JPS63255338A - Alloy for refining aluminum grain and its production - Google Patents

Alloy for refining aluminum grain and its production

Info

Publication number
JPS63255338A
JPS63255338A JP8867087A JP8867087A JPS63255338A JP S63255338 A JPS63255338 A JP S63255338A JP 8867087 A JP8867087 A JP 8867087A JP 8867087 A JP8867087 A JP 8867087A JP S63255338 A JPS63255338 A JP S63255338A
Authority
JP
Japan
Prior art keywords
alloy
alkali
aluminum
weight
refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8867087A
Other languages
Japanese (ja)
Inventor
Masao Kubota
久保田 昌男
Kazusada Sumiyama
住山 一貞
Mikio Sato
幹夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP8867087A priority Critical patent/JPS63255338A/en
Publication of JPS63255338A publication Critical patent/JPS63255338A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an alloy practically free from harmful inclusions and having effective grain refining property, by adding powdery titanium fluoride alkali and powdery alkali borofluoride to molten Al and removing aluminum fluoride alkali produced as a by-product. CONSTITUTION:Respectively prescribed amounts of powdery titanium fluoride alkali containing K, etc., and powdery alkali borofluoride are added to molten Al held at 700-750 deg.C, and they are allowed to react to form an Al grain- refined alloy which contains, by weight, 1.8-4.0% Ti and 0.3-0.6% B and in which the content of alkali metal and alkaline-earth metal is regulated to <=0.05% in total. At this time, aluminum fluoride alkali produced as a by-product is removed. Since the alloy prepared by this method has effective grain-refining property, it is suitable for use in which the thinning of products and surface working accuracy are required and which is represented by printing sheet, alumite, sheet, and foil.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、アルミニウムまたはアルミニウム合金を鋳造
するに際して、溶湯中に添加して鋳造品の結晶v&細化
を図るために使用するへ1−Ti−8合金およびその製
造方法に関するものである。
Detailed Description of the Invention <Industrial Application Field> The present invention is directed to the use of 1-Ti, which is added to the molten metal and used to reduce crystallization and fineness of the cast product when casting aluminum or aluminum alloy. -8 alloy and its manufacturing method.

〈従来の技術〉 アルミニウムまたはアルミニウム合金の鋳物や鋳塊を鋳
造するに際して、得られた鋳造品の結晶粒をy&纏化し
、組織が均一で健全なアルミニウムt8造品を得るため
にアルミニウムまたはアルミニウム合金溶湯中にTi、
 B等の結晶微細化元素を添加することは周知であり、
その目的達成のための添加用合金としてAl−Ti−8
合金が市販されている。
<Prior art> When casting aluminum or aluminum alloy castings or ingots, the crystal grains of the obtained castings are consolidated to obtain an aluminum T8 product with a uniform structure and a sound structure. Ti in the molten metal,
It is well known that crystal refining elements such as B are added.
Al-Ti-8 as an additive alloy to achieve that purpose.
Alloys are commercially available.

この結晶y1細化用のAl−Ti−8合金としてはアル
ミニウムにTiを3〜6重重%(以下、単に%という)
の範囲で、またBを0.5〜1.5%含むものが大部分
であって(Ti + B)fi度が比較的高い範囲にあ
る。また、これら合金は通常750〜900℃の温度範
囲のアルミニウム溶湯中にフッ化チタンアルカリ粉末お
よびホウフッ化、アルカリ粉末を添加し撹拌し、粉末中
のチタン分、ホウ素分を還元して溶湯中に移行させ数分
間保持した後、反応後の副生物であるフッ化アルミニウ
ムアルカリを除去し、凝固、加工することによって作ら
れている。
As an Al-Ti-8 alloy for thinning the crystal y1, 3 to 6% by weight of Ti is added to aluminum (hereinafter simply referred to as %).
In addition, most of them contain 0.5 to 1.5% of B, and the (Ti + B) fi degree is in a relatively high range. These alloys are usually made by adding titanium fluoride alkali powder and borofluoride alkali powder to molten aluminum at a temperature range of 750 to 900°C and stirring to reduce the titanium and boron content in the powder and add it to the molten metal. After transferring and holding for several minutes, aluminum fluoride alkali, which is a byproduct after the reaction, is removed, solidified, and processed.

