はジエン類、アセチレン類のモノエン類
への撰択的水素添加法に関するものである。さら
に詳しくは分子内に2以上の二重結合および/ま
たは1以上の三重結合を有する不飽和炭化水素
(以下高度に不飽和な炭化水素と称す)を含む炭
素数4以上の不飽和炭化水素混合物を触媒の存在
下に水素と接触させて二重結合の異性化を伴わず
に高度に不飽和な炭化水素のみを対応する低不飽
和度の炭化水素に転化する方法に関するものであ
る。 高度に不飽和な炭化水素を含む炭素数4以上の
不飽和炭化水素混合物と水素を水素化触媒の存在
下に反応させ高度に不飽和な炭化水素を対応する
低不飽和度の炭化水素に選択的に水素添加する方
法は一般に公知であり、たとえばブタジエン、メ
チルアレン等のジエン類、ジメチルアセチレン、
エチルアセチレン、ビニルアセチレン等のアセチ
レン類および1−ブテン、2−ブテン、イソブテ
ン等のモノオレフイン類を含有する炭素数4の不
飽和炭化水素混合物を水素とともにパラジウム、
白金、ニツケルなどの水素化触媒の存在下に反応
させてジエン類、アセチレン類のみを選択的に水
添する方法は工業的にも採用されている。 しかしながら、これら公知の選択的水素添加方
法においては、2以上の二重結合および1以上の
三重結合など高度に不飽和な結合への選択摘水素
添加と同時に二重結合の分子内移動が容易に起こ
り反応生成物の組成が大きく変つてしまう欠点が
あつた。たとえばブタジエン類、ブチン類を含む
炭素数4の不飽和炭化水素の選択的水添反応を行
なつた場合、ブタジエン類、ブチン類からブテン
への選択的水素添加と同時に1−ブテンから2−
ブテンへの異性化が容易に進みこのため反応生成
物中の1−ブテン濃度が大きく減少してしまう。 1−ブテンはポリオレフイン製造用モノマーと
して重要であり、炭素数4の炭化水素混合物中の
1−ブテンの有効利用をはかる上からも異性化を
伴わないで高度に不飽和な炭化水素のみを選択的
に水添できる方法の出現が強く望まれていた。 本発明者らはこのようなオレフイン類の異性化
を伴わない高度に不飽和な炭化水素の選択的水添
方法について鋭意研究を行ない本発明に到達した
ものである。 すなわち高度に不飽和な炭化水素を含む炭素数
4以上の低不飽和度の炭化水素を固定床反応器を
用いてパラジウム触媒の存在下に水素と接触さ
せ、前記の高度に不飽和な炭化水素を選択的に水
素添加する方法において、1〜400モルppmの一
酸化炭素を含有する水素ガスを高度に不飽和な炭
化水素に対して1.0〜2.0倍モル供給することによ
りオレフイン類の異性化を伴うことなく高度に不
飽和な炭化水素の選択的水添反応のみが進行する
ことを見い出したものである。 水素ガス中に含まれる一酸化炭素は1〜400モ
ルppmが必須であり、好ましくは10〜100モル
ppmである。 一酸化炭素を400モルppm以上含有する水素ガ
スを用いて反応を行なつてもオレフイン類の異性
化抑制効果はほとんど増加しないばかりでなくパ
ラジウム触媒の水添活性がそこなわれ反応成績が
悪化する。また一酸化炭素1モルppm以下しか含
まない水素ガスを用いて反応を行なつてもその効
果はほとんど認められない。 水素ガスは高度に不飽和な炭化水素に対して
1.0〜2.0倍モル供給され、好ましくは1.0〜1.5倍
モル供給される。 水素ガスの高度に不飽和な炭化水素に対する供
給モル比が2.0以上になるとオレフイン類の異性
化が進行し、反応成績が悪くなる。 水素ガスの高度に不飽和な炭化水素に対するモ
ル比の値は下記の計算式によつて求めた値であ
る。 水素ガスモル比=A/B A:水素ガス供給モル数(モル/時間) B:低不飽和度の炭化水素中に含まれる高度
に不飽和な炭化水素類の供給モル数(モ
ル/時間) オレフイン類の異性化を伴わずに高度に不飽和
な炭化水素を選択的に水添する方法として大量の
一酸化炭素を含んだ水素ガスを用いて水添反応を
行なう方法が提案されている(特公昭46−30808
号、特公昭49−28163号)。しかしながらこれらの
方法ではオレフイン類の異性化は認められない
が、触媒の活性が大きく低下するために高度に不
飽和な炭化水素を水添するのに必要な水素量に対
して大過剰の水素ガスを用いる必要があり高価な
一酸化炭素及び水素ガスがムダに消費されるし、
また触媒の使用量も多くなり経済的に不利とな
る。 例えば特公昭46−30808号においてはオレフイ
ン類の異性化を伴わずに高度に不飽和な炭化水素
を選択的に水添するためにその実施例の記載によ
ると高度に不飽和な炭化水素に対して10倍モル以
上場合によつては35倍モルという大過剰の水素ガ
スが用いられている。 本発明者らはオレフイン類の異性化を伴わずに
高度に不飽和な炭化水素を選択的に水添する経済
的に有利な方法について鋭意研究を行ない本発明
に達したものである。すなわち1〜400モルppm
の一酸化炭素を含有する水素ガスを高度に不飽和
な炭化水素に対して1.0〜2.0倍モル供給して反応
を行なうことにより、オレフインの異性化を伴わ
ずに高度に不飽和な炭化水素を選択的に水添でき
ることを見い出したものである。 特公昭46−30808号及び特公昭49−28163号にお
いて、一酸化炭素の水素に対する使用量が少なく
なるとオレフイン類の異性化反応が進行すると記
載されているが、本発明者らは一酸化炭素の水添
反応に及ぼす影響について鋭意研究を行なつたと
ころ、水素ガスに対して400モルppm以下という
微量の一酸化炭素を存在させかつ高度に不飽和な
炭化水素に対して水素ガスを1.0〜2.0倍用いて反
応を行なうことにより、オレフイン類の異性化が
起こらないばかりでなく、高度に不飽和な炭化水
素類に対する触媒の水添活性が向上することを見
い出した。そのため触媒の使用量を削減すること
ができるばかりでなく高価な一酸化炭素及び水素
ガスがほとんどムダに消費されず経済的に非常に
有利となる。 本発明方法に用いられる水素ガスとしては純粋
な水素ガスに一酸化炭素を必要量混合して用いて
もよいが、ナフサ等のスチームクラツキングによ
つて得られる水素ガスには通常数百モルppmの一
酸化炭素が含まれており、このような水素ガスが
有利に用いることができる。また水素ガス中に一
酸化炭素以外にメタン等が含まれていてもさしつ
かえない。 本発明方法における反応形態は特に限定される
ものではなく、液相、気相あるいはトリクル相の
ような気液混相のいずれの方法で行なつてもよ
い。 本発明に用いられる高度に不飽和な炭化水素を
含む炭素数4以上の低不飽和度の炭化水素混合物
としてはナフサ等のスチームクラツキングによつ
て得られるいわゆるC4留分と呼ばれるブタジエ
ン、ブテン、ブタン等からなるC4炭化水素混合
物、そしてこのC4留分からブタジエンの大部分
を抽出によつて取り除いたいわゆるスペントBB
留分と呼ばれるC4炭化水素混合物、このスペン
トBB留分からさらにイソブチンを取り除いた1
−ブテンおよび2−ブテンを主成分とするC4
化水素混合物、それにイソプレン等のC5炭化水
素類を主成分とする炭化水素混合物などが上げら
れる。 これらの炭化水素混合物中に含まれる高度に不
飽和な炭化水素としてはプロパジエン、メチルア
セチレン、1,2−ブタジエン、1,3−ブタジ
エン、エチルアセチレン、ビニル−アセチレン、
1,3−ペンタジエン等がある。 本発明方法には水添触媒としてパラジウム触媒
が用いられる。パラジウム触媒としてはパラジウ
ムブラツク、パラジウム担持カーボン、パラジウ
ム担持アルミナ等があるが、通常アルミナ等の担
持にパラジウムを0.02〜2重量%担持した触媒が
用いられる。 反応条件としては通常反応温度は−20〜150℃、
反応圧力は常圧〜50気圧の条件下で行なわれる。 本発明の方法はナフサ等のスチームクラツキン
グ等によつて得られる一酸化炭素を微量含む水素
ガスを高度に不飽和な炭素水素に対して1.0〜2.0
倍モルというほぼ必要量だけ用いることによりオ
レフイン類の異性化を伴うことなく高度に不飽和
な炭化水素の選択的水素添加反応のみが進行する
方法を提供するものであり、その工業的意義は大
きい。 以下に実施例を用いて本発明の方法につき、さ
