JPS63255315A - Complex nozzle and its production - Google Patents
Complex nozzle and its productionInfo
- Publication number
- JPS63255315A JPS63255315A JP8714487A JP8714487A JPS63255315A JP S63255315 A JPS63255315 A JP S63255315A JP 8714487 A JP8714487 A JP 8714487A JP 8714487 A JP8714487 A JP 8714487A JP S63255315 A JPS63255315 A JP S63255315A
- Authority
- JP
- Japan
- Prior art keywords
- nozzle
- layer
- resistance
- refractory
- molten metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 229910052751 metal Inorganic materials 0.000 claims abstract description 24
- 239000002184 metal Substances 0.000 claims abstract description 24
- 239000000843 powder Substances 0.000 claims abstract description 22
- 238000010438 heat treatment Methods 0.000 claims abstract description 8
- 238000001035 drying Methods 0.000 claims abstract description 6
- 238000007664 blowing Methods 0.000 claims abstract description 3
- 239000008187 granular material Substances 0.000 claims abstract 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 18
- 229910052799 carbon Inorganic materials 0.000 claims description 16
- 239000002131 composite material Substances 0.000 claims description 14
- 239000000463 material Substances 0.000 abstract description 13
- 229910007948 ZrB2 Inorganic materials 0.000 abstract description 12
- VWZIXVXBCBBRGP-UHFFFAOYSA-N boron;zirconium Chemical compound B#[Zr]#B VWZIXVXBCBBRGP-UHFFFAOYSA-N 0.000 abstract description 12
- 230000035939 shock Effects 0.000 abstract description 10
- 230000003628 erosive effect Effects 0.000 abstract description 7
- 238000000034 method Methods 0.000 abstract description 2
- 238000003756 stirring Methods 0.000 abstract description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract 1
- 229910052593 corundum Inorganic materials 0.000 abstract 1
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 17
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 14
- 230000007797 corrosion Effects 0.000 description 13
- 238000005260 corrosion Methods 0.000 description 13
- 229910000831 Steel Inorganic materials 0.000 description 12
- 239000010959 steel Substances 0.000 description 12
- 238000007654 immersion Methods 0.000 description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 229910052786 argon Inorganic materials 0.000 description 7
- 229920001971 elastomer Polymers 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000011819 refractory material Substances 0.000 description 4
- 238000005299 abrasion Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000005011 phenolic resin Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- -1 0310~20% 3 Inorganic materials 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
- Furnace Charging Or Discharging (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は溶鉄、溶鋼等の溶融金属中にガス、あるいはガ
スと共に無機物質の粉末を吹込む複合ノズルとその製造
方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a composite nozzle for injecting gas or inorganic powder together with gas into molten metal such as molten iron or steel, and a method for manufacturing the same.
従来高温溶融金属中にガス、あるいはガスと共に無機物
質の粉末を吹込むノズルとしてA1.O,。Conventionally, A1. O.
MgO等の種々の酸化物及びこれら酸化物とカーボンと
の複合系であるC−Al、O,、c−MgO質の耐熱衝
撃性を付与した耐火物を金属製のパイプの外側に配した
ノズル、例えば特開昭60−89515に示すようなノ
ズルが一般的に用いられてきた。あるいはSi□N4.
5iC等の非酸化物より成るノズル、例えば特開昭58
−163555に示すようなノズルが提案されて来た。A nozzle in which a refractory material with thermal shock resistance of various oxides such as MgO and C-Al, O, c-MgO, which is a composite system of these oxides and carbon, is arranged on the outside of a metal pipe. For example, a nozzle as shown in Japanese Patent Application Laid-Open No. 60-89515 has been commonly used. Or Si□N4.
A nozzle made of a non-oxide such as 5iC, for example, JP-A-58
-163555 has been proposed.