〈発明が解決しようとする問題点〉 しかしながら、上記のような従来方法によるものにおい
ては、アルミニウム溶湯に多量のフラックス(AI−5
XTi−IKB合金では溶湯量の37%、A13XTi
−IXB合金でも同27%)を添加して反応させるので
、該アルミニウム溶湯中でTi−8およびTi−Al化
合物が粗大に成長し易く、かつこれら化合物は微細化効
果を持たないばかりか、鋳塊に混入して介在物を形成し
、板材、型材等の品質上の問題栃起こす。また上記反応
の副生物であるフッ化アルミニウ11アルカリも、多量
のフラックス添加に比例して発生(AI−5XTi−1
χB合金では製品1k[に対し33%、 A13XTi
−IKB合金でも同22%)シ、コの除去が完全でない
ため、これら浮遊滓がそのまま微細化合金に混入し、鋳
塊の非金属介在物となり、充分な介在物の分離を為し難
く、適切な清浄度を得ることが容易でないため、アルミ
ニウム製品の精密加工化、アルミニウム箔の薄肉化に伴
い、品質上の問題を発生している。
<Problems to be solved by the invention> However, in the conventional method as described above, a large amount of flux (AI-5
In the XTi-IKB alloy, 37% of the molten metal amount, A13XTi
-IXB alloy (27%) is added and reacted, so Ti-8 and Ti-Al compounds tend to grow coarsely in the molten aluminum, and these compounds not only have no refining effect but also It mixes with the lumps and forms inclusions, causing quality problems for plates, shapes, etc. Furthermore, aluminum fluoride-11 alkali, which is a by-product of the above reaction, is also generated in proportion to the addition of a large amount of flux (AI-5XTi-1
For χB alloy, 33% for product 1k [A13XTi
-22% for IKB alloy) Because the removal of C and C is not complete, these floating slags mix into the refined alloy as they are and become non-metallic inclusions in the ingot, making it difficult to separate the inclusions sufficiently. Because it is not easy to obtain appropriate cleanliness, quality problems are occurring as aluminum products become more precision processed and aluminum foil becomes thinner.

例えば市販の結晶vIi細化用合金では、最低でも0.
08%、多い場合は0.15〜0.20%のアルカリ金
属およびアルカリ土金属が存在するため、第1図に9.
5mmφロッドの微細化合金中のアルカリ金属濃度と介
在物との関係を示したように、アルカリ金属の濃度の増
加とともに介在物の含有量が指数間数的に増加する。
For example, commercially available alloys for grain refinement have a minimum of 0.
08%, and in some cases 0.15 to 0.20% of alkali metals and alkaline earth metals.
As shown in the relationship between the alkali metal concentration and inclusions in the refined alloy of the 5 mmφ rod, the inclusion content increases exponentially as the alkali metal concentration increases.

く問題点を解決するための手段および作用〉発明者らは
、粗大なTi−B、Ti−Al化合物の偏析やフッ化ア
ルミニウ11アルカリ等の有害な介在物を殆ど含まず、
かつ有効な微細化能を持つAl−Ti−8合金を得る方
法について合金組成および製造方法について研究を重ね
、本発明を完成するに到った。
Means and Action for Solving the Problems> The inventors have found that the present invention contains almost no harmful inclusions such as segregation of coarse Ti-B and Ti-Al compounds and aluminum fluoride-11 alkali,
In order to obtain an Al-Ti-8 alloy with effective refinement ability, the present invention has been completed through repeated research on the alloy composition and manufacturing method.