らに詳しく説明を行なうが、本発明の範囲はこれ
らによつて制限を受けるものではない。 実施例 1 0.3重量%のパラジウムをアルミナ担体に担持
した触媒100mlを内径20mmの垂直に配置した反応
管内に充填し、温度60℃、圧力5気圧の条件下で
第1表の原料欄に記載した組成を持つ炭化水素混
合物を500g/hrの供給速度で、また一酸化炭素
を50モルppm含有する水素ガスを4(NTP換
算)/hrの供給速度で反応器に導入し選択的水素
添加反応を行なつた。得られた炭化水素生成物の
組成は第1表の生成物欄に示すとおりであつた。
The present invention relates to a method for selective hydrogenation of dienes and acetylenes to monoenes. More specifically, an unsaturated hydrocarbon mixture having 4 or more carbon atoms containing an unsaturated hydrocarbon having 2 or more double bonds and/or 1 or more triple bond in the molecule (hereinafter referred to as highly unsaturated hydrocarbon) The present invention relates to a method for converting only highly unsaturated hydrocarbons into corresponding hydrocarbons with a low degree of unsaturation without isomerizing double bonds by contacting them with hydrogen in the presence of a catalyst. A mixture of unsaturated hydrocarbons with a carbon number of 4 or more, including highly unsaturated hydrocarbons, is reacted with hydrogen in the presence of a hydrogenation catalyst, and the highly unsaturated hydrocarbons are selected as corresponding hydrocarbons with a low degree of unsaturation. Hydrogenation methods are generally known, such as dienes such as butadiene and methylalene, dimethylacetylene,
A mixture of unsaturated hydrocarbons having 4 carbon atoms containing acetylenes such as ethyl acetylene and vinyl acetylene and monoolefins such as 1-butene, 2-butene and isobutene is combined with hydrogen and palladium,
A method of selectively hydrogenating only dienes and acetylenes by reacting them in the presence of a hydrogenation catalyst such as platinum or nickel has also been adopted industrially. However, in these known selective hydrogenation methods, intramolecular transfer of double bonds is easily carried out simultaneously with selective hydrogenation to highly unsaturated bonds such as two or more double bonds and one or more triple bonds. This has the disadvantage that the composition of the reaction product changes significantly. For example, when carrying out a selective hydrogenation reaction of unsaturated hydrocarbons having 4 carbon atoms including butadienes and butynes, the selective hydrogenation reaction from butadienes and butynes to butenes and simultaneous hydrogenation from 1-butene to 2-
Isomerization to butene easily progresses, resulting in a large decrease in the concentration of 1-butene in the reaction product. 1-Butene is important as a monomer for producing polyolefins, and in order to effectively utilize 1-butene in a mixture of hydrocarbons with 4 carbon atoms, highly unsaturated hydrocarbons can be selectively extracted without isomerization. There was a strong desire for a method that could hydrogenate The present inventors have conducted intensive research on a method for selective hydrogenation of highly unsaturated hydrocarbons that does not involve isomerization of such olefins, and have arrived at the present invention. That is, hydrocarbons having a carbon number of 4 or more and having a low degree of unsaturation, including highly unsaturated hydrocarbons, are brought into contact with hydrogen in the presence of a palladium catalyst using a fixed bed reactor, and the highly unsaturated hydrocarbons are In this method, olefins are isomerized by supplying hydrogen gas containing 1 to 400 mol ppm of carbon monoxide 1.0 to 2.0 times the mole of highly unsaturated hydrocarbons. It was discovered that only the selective hydrogenation reaction of highly unsaturated hydrocarbons proceeds without accompanying hydrogenation. Carbon monoxide contained in hydrogen gas must be 1 to 400 mol ppm, preferably 10 to 100 mol ppm.