しかしながら、従来材質のノズルではいずれも高温での
溶融金属及び吹込む無機粉末に対する耐食性が充分でな
かった。さらにCを含有しない酸化物や、5iC1Si
、N4質単味のノズルでは耐食性が充分でなくさらに耐
熱衝撃性も充分でないため、予熱の必要があり、予熱が
充分でない場合にはしばしば破損するという欠点があっ
た。However, nozzles made of conventional materials have insufficient corrosion resistance against molten metal and injected inorganic powder at high temperatures. Furthermore, oxides that do not contain C, 5iC1Si
A nozzle made of N4 alone does not have sufficient corrosion resistance and also does not have sufficient thermal shock resistance, so it requires preheating, and if preheating is not sufficient, it often breaks.
また、CとMgO1A1203等の酸化物よりなる耐火
材料は耐熱衝撃性は良好なものの前述の耐食性が劣りか
つ無機粉末に対する耐摩耗性も良好でないという欠点が
あった。Furthermore, although a refractory material made of C and an oxide such as MgO1A1203 has good thermal shock resistance, it has the drawbacks of poor corrosion resistance and poor abrasion resistance against inorganic powder.
以上の理由より低温度域あるいは一定の条件下で高温で
短時間使用されるノズルはあるが、高温で長時間安定し
て溶融金属中に浸漬して不活性ガス、あるいは不活性ガ
スと共に無機粉末を吹込むノズルはほとんど見受けられ
ない。For the above reasons, there are nozzles that are used in a low temperature range or at high temperatures for a short time under certain conditions, but they are stable for long periods of time at high temperatures and are immersed in molten metal to produce inert gas or inorganic powder together with inert gas. There are almost no nozzles that inject it.
本発明は、前述の問題点を解決すべくなされたものであ
り、その特徴とする手段は、(1)溶融金属中にガス又
はガスと粉体を吹込むノズルであって、 Zr[l、質
耐火物を主体とする内側層と、この内側層の外周部に内
周部を直接密着せしめたカーボン含有耐火物の外側層と
からなることを特徴とする複合ノズル。The present invention has been made to solve the above-mentioned problems, and its characteristic means are (1) a nozzle for blowing gas or gas and powder into molten metal, 1. A composite nozzle comprising an inner layer mainly made of a high quality refractory, and an outer layer of a carbon-containing refractory whose inner periphery is brought into direct contact with the outer periphery of the inner layer.
(2)溶融金属中にガス又はガスと粉体を吹込むノズル
であって、ZrBsff耐火物を主体とする円筒状の焼
結体を内側層とし、この外側にカーボン含有耐火粉粒物
を充填して外側層とし、これを不焼成状態で乾燥して、
あるいは乾燥後所定の温度まで加熱焼成して該内側層の
外周部に該外側層の内周部を直接密着せしめたことを特
徴とする複合ノズルの製造方法にある。(2) A nozzle for injecting gas or gas and powder into molten metal, the inner layer is a cylindrical sintered body mainly made of ZrBsff refractory, and the outer layer is filled with carbon-containing refractory powder particles. to form an outer layer, which is dried in an unfired state,
Alternatively, there is a method for producing a composite nozzle, characterized in that the inner circumferential portion of the outer layer is directly brought into close contact with the outer circumferential portion of the inner layer by heating and baking to a predetermined temperature after drying.
本発明の複合ノズルは第1図に示すようにZrB2質耐
大物を主体とする内側層1の外周部とカーボン含有耐火
物からなる外側層2の内周部とを目地を介在させること
なく直接密着せしめてなる。As shown in Fig. 1, the composite nozzle of the present invention connects the outer periphery of an inner layer 1 mainly made of ZrB2 large resistant material and the inner periphery of an outer layer 2 made of a carbon-containing refractory directly without intervening joints. It becomes close contact.
該内側M1は先端部で激しい溶融金属の攪拌作用による
侵食に耐え、さらに中に流れる無機粉末による摩耗に耐
える高耐食、耐摩耗性が要求される。 ZrB、質の緻
密質焼結体を用いることによりほぼこの特性を満足でき
る。The inner side M1 is required to have high corrosion resistance and abrasion resistance to withstand erosion caused by the intense stirring action of molten metal at the tip and further to withstand wear caused by inorganic powder flowing inside. By using a dense sintered body of ZrB, this characteristic can almost be satisfied.