本発明に係るアルミニウム結晶微細化用合金は、チタン
1.8〜4.0重量%およびホウ素0.3〜0.6重量
%を含有し、かつアルカリ金属及びアルカリ土金属含量
が合計量で0.05重量%以下であることを特徴とする
ものであり、かかるアルミニウム結晶微細化用合金は、
アルミニウム溶湯にフッ化チタンアルカリ粉末とホウフ
ッ化アルカリ粉末の各所定量を700〜750℃の範囲
内に維持したアルミニウム溶漫に添加し、副生ずるフッ
化アルミニウ11アルカリを除去することにより製造さ
れる。
The aluminum crystal refining alloy according to the present invention contains 1.8 to 4.0% by weight of titanium and 0.3 to 0.6% by weight of boron, and the total content of alkali metals and alkaline earth metals is 0. .05% by weight or less, and such an alloy for aluminum crystal refining is
It is produced by adding predetermined amounts of alkali titanium fluoride powder and alkali borofluoride powder to molten aluminum into an aluminum molten metal maintained at a temperature within the range of 700 to 750°C, and removing by-produced aluminum-11 alkali fluoride.

即ち、合金組成の改良により、該アルミニウJ1結晶微
細化用合金中に混在する介在物量を減少させるとともに
、該合金の製造条件を選定することにより、有効な結晶
V&細化能を保持させることができたものである。
That is, by improving the alloy composition, it is possible to reduce the amount of inclusions mixed in the aluminum J1 crystal refining alloy, and by selecting the manufacturing conditions of the alloy, it is possible to maintain effective crystal V & refining ability. It was made.

本発明合金は、Ti1.8〜4.0%(好ましくは2.
0〜2.2%) 、B O,3〜0.6%(好ましくは
0.4〜0.5%)を含有し、かつに、 Na、 Ca
等のアルカリ金属及びアルカリ土金属含量が合計量で0
.05%以下であるアルミニウJ1結晶微細化用合金で
あり、Ti及びBが前記組成を超えると粗大なTi−B
、 Ti−Al化合物の偏析やフッ化アルミニウムアル
カリ等の有害な介在物が結晶v&細化用合金中に混入し
、また、TiおよびBが前記組成未満ではアルミニウム
、結晶微細化効果が悪くなる。
The alloy of the present invention has Ti of 1.8 to 4.0% (preferably 2.0%).
0-2.2%), BO, 3-0.6% (preferably 0.4-0.5%), and also contains Na, Ca
The total content of alkali metals and alkaline earth metals such as
.. It is an alloy for aluminum J1 crystal refining with a content of 0.5% or less, and if Ti and B exceed the above composition, coarse Ti-B
Harmful inclusions such as segregation of Ti-Al compounds and alkali aluminum fluoride are mixed into the alloy for crystal v&refining, and if Ti and B are less than the above composition, the effect of aluminum and crystal refining becomes poor.

次に、前記合金溶製温度が700℃より低いと溶湯の流
動性が悪くなって鋳造できなくなり、750℃を超える
と粗大なTi−8およびTi−Al化合物の成長により
結晶微細化効果が低下する。
Next, if the alloy melting temperature is lower than 700°C, the fluidity of the molten metal deteriorates and casting becomes impossible, and if it exceeds 750°C, the crystal refinement effect decreases due to the growth of coarse Ti-8 and Ti-Al compounds. do.

〈実施例〉 本発明を実施例に基づいて具体的に説明する。<Example> The present invention will be specifically explained based on examples.

実施例 1 結晶微細化用Al−Ti−8合金の合金組成の異なるも
のを作製し、その特性を調べた。
Example 1 Al-Ti-8 alloys for crystal refinement having different alloy compositions were prepared and their properties were investigated.

780℃のアルミニウム溶湯に33%カリを含むフッ化
チタンカリ粉末を1kgと、31%カリを含むホウフッ
化カリ粉末を0.44kg添加反応させ、A1−2χT
i−0,4χB合金をlokgil造し、副生物のフッ
化アルミニウムアルカリを除去したのち、30關φ丸棒
に鋳造した。これを圧延により9.5mmφのロッドと
した。
1 kg of titanium fluoride potash powder containing 33% potassium and 0.44 kg of borofluoride potash powder containing 31% potash were added to molten aluminum at 780°C and reacted to form A1-2χT.
The i-0,4χB alloy was manufactured by lokgil, and after removing the by-product aluminum fluoride alkali, it was cast into a 30 mm diameter round bar. This was rolled into a rod having a diameter of 9.5 mm.