It is ppm. Even if the reaction is carried out using hydrogen gas containing 400 mol ppm or more of carbon monoxide, the effect of suppressing isomerization of olefins will hardly increase, and the hydrogenation activity of the palladium catalyst will be impaired, resulting in poor reaction results. . Further, even if the reaction is carried out using hydrogen gas containing less than 1 mole ppm of carbon monoxide, almost no effect is observed. Hydrogen gas is highly unsaturated hydrocarbon
1.0 to 2.0 times the molar amount, preferably 1.0 to 1.5 times the molar amount. When the molar ratio of hydrogen gas to highly unsaturated hydrocarbons supplied exceeds 2.0, isomerization of olefins progresses, resulting in poor reaction results. The value of the molar ratio of hydrogen gas to highly unsaturated hydrocarbon is a value determined by the following calculation formula. Hydrogen gas molar ratio = A/B A: Number of moles of hydrogen gas supplied (mol/hour) B: Number of moles of highly unsaturated hydrocarbons contained in hydrocarbons with a low degree of unsaturation (mol/hour) Olefin As a method for selectively hydrogenating highly unsaturated hydrocarbons without isomerization, a method has been proposed in which the hydrogenation reaction is carried out using hydrogen gas containing a large amount of carbon monoxide. Kosho 46-30808
No., Special Publication No. 49-28163). However, although isomerization of olefins is not observed in these methods, the activity of the catalyst is greatly reduced, resulting in a large excess of hydrogen gas compared to the amount of hydrogen required to hydrogenate highly unsaturated hydrocarbons. expensive carbon monoxide and hydrogen gas are wasted,
Moreover, the amount of catalyst used is large, which is economically disadvantageous. For example, in Japanese Patent Publication No. 46-30808, in order to selectively hydrogenate highly unsaturated hydrocarbons without isomerizing olefins, according to the description of the example, In this case, a large excess of hydrogen gas of 10 times the mole or more, and in some cases 35 times the mole, is used. The present inventors have conducted extensive research into an economically advantageous method for selectively hydrogenating highly unsaturated hydrocarbons without isomerizing olefins, and have arrived at the present invention. i.e. 1-400 mol ppm
Highly unsaturated hydrocarbons can be produced without isomerization of olefins by supplying hydrogen gas containing carbon monoxide 1.0 to 2.0 times the molar amount of highly unsaturated hydrocarbons. It was discovered that selective hydrogenation can be performed. In Japanese Patent Publication No. 46-30808 and Japanese Patent Publication No. 49-28163, it is stated that the isomerization reaction of olefins progresses when the amount of carbon monoxide used relative to hydrogen decreases. After intensive research into the effect on the hydrogenation reaction, we found that the presence of a trace amount of carbon monoxide, less than 400 mol ppm relative to hydrogen gas, and the presence of a trace amount of carbon monoxide of 1.0 to 2.0 mol ppm relative to highly unsaturated hydrocarbons. It has been found that by carrying out the reaction with twice the amount of olefins, not only isomerization of olefins does not occur, but also the hydrogenation