次に外側部2は溶融金属あるいは高温炉内への挿入時に
割れない耐熱衝撃性が必要であり、カーボン含有耐火物
を使用することによりこの特性を満足する。Next, the outer part 2 needs to have thermal shock resistance that will not break when inserted into a molten metal or a high-temperature furnace, and this property is satisfied by using a carbon-containing refractory.
ここで、ZrB、質耐火物としては、まず材質的にはZ
rBa (二硼化ジルコニウム)を主成分とするもので
あればよ(、ZrB、が耐大成分の全部又は大部分から
なるものから、その主要成分としてZrB、としての目
的効果を発揮しうる程度含まれているものまで種々のも
のが使用しうる。Here, as a ZrB quality refractory, first of all, ZrB is the material.
As long as it has rBa (zirconium diboride) as its main component (ZrB consists of all or most of the large component, it can exhibit the desired effect as ZrB as its main component). A variety of things can be used including those included.
望ましい組成のいくつかを示すと次の通りである。Some desirable compositions are as follows.
(重量%)
1、 ZrB28G〜98%
SiC2〜20%
2、 ZrB1 80〜90%Al、
0310〜20%
3、 ZrB、 70〜95%BN
5〜20%
SiC5〜10%
4、 ZrB、 80〜95%C5
〜20%
1.2.4でSiC,Al、03.Cの量は20%以下
であることが望ましい、これ以上であると耐食性が低下
し好ましくない。(Weight%) 1. ZrB28G~98% SiC2~20% 2. ZrB1 80~90% Al,
0310~20% 3, ZrB, 70~95%BN
5-20% SiC5-10% 4, ZrB, 80-95%C5
~20% 1.2.4 SiC, Al, 03. It is desirable that the amount of C be 20% or less; if it is more than this, the corrosion resistance will deteriorate, which is not preferable.
3のBNを含有したものは耐熱衝撃性に優れるが耐食性
、強度面より含有量は20%以下が好ましい。Although those containing BN of No. 3 have excellent thermal shock resistance, the content is preferably 20% or less in terms of corrosion resistance and strength.
同時に添加するSiCは耐酸化性の向上に有効であるが
、耐食性が低下するため記述の組成範囲が望ましい。SiC added at the same time is effective in improving oxidation resistance, but it lowers corrosion resistance, so the composition range described above is desirable.
1.2.4の組成については特に耐食、耐摩耗に優れ溶
融金属内にガス及び無機粉末を吹込むノズルとして適し
、3の組成のものは主として高温加熱炉用として適する
。Compositions 1.2.4 have particularly excellent corrosion resistance and wear resistance and are suitable as nozzles for injecting gas and inorganic powder into molten metal, while compositions 3 are mainly suitable for use in high-temperature heating furnaces.
また、物性的にはノズルの内側層として次のようなもの
が望ましい。In addition, in terms of physical properties, the following materials are desirable for the inner layer of the nozzle.
相対密度 80%以上好ましくは90%以上嵩比重 4
以上好ましくは5以上
曲げ強度(kg/cd)
常 温 1000以上好ましくは3000以上1400
℃ 500以上好ましくはtooo以上ビッカース硬度
(kg/aIab” )常 温 500以上好ましくは
800以上1400℃ 300以上好ましくは500以
上融 点 2000℃以上
ノズル内側のZrB2層は、先端部で激しい溶融金属に
よる侵食を受け、また内側を無機粉末が通過する際の摩
耗に耐えるためには高密度であることが望ましい。曲げ
強度、硬度についても同様な理由で高いものが望ましい
。Relative density 80% or more, preferably 90% or more Bulk specific gravity 4
Bending strength (kg/cd) Normal temperature: 1000 or more, preferably 3000 or more, 1400
°C 500 or higher, preferably 500 or higher Vickers hardness (kg/alab") Room temperature 500 or higher, preferably 800 or higher 1400°C 300 or higher, preferably 500 or higher Melting point 2000 °C or higher High density is desirable in order to withstand erosion and abrasion when inorganic powder passes inside.High bending strength and hardness are also desirable for the same reasons.
特に曲げ強度はZrB2とC−MgOとの一体成形時に
割れないためにも1000kg/a#以上が望ましい。In particular, the bending strength is desirably 1000 kg/a# or more in order to prevent cracking during integral molding of ZrB2 and C-MgO.