比較例 1〜3 フッ化チタンカリ粉末とホウフッ化カリ粉末の添加m 
をW、t て、Al−5$Ti−IXB、 Al−3$
Ti−0,6$B。
Comparative Examples 1 to 3 Addition of potassium titanium fluoride powder and potassium borofluoride powder m
W, t, Al-5$Ti-IXB, Al-3$
Ti-0,6$B.

Al−lXTi−0,1χBの各合金を作り、実施例と
同様にして試験用ロッドを作製した。
Each alloy of Al-lXTi-0 and 1χB was made, and test rods were made in the same manner as in the example.

実施例、比較例の各ロッドについて、介在物。Inclusions for each rod of Examples and Comparative Examples.

ミクロ組織および結晶微細化能を調べた。The microstructure and crystal refinement ability were investigated.

1、介在物の評価は、9.5mmφロッドの破面に現わ
れた介在物を目視で数え、 2個以下:A。
1. To evaluate inclusions, visually count the inclusions that appeared on the fracture surface of a 9.5 mmφ rod. 2 or less: A.

3〜20個二B2 21[i1以上:Cとランク付けした。3-20 pieces 2B2 21 [i1 or higher: Ranked as C.

2、ミクロ組織の評価は、9.51φロッド断面を研磨
して、100倍の顕微鏡で全視野を観察し、Ti−B1
g析とフッ化アルミニウ11アルカリの数を数え、 全視野に組織の異常なし:1級。
2. The microstructure was evaluated by polishing the cross section of the 9.51φ rod and observing the entire field of view with a 100x microscope.
G analysis and counting of aluminum fluoride-11 alkali showed no tissue abnormality in all visual fields: Grade 1.

2ケ所以内の異常組織= 2級。Abnormal tissue in two or less locations = Class 2.

3ケ所以上の以上組織: 3級 とした。Organizations with three or more locations: Class 3.

3、結晶粒度は740℃の、99.7%のアルミニウム
溶湯に2に8/lの微細化用合金を投入し、2分後の結
晶粒度を測定した。
3. Grain size: 2:8/l of the refining alloy was poured into 99.7% molten aluminum at 740°C, and the grain size was measured after 2 minutes.

これらの結果を次の第1表に示す。These results are shown in Table 1 below.

以下余白 第1表の結果より、本発明合金は微細化能もほぼ満足で
き、かつ介在物を殆ど含まないクリーンな結晶微細化用
合金であることが判る。
From the results shown in Table 1 below, it can be seen that the alloy of the present invention has almost satisfactory refining ability and is a clean alloy for grain refining containing almost no inclusions.

実施例 2 実施例1のAl−2$Ti−0,4χBの合金組成とし
、製造時の反応温度を730℃として、実施例1に準じ
た操作を行ない9.5Iφのロッドを作製した。
Example 2 A rod with a diameter of 9.5 Iφ was produced by using the alloy composition of Al-2$Ti-0,4χB as in Example 1, and setting the reaction temperature during production to 730° C. and carrying out the same operation as in Example 1.

比較例 4,5 実施例1の合金組成で反応温度を各780℃。Comparative example 4,5 The reaction temperature was 780°C using the alloy composition of Example 1.

850℃として、9.51φロツドを作製した。A 9.51φ rod was prepared at 850°C.

比較例 6〜8 比較例1の合金組成で反応温度を各730℃。Comparative examples 6 to 8 The reaction temperature was 730°C with the alloy composition of Comparative Example 1.

780℃、850℃として、9.5mn+ロッドを作製
した。
A 9.5 mm+ rod was prepared at 780°C and 850°C.

これらの各ロッドについて、介在物、及びmW化能を測
定した。その結果を第2表に示す。
For each of these rods, inclusions and mW power generation capacity were measured. The results are shown in Table 2.

以下余白 第2表から判るように、本発明実施例のA1−2XTi
−0,4!B合金は高濃度(7)AI−5$Ti−IK
B合金ニ比へ介在物が少なく、かつ製造方法に関しては
反応温度を730℃と低くすることによって、結晶微細
化能にも優れ、これを用いてスラブやビレットの微細化
を行なうことにより、高品位の板材や型材を製造するこ
とができる。
As can be seen from the margin Table 2 below, A1-2XTi of the embodiment of the present invention
-0,4! Alloy B is high concentration (7) AI-5$Ti-IK
There are fewer inclusions compared to Alloy B, and the production method uses a low reaction temperature of 730°C, which has excellent crystal refining ability. By using this to refine slabs and billets, high It is possible to manufacture high quality plates and shapes.