activity of the catalyst for highly unsaturated hydrocarbons is improved. Therefore, not only can the amount of catalyst used be reduced, but also expensive carbon monoxide and hydrogen gas are hardly wasted, which is very economically advantageous. The hydrogen gas used in the method of the present invention may be pure hydrogen gas mixed with the necessary amount of carbon monoxide, but the hydrogen gas obtained by steam cracking of naphtha etc. is usually several hundred moles. ppm carbon monoxide, and such hydrogen gas can be advantageously used. Furthermore, there is no problem even if the hydrogen gas contains methane or the like in addition to carbon monoxide. The reaction form in the method of the present invention is not particularly limited, and may be carried out in any of liquid phase, gas phase, or gas-liquid mixed phase such as trickle phase. The hydrocarbon mixture containing highly unsaturated hydrocarbons and having a carbon number of 4 or more and having a low degree of unsaturation used in the present invention includes butadiene, a so-called C 4 fraction obtained by steam cracking of naphtha, etc.; C 4 hydrocarbon mixture consisting of butene, butane, etc., and so-called spent BB, which is obtained by removing most of the butadiene from this C 4 fraction by extraction.
A C4 hydrocarbon mixture called a fraction, 1 from which isobutyne is further removed from this spent BB fraction.
Examples include a C 4 hydrocarbon mixture whose main component is -butene and 2-butene, and a hydrocarbon mixture whose main component is a C 5 hydrocarbon such as isoprene. Highly unsaturated hydrocarbons contained in these hydrocarbon mixtures include propadiene, methylacetylene, 1,2-butadiene, 1,3-butadiene, ethylacetylene, vinyl-acetylene,
Examples include 1,3-pentadiene. A palladium catalyst is used as a hydrogenation catalyst in the method of the present invention. Palladium catalysts include palladium black, palladium-supported carbon, palladium-supported alumina, etc., but catalysts in which 0.02 to 2% by weight of palladium is supported on alumina or the like are usually used. The reaction conditions are usually -20 to 150℃;
The reaction pressure is from normal pressure to 50 atmospheres. The method of the present invention uses hydrogen gas containing a trace amount of carbon monoxide obtained by steam cracking of naphtha etc.
This method provides a method in which only the selective hydrogenation reaction of highly unsaturated hydrocarbons proceeds without isomerization of olefins by using only the required amount of twice the mole, and its industrial significance is great. . The method of the present invention will be explained in more detail below using Examples, but the scope of the present invention is not limited by these. Example 1 100 ml of a catalyst in which 0.3% by weight of palladium was supported on an alumina carrier was filled into a vertically arranged reaction tube with an inner diameter of 20 mm, and the reaction was carried out under the conditions of a temperature of 60°C and a pressure of 5 atm as described in the raw materials column of Table 1. A hydrocarbon mixture having the following composition was introduced into the reactor at a feed rate of 500 g/hr, and hydrogen gas containing 50 mol ppm of carbon monoxide was introduced into the reactor at a feed rate of 4 (NTP equivalent)/hr to perform a selective hydrogenation reaction. I did it. The composition of the obtained hydrocarbon product was as shown in the product column of Table 1.