つぎに、カーボン含有耐火物としては、従来のこの種ノ
ズルとして使用されてきたものがそのまま使用できる。Next, as the carbon-containing refractory, those that have been used in conventional nozzles of this type can be used as they are.
即ち、Mg0−C,A1.O,−C,ZrO,−C質な
どいずれのものでもよい。ここでCは一般には黒鉛(グ
ラファイト)であり、その配合割合は通常C含有耐火物
層として10〜30重量%程度のものがよい。That is, Mg0-C, A1. Any material such as O, -C, ZrO, or -C may be used. Here, C is generally graphite, and its blending ratio is usually about 10 to 30% by weight for the C-containing refractory layer.
本発明ノズルは、このような内外2層構造からなるもの
であり、その製造法は、ZrB、質耐火物の予め円筒状
に焼結したものを中子として例えばゴム製鋳型中
周部とゴム窺鋳型内壁間に、カーボン含有耐火物原料を
装填し、ゴム製鋳型中で振動させながら充填する。これ
をさらに液圧中で1000kg/a&以上の圧力をかけ
(ラバープレス)緻密な外側層を成形する。これを例え
ば200〜300℃で5間抜程加熱乾燥することで該内
側層の外周部と外側層の内周部を、目地を介在させるこ
となく直接密着せしめ、使用時の剥離と隙間の発生を防
止して溶融金属侵入溶損を防止できる望ましいものが得
られる。The nozzle of the present invention has such a two-layer structure, an inner and outer layer, and its manufacturing method involves using a pre-sintered cylindrical ZrB refractory as a core, for example, a middle part of a rubber mold, and a rubber mold. A carbon-containing refractory raw material is loaded between the inner walls of the mold, and filled while being vibrated in the rubber mold. This is further applied a pressure of 1000 kg/a or more in hydraulic pressure (rubber press) to form a dense outer layer. By heating and drying this at, for example, 200 to 300°C for 5 minutes, the outer periphery of the inner layer and the inner periphery of the outer layer are brought into direct contact with each other without intervening joints, resulting in peeling and gaps during use. Thus, a desirable product can be obtained that can prevent molten metal intrusion and corrosion loss.
本発明の複合ノズルにおいて、内側層と外側mの肉厚と
しては次のようなものが好ましい。In the composite nozzle of the present invention, the thicknesses of the inner layer and the outer layer m are preferably as follows.
内側層 10〜20ml11
外側ffJ 20〜100mm
内側層のZrB、の肉厚は10m/m以上あれば充分で
あり、 20+*/m以上の場合はかえって内外面での
温度差がつき割れやすくなり好ましくない。Inner layer 10-20ml11 Outer ffJ 20-100mm It is sufficient that the inner layer ZrB has a wall thickness of 10 m/m or more, and if it is 20+*/m or more, it is preferable because the temperature difference between the inner and outer surfaces makes it more likely to break. do not have.
外側層のカーボン含有層は粉末の成形性及び溶融金属に
対する耐食性により20m+o厚以上が望ましく Lo
om/mあれば充分である。The outer carbon-containing layer preferably has a thickness of 20m+o or more due to powder formability and corrosion resistance against molten metal.
om/m is sufficient.
また、形状としては内側層であるZrB、質耐火物の外
周部に第1図(a)に示すように傾斜をつけておくこと
により内側層に万−割れが発生した際にも外側層からの
剥落を防止できる。In addition, by sloping the outer periphery of the ZrB refractories, which are the inner layer, as shown in Figure 1 (a), even if a crack occurs in the inner layer, the outer layer can be easily removed. can prevent peeling.
外側層のカーボン含有層に含有させる結合剤は通常熱硬
化性樹脂を用いるため、前記の如く200〜300℃で
5時間以上加熱乾燥させて硬化させた後、1000℃程
度で還元焼成して該樹脂を炭化させると、該内側層の外
周部との密着状態がより強固となり使用時の剥離と隙間
を確実に抑止し、溶融金属侵入溶損を防止することがで
きる。Since the binder contained in the carbon-containing layer of the outer layer is usually a thermosetting resin, it is hardened by heating and drying at 200 to 300°C for 5 hours or more as described above, and then reduced and fired at about 1000°C. When the resin is carbonized, the adhesion between the inner layer and the outer periphery becomes stronger, and peeling and gaps during use can be reliably suppressed, and molten metal intrusion and erosion can be prevented.