なお、本発明の合金組成及び製造方法による結晶微細化
用合金は即効性と持続性を有するので、従来多く行われ
て来た炉中添加用ワツフル形状にも、また最近添加歩留
の向上や炉内の汚染防止上の観点から、炉から溶湯を取
り出す樋の途中での添加用のロッド形状にも製造して使
用することができる。
Furthermore, since the alloy for crystal refining produced by the alloy composition and manufacturing method of the present invention has immediate effect and sustainability, it can also be used in the Watsuful shape for in-furnace addition, which has been commonly done in the past, and has recently been used to improve the addition yield. From the viewpoint of preventing contamination in the furnace, it can also be manufactured and used in the form of a rod for addition in the middle of the gutter that takes out the molten metal from the furnace.

〈発明の効果〉 本発明の合金組成および製造方法により、有害な介在物
を殆ど含まずかつ有効な結晶微細化能を有する結晶微細
化用合金が得られるので、印刷板。
<Effects of the Invention> The alloy composition and manufacturing method of the present invention can provide a crystal refining alloy that contains almost no harmful inclusions and has an effective crystal refining ability, so that it can be used as a printing plate.

アルマイト板及び箔地等で代表されるような製品の薄肉
化および表面の加工精度が要求される用途に適しており
、工業的にその効果の大きい発明である。
This invention is suitable for applications that require thinner products and surface processing precision, such as alumite plates and foil fabrics, and is an industrially highly effective invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は結晶微細化用合金中のアルカリ金属濃度と介在
物数との関係を示した図面である。
FIG. 1 is a drawing showing the relationship between the alkali metal concentration and the number of inclusions in an alloy for crystal refinement.

Claims (1)

【特許請求の範囲】 1、チタン1.8〜4.0重量%およびホウ素0.3〜
0.6重量%を含有し、かつアルカリ金属及びアルカリ
土金属含量が合計量で0.05重量%以下であることを
特徴とするアルミニウム結晶微細化用合金。 2、チタン1.8〜4.0重量%およびホウ素0.3〜
0.6重量%を含有し、かつアルカリ金属及びアルカリ
土金属含量が合計量で0.05重量%以下であるアルミ
ニウム結晶微細化用合金の製造方法において、アルミニ
ウム溶湯にフッ化チタンアルカリ粉末とホウフッ化アル
カリ粉末の各所定量を700〜750℃の範囲内に維持
したアルミニウム溶湯に添加し、副生するフッ化アルミ
ニウムアルカリを除去することを特徴とするアルミニウ
ム結晶微細化用合金の製造方法。
[Claims] 1. 1.8 to 4.0% by weight of titanium and 0.3 to 4.0% by weight of boron
An alloy for refining aluminum crystals, characterized in that the total content of alkali metals and alkaline earth metals is 0.05% by weight or less. 2. Titanium 1.8~4.0% by weight and boron 0.3~
0.6% by weight, and the total content of alkali metals and alkaline earth metals is 0.05% by weight or less. 1. A method for producing an alloy for refining aluminum crystals, which comprises adding predetermined amounts of alkali powders to molten aluminum maintained at a temperature within the range of 700 to 750°C, and removing by-produced alkali aluminum fluoride.
JP8867087A 1987-04-13 1987-04-13 Alloy for refining aluminum grain and its production Pending JPS63255338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8867087A JPS63255338A (en) 1987-04-13 1987-04-13 Alloy for refining aluminum grain and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8867087A JPS63255338A (en) 1987-04-13 1987-04-13 Alloy for refining aluminum grain and its production

Publications (1)

Publication Number Publication Date
JPS63255338A true JPS63255338A (en) 1988-10-21

Family

ID=13949251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8867087A Pending JPS63255338A (en) 1987-04-13 1987-04-13 Alloy for refining aluminum grain and its production

Country Status (1)