【表】 このように一酸化炭素を50モルppm含有する水
素ガスを高度に不飽和な炭化水素に対して約1.5
倍モル供給して反応を行なえば、1−ブテンはま
つたく異性化されることなく1,3−ブタジエ
ン、プロパジエン、エチルアセチレンのような高
度に不飽和な炭化水素はほとんど完全に水添され
た。 比較例 1 一酸化炭素をまつたく含まない水素ガスを用い
ること以外は実施例1に記載したのと同じ方法、
同じ反応条件下で水添反応を行ない下記の結果を
得た。
[Table] As shown above, hydrogen gas containing 50 mol ppm of carbon monoxide is approximately 1.5 mol ppm for highly unsaturated hydrocarbons.
If the reaction was carried out with twice the molar supply, highly unsaturated hydrocarbons such as 1,3-butadiene, propadiene, and ethyl acetylene were almost completely hydrogenated without isomerizing 1-butene. . Comparative Example 1 The same method as described in Example 1 except that hydrogen gas that does not contain carbon monoxide was used.
A hydrogenation reaction was carried out under the same reaction conditions and the following results were obtained.

【表】 このように一酸化炭素を含まない水素ガスを用
いるとブタジエンの水添が完全に行なわれないば
かりでなく、1−ブテンが異性化に大きくロスさ
れてしまう。 実施例2〜4、比較例2 水素ガス中の一酸化炭素濃度が第2表に示すよ
うな水素ガスを用いて反応を行なつた。なお他の
反応条件については実施例1に記載したのと同じ
方法で行なつた。また用いた炭化水素混合物も実
施例1で用いたものと同じであつた。 結果は第2表に示すとおりであつた。
[Table] As described above, when hydrogen gas containing no carbon monoxide is used, not only is hydrogenation of butadiene not completely carried out, but also a large amount of 1-butene is lost due to isomerization. Examples 2 to 4, Comparative Example 2 Reactions were carried out using hydrogen gas having carbon monoxide concentrations shown in Table 2. The other reaction conditions were the same as those described in Example 1. The hydrocarbon mixture used was also the same as that used in Example 1. The results were as shown in Table 2.