実施例l
Zr132パイプ(注1)を中子として、Mg0−C原
料(注2)をその外側に装填し、1500kg/af?
の加圧下ラバープレス成形し、250℃で5時間乾燥す
ることにより、長さ200mm、肉厚30mm、内径1
1+I1mの複合ノズルを得た。(ZrB2厚LovA
/m、 Mg0−C厚20m/m)(注1)
組成 ZrB2: 95%、SiC5%物性 密度:
5.60
曲げ強度(kg/a1.室温) : 4000ビツ力−
ス硬度(kg/mm”、室温) : 1300(注2)
組成 MgO80%、黒鉛20%、結合剤4%よりなる
もの。(MgO5〜1m/m 40%、MgO1nua
−25%、MgO0,lmm−15%、鱗片状黒鉛0.
5mm−20%、フェノールレジン外掛4%)ついでこ
の複合ノズルを用いて次の条件下でアルゴンを流しなが
ら予熱をせずに溶鋼中に浸漬して攪拌処理した結果は次
の通りであった。Example 1 A Zr132 pipe (Note 1) is used as a core, Mg0-C raw material (Note 2) is loaded on the outside, and 1500 kg/af?
By rubber press molding under pressure and drying at 250°C for 5 hours, the product has a length of 200 mm, a wall thickness of 30 mm, and an inner diameter of 1.
A composite nozzle of 1+I1m was obtained. (ZrB2 thickness LovA
/m, Mg0-C thickness 20m/m) (Note 1) Composition ZrB2: 95%, SiC5% Physical properties Density:
5.60 Bending strength (kg/a1.room temperature): 4000 bit force-
Hardness (kg/mm", room temperature): 1300 (Note 2) Composition: 80% MgO, 20% graphite, 4% binder. (MgO5~1m/m 40%, MgO1nua
-25%, MgO0, lmm-15%, flaky graphite 0.
(5 mm - 20%, phenol resin outer layer: 4%) This composite nozzle was then immersed and stirred in molten steel without preheating while flowing argon under the following conditions.The results were as follows.
条件:溶鋼温度 1550〜1600℃浸漬時間 18
0分/チャージ
アルゴンガス流量 50Q/分
結果:浸漬中アルゴンガスは安定して流せた。Conditions: Molten steel temperature 1550-1600℃ Immersion time 18
0 min/Charge Argon gas flow rate 50Q/min Result: Argon gas could be stably flowed during immersion.
浸漬後ノズルの両材質の部分に亀裂による剥落は何ら観
案されなかった* ZrB2内側層には殆ど侵食及び地
金の付性はなく、内・外側層の剥離損傷もなく以降13
チヤージの再使用が可能であった。After immersion, no peeling due to cracks was observed in both materials of the nozzle.* There was almost no erosion or adhesion of bare metal to the ZrB2 inner layer, and there was no peeling damage to the inner or outer layers after 13 days.
It was possible to reuse the charge.
実施例2
実施例1と同じノズルを、次の条件でCaC01の粉末
と共にアルゴンガスを流しながら、予熱することなく溶
鋼中に浸漬した結果は次の通りであった。Example 2 The same nozzle as in Example 1 was immersed in molten steel without preheating while flowing argon gas together with CaC01 powder under the following conditions. The results were as follows.
条件:溶鉄温度: 1510〜1560℃浸漬時間:
60m1n/チヤージ
Arガス流量: 100 Q /winCaCO,流量
: long/win
粒度0.IImアンダ
ー果:浸漬中ノズルの目詰まりもなく、また浸漬後ノズ
ル先端部の損耗、鋼、スラグの付着も軽微で良好な結果
であった。以降20チヤージの再使用が可能であった。Conditions: Molten iron temperature: 1510-1560℃ Immersion time:
60mln/charge Ar gas flow rate: 100 Q/winCaCO, flow rate: long/win Particle size 0. IIm Under-result: There was no clogging of the nozzle during immersion, and after immersion, there was only slight wear and adhesion of steel and slag to the nozzle tip, giving good results. After that, it was possible to reuse it for 20 charges.