Country Link
JP (1) JPS63255338A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0787598A2 (en) 1996-02-02 1997-08-06 Fuji Photo Film Co., Ltd. Process for manufacturing lithographic printing plate support
JP2009515041A (en) * 2005-11-02 2009-04-09 トゥビタク Method for producing grain refined mother alloy
EP2666888A3 (en) * 2012-05-23 2014-01-15 Shenzhen Sunxing Light Alloys Materials Co., Ltd Electrolyte supplement system in aluminium electrolysis process and method for preparing the same
JP2018104762A (en) * 2016-12-26 2018-07-05 日新製鋼株式会社 PRODUCTION METHOD OF MOLTEN Al-BASED PLATED SHEET STEEL, AND MOLTEN Al-BASED PLATED SHEET STEEL
CN111286646A (en) * 2020-04-01 2020-06-16 湖南金联星特种材料股份有限公司 Al-3Ti-0.5B intermediate alloy roll with high efficiency and low Ti and B element content and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0787598A2 (en) 1996-02-02 1997-08-06 Fuji Photo Film Co., Ltd. Process for manufacturing lithographic printing plate support
JP2009515041A (en) * 2005-11-02 2009-04-09 トゥビタク Method for producing grain refined mother alloy
EP2666888A3 (en) * 2012-05-23 2014-01-15 Shenzhen Sunxing Light Alloys Materials Co., Ltd Electrolyte supplement system in aluminium electrolysis process and method for preparing the same
GB2502392B (en) * 2012-05-23 2017-11-15 Shenzhen Sunxing Light Alloys Mat Co Ltd Method for preparing an electrolyte supplement system in aluminium electrolysis
JP2018104762A (en) * 2016-12-26 2018-07-05 日新製鋼株式会社 PRODUCTION METHOD OF MOLTEN Al-BASED PLATED SHEET STEEL, AND MOLTEN Al-BASED PLATED SHEET STEEL
CN111286646A (en) * 2020-04-01 2020-06-16 湖南金联星特种材料股份有限公司 Al-3Ti-0.5B intermediate alloy roll with high efficiency and low Ti and B element content and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5405115B2 (en) Method for producing grain refined mother alloy
US4539194A (en) Method for production of pure silicon
US3857705A (en) Small grain promoting aluminum-titanium-boron mother alloy
JP4974591B2 (en) Graphite spheroidizing agent and method for producing spheroidal graphite cast iron using the same
CN103074506B (en) Two-step charging method for preparing high-quality Al-Ti-B intermediate alloy refiner
CN103060642A (en) High-strength aluminum alloy subjected to carbonitride complex treatment and preparation method thereof
EP1254074B1 (en) Refining of metallurgical grade silicon
WO2014026446A1 (en) Alloy for magnesium and magnesium alloy grain refinement, and preparation method thereof
US2964397A (en) Copper-boron alloys
JPS63255338A (en) Alloy for refining aluminum grain and its production
CN103233138A (en) Grain refiner for magnesium-aluminum (Mg-Al) magnesium alloy and preparation method thereof
CN102418009B (en) Aluminum alloy capable of digesting high-hardness compounds and smelting method of aluminum alloy
CN110804704A (en) Preparation method of Al-Ti-B-Sr intermediate alloy and Al-Ti-B-Sr intermediate alloy
JPWO2016047692A1 (en) Method for producing corrosion-resistant titanium alloy containing Ru
US2604394A (en) Magnesium base alloys
WO2003033750A1 (en) Grain refining agent for cast aluminum products
CN114000020A (en) Ingot for large-size die forging and preparation method thereof
EP0346960B1 (en) Hexafluorophosphates as structure refiner for aluminium-silicon alloys
US2955935A (en) Manufacture of aluminum titanium alloys
JPS58174535A (en) Manufacture of aluminum-zirconium mother alloy
CN101708532B (en) Cast steel deslagging composite material and preparation method thereof
JPS5931581B2 (en) Demagnesium treatment method for aluminum alloy
JP3666822B2 (en) Master alloy for adding Zr into Mg alloy
RU2266971C1 (en) Method of production of aluminum-and-silicon alloys
JPS6223946A (en) Production of aluminum grain refiner