【表】 比較例 3 0.3重量%のパラジウムをアルミナ担体に担持
した触媒100mlを内径20mmの垂直に配置した反応
管内に充填し温度60℃、圧力5気圧の条件下で実
施例1の第1表原料欄に記載した組成を持つ炭化
水素混合物を800g/hrの供給速度で、また一酸
化炭素を100モルppm含有する水素ガスを12
(NTP換算)/hrの供給速度で反応器に導入して
水素添加反応を行なつた。この時の水素ガスの高
度に不飽和な炭化水素に対するモル比は約2.7で
あり、また得られた反応成積は下記のとおりであ
つた。
[Table] Comparative Example 3 100 ml of a catalyst containing 0.3% by weight of palladium supported on an alumina carrier was packed into a vertically arranged reaction tube with an inner diameter of 20 mm, and the temperature was 60°C and the pressure was 5 atm, as shown in Table 1 of Example 1. A hydrocarbon mixture having the composition described in the raw material column was fed at a feed rate of 800 g/hr, and hydrogen gas containing 100 mol ppm of carbon monoxide was added at 12 g/hr.
It was introduced into the reactor at a feed rate of (in terms of NTP)/hr to carry out a hydrogenation reaction. The molar ratio of hydrogen gas to highly unsaturated hydrocarbon at this time was about 2.7, and the reaction products obtained were as follows.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 分子内に2以上の二重結合および/または1
以上の三重結合を有する不飽和炭化水素を含む炭
素数4以上の低不飽和度の炭化水素混合物を固定
床反応器を用いてパラジウム触媒の存在下に水素
と接触させ前記の分子内に2以上の二重結合およ
び/または1以上の三重結合を有する不飽和炭化
水素を選択的に水素添加する方法において、1〜
400モルppmの一酸化炭素を含有する水素ガスを
分子内に2以上の二重結合および/または1以上
の三重結合を有する不飽和炭化水素に対して1.0
〜2.0倍モル供給することを特徴とする炭化水素
類の異性化を伴わない水素添加方法。
1 2 or more double bonds and/or 1 in the molecule
A mixture of hydrocarbons with a low degree of unsaturation having 4 or more carbon atoms, including unsaturated hydrocarbons having the above triple bonds, is brought into contact with hydrogen in the presence of a palladium catalyst using a fixed bed reactor to form two or more hydrogen atoms in the molecule. A method for selectively hydrogenating unsaturated hydrocarbons having one or more double bonds and/or one or more triple bonds, the method comprising:
Hydrogen gas containing 400 mol ppm carbon monoxide to an unsaturated hydrocarbon having two or more double bonds and/or one or more triple bonds in the molecule 1.0
A hydrogenation method that does not involve isomerization of hydrocarbons, characterized by supplying ~2.0 times the molar amount.
JP11345882A 1982-06-29 1982-06-29 Method for hydrogenating hydrocarbon without causing isomerization thereof Granted JPS595127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11345882A JPS595127A (en) 1982-06-29 1982-06-29 Method for hydrogenating hydrocarbon without causing isomerization thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11345882A JPS595127A (en) 1982-06-29 1982-06-29 Method for hydrogenating hydrocarbon without causing isomerization thereof