実施例3
実施例1のノズルに比べて外側層をMg0−Cにかえて
A1.03−C(配合は実施例2におけるMgOをA1
□03に置き換えたものと同じ)を充填し加熱成形した
複合ノズルを、溶鉄中に窒素ガスとソーダ灰の混合物を
流しながら挿入した。Example 3 Compared to the nozzle of Example 1, the outer layer was changed to Mg0-C to A1.03-C (the blend was that the MgO in Example 2 was replaced with A1
A heat-formed composite nozzle filled with □03) was inserted into the molten iron while flowing a mixture of nitrogen gas and soda ash.
条件:溶鉄温度: 1510〜1560℃、予熱なし使
用時間: 3Gmin/チャージ
N2ガス流量: 50 Q /akinNa、 CO,
流量: 300g/lll1n0.1 +mアンダー
結果:挿入中ノズルの目詰まりもなく良好であづた。終
了後At、0.−C層の部分が数mm厚にわたり酸化し
ていたが、ZrB2部分には全く問題がなかった。以降
19チヤージの再使用が可能であった。Conditions: Molten iron temperature: 1510-1560℃, no preheating Use time: 3Gmin/Charge N2 gas flow rate: 50 Q/akinNa, CO,
Flow rate: 300g/lll1n0.1 +m underresult: Good results with no nozzle clogging during insertion. After completion At, 0. Although the -C layer portion was oxidized over a thickness of several mm, there was no problem at all in the ZrB2 portion. After that, 19 charges could be reused.
比較例1
溶鋼中にZrB、単独ノズル(ZrB、 95%)内側
にアルゴンガスを流しながら浸漬した。Comparative Example 1 ZrB was immersed in molten steel while argon gas was flowing inside a single nozzle (ZrB, 95%).
条件:溶鋼温度: 1550〜1600℃、予熱なし浸
漬時間:5分/チャージ
チャージ数:lチャージ
アルゴンガス流量:lOQ/分
結果:浸漬5分後にZrB、ノズルに亀裂が入り破損し
たため実験を中断した。Conditions: Molten steel temperature: 1550-1600°C, no preheating Immersion time: 5 minutes/charge Number of charges: 1 charge Argon gas flow rate: 1OQ/min Results: After 5 minutes of immersion, the ZrB nozzle cracked and was damaged, so the experiment was interrupted. .
比較例、2
ZrB、パイプをあらかじめ穴を成形加工したC−Mg
O系筒体中に貫入して無機接着剤を用いて固定して作成
したノズルを泪いて溶鋼中にArを流しながら浸漬した
。Comparative example, 2 ZrB, C-Mg with holes formed in the pipe in advance
A nozzle, which was created by penetrating into an O-based cylinder and fixed using an inorganic adhesive, was immersed in molten steel while flowing Ar.
条件:溶鋼温度: 1550〜1600℃浸漬時間:
30m1n/チヤ一ジ
アルゴンガス流量=10α/分
結果:使用後、ZrB、とMg0−Cの境界部分が選択
的に20s/m程侵食されて鋼が浸透しており再使用が
不可能な状態であった。Conditions: Molten steel temperature: 1550-1600℃ Immersion time:
30m1n/channel argon gas flow rate = 10α/min Result: After use, the boundary between ZrB and Mg0-C was selectively eroded by about 20s/m and the steel had penetrated, making reuse impossible. Ta.