Publications (2)

Publication Number Publication Date
JPS595127A JPS595127A (en) 1984-01-12
JPS6325566B2 true JPS6325566B2 (en) 1988-05-26

Family

ID=14612744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11345882A Granted JPS595127A (en) 1982-06-29 1982-06-29 Method for hydrogenating hydrocarbon without causing isomerization thereof

Country Status (1)

Country Link
JP (1) JPS595127A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118731A (en) * 1984-07-06 1986-01-27 Mitsui Petrochem Ind Ltd Selective hydrogenation of diene and acetylene in hydrocarbons
JPS6185333A (en) * 1984-10-03 1986-04-30 Sumitomo Chem Co Ltd Method of selective hydrogenation accompanying no isomerization
JPH0696709B2 (en) * 1987-10-23 1994-11-30 日本石油株式会社 Method for selective hydrogenation of hydrocarbons
DE19526473A1 (en) * 1995-07-20 1997-01-23 Basf Ag Process for the preparation of alkenes by partial hydrogenation of alkynes on fixed bed palladium catalysts
CN103664457A (en) * 2012-09-25 2014-03-26 中国石油化工股份有限公司 Selective hydrogenation method of crude isopentene
CN108689789B (en) * 2017-04-07 2021-08-03 中国石油化工股份有限公司 C4Method for preparing 1-butene by selective hydrogenation of fraction
CN108689792B (en) * 2017-04-07 2021-07-30 中国石油化工股份有限公司 C4Method for preparing 1-butene by selective hydrogenation of fraction
CN109232155A (en) * 2018-10-31 2019-01-18 内蒙古中煤蒙大新能源化工有限公司 A method of 1- butylene yield is improved in mixing four selective hydrogenation reaction of carbon

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928163A (en) * 1972-07-18 1974-03-13
JPS5016325A (en) * 1973-06-18 1975-02-20
JPS5885824A (en) * 1981-11-04 1983-05-23 ヘミツシエ・ヴエルケ・ヒユ−ルス・アクチエンゲゼルシヤフト Selective hydrogenation of polyunsaturated hydrocarbon in hydrocarbon mixture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928163A (en) * 1972-07-18 1974-03-13
JPS5016325A (en) * 1973-06-18 1975-02-20
JPS5885824A (en) * 1981-11-04 1983-05-23 ヘミツシエ・ヴエルケ・ヒユ−ルス・アクチエンゲゼルシヤフト Selective hydrogenation of polyunsaturated hydrocarbon in hydrocarbon mixture

Also Published As

Publication number Publication date
JPS595127A (en) 1984-01-12

Similar Documents

Publication Publication Date Title
JPH0253479B2 (en)
US3325556A (en) Selective hydrogenation of acetylene in a mixture of acetylene and other unsaturated hydrocarbons
US3770619A (en) Process for hydrocarbon purification by selective hydrogenation
US4132745A (en) Process for isomerizing 1-butene to 2-butene
KR850001778B1 (en) Process for the selective hydrogenation of poly-unsaturated hydrocarbons in hydrocarbon mixtures
US3485887A (en) Process for the treatment by hydrogenation of c4-hydrocarbons containing butadiene and n-but-1-ene
US20010001805A1 (en) Hydrogenation catalysts and processes therewith
JP2013525361A (en) Process for the production of propylene and aromatic compounds from butenes by metathesis and aromatization
JP2008536848A (en) Double bond hydroisomerization method
US3662015A (en) Method of preventing double bond migration of mono-olefinic hydrocarbons in selective hydrogenation
US3098882A (en) Selective hydrogenation procedure and catalyst therefor
KR100229048B1 (en) Process for the production of olefins
JP5774100B2 (en) Process for the selective hydrogenation of polyunsaturated hydrocarbons in olefin-containing hydrocarbon mixtures
US3842137A (en) Selective hydrogenation of c4 acetylenic hydrocarbons
Koeppel et al. Selective hydrogenation of C4-alkynes over a copper on silica catalyst
WO1993021137A1 (en) Process for the selective hydrogenation and isomerization of hydrocarbons
JPS6325566B2 (en)
US3634536A (en) Selective hydrogenation of alkynes
JPH0150278B2 (en)
US4036904A (en) Isomerization of allenes in a hydrocarbon stream using magnesium oxide catalyst
JPS6054934B2 (en) 1-Butene isomerization method
JPH0153718B2 (en)
JPS6146035B2 (en)
JPH0227390B2 (en)
CA1142506A (en) Hydrogenation catalyst