比較例3
ステンレスパイプの外側にMg0−C系耐大物(MgO
5〜1mm 40%、1m@以下25%、0.1aua
以下15%、鱗片状黒鉛0.5ml以下20%、フェノ
ール樹脂外掛けで4%配合物)を充填して加熱成形した
複合ノズルをノズル内側にArガスと炭酸カルシウムの
粉末を流しながら溶鋼中に浸漬した一6
条件:溶鋼温度: 1550〜1600℃、予熱なし浸
漬時間: 60m1n
Arガス流量: 100 jl /winCaCO,流
量: 100g/win
0.1 mアンダー
結果:浸漬後ノズル先端部が10ミリ程度溶損し近接の
C−MgO部分も20m/m程度損耗し、ノズル先端部
の穴径の拡大が認められた。Comparative Example 3 Mg0-C-based large resistant material (MgO
5-1mm 40%, 1m@25% or less, 0.1aua
A composite nozzle is heated and formed by filling with 15% or less of flaky graphite, 0.5ml or less of flaky graphite, 20% of phenolic resin and 4% with a phenol resin outer layer, and pours Ar gas and calcium carbonate powder inside the nozzle into the molten steel. Immersed 16 Conditions: Molten steel temperature: 1550-1600℃, no preheating Immersion time: 60ml1n Ar gas flow rate: 100jl/winCaCO, flow rate: 100g/win 0.1m underresult: After immersion, the nozzle tip is about 10mm The adjacent C-MgO portion was also worn away by approximately 20 m/m, and the hole diameter at the nozzle tip was observed to be enlarged.
またステンレスの先端の部分に地金がかなり付着してい
るのが観察された。It was also observed that a considerable amount of metal was attached to the tip of the stainless steel.
以降2チヤージ目の途中でノズル閉塞 となり使用不能となった。After that, the nozzle became clogged during the second charge. It became unusable.
[本発明の効果]
本発明ノズルは、前記の手段の通り特定の内・外二層耐
火物からなりかつ内・外二層間を直接密着せしめた複合
ノズルであり、次のような効果が発揮される。[Effects of the present invention] As described above, the nozzle of the present invention is a composite nozzle that is made of a specific inner and outer two-layer refractory material and has the inner and outer two layers in direct contact with each other, and exhibits the following effects. be done.
第一に溶融金属、無機粉末に対して必要な耐食性を耐熱
性、耐食性に優れたZrB2材料を内側層に用いて解決
しようというものである。ZrB、は融点が3060℃
と高く耐熱性に優れ、しかも融点の低いFe、 Cu、
Pb、 Zn、 A1、Snその他の金属と反応しな
いことが知られている。また各種の無機質粉末との流動
接触に対する優れた耐摩耗性と高温での反応も少ない優
れた耐熱性、耐食性、を保持するものである。次に第二
の耐熱衝恕性については内側層のZrB2単独では充分
でないためZrB2パイプを中子として周囲に耐熱衝撃
性に優れたカーボンを含む材質であるC−MgO1C−
A120.、C−Zr0.質等の原料′粉末を充填配設
して外側層を構成しこれを不焼成(加熱乾燥)又は加熱
焼成して内側層と外側層を密性せしめることにより内・
外側層間に隙間を生じさせることなく内側層の外周部と
溶融金属との接触を防止してノズル全体の耐熱WI撃性
を大幅に向上せしめその寿命を従来ノズルの1.5倍以
上に延命せしめるものである。First, the corrosion resistance required for molten metals and inorganic powders is solved by using ZrB2 material, which has excellent heat resistance and corrosion resistance, for the inner layer. ZrB has a melting point of 3060℃
Fe, Cu, which has high heat resistance and low melting point.
It is known that it does not react with Pb, Zn, Al, Sn, and other metals. It also has excellent wear resistance against fluid contact with various inorganic powders, and excellent heat resistance and corrosion resistance with little reaction at high temperatures. Next, regarding the second thermal shock resistance, since ZrB2 alone in the inner layer is not sufficient, a ZrB2 pipe is used as a core and the surrounding material is C-MgO1C- which is a material containing carbon with excellent thermal shock resistance.
A120. , C-Zr0. The outer layer is formed by filling and disposing powder of raw materials such as high quality, and this is unfired (heat-dried) or heated to make the inner layer and outer layer denser.
It prevents contact between the outer periphery of the inner layer and the molten metal without creating a gap between the outer layers, greatly improving the heat resistance of the entire nozzle and extending its life by more than 1.5 times that of conventional nozzles. It is something.
即ち内側層と外側層を夫々別々に形成してこれらを単に
はめ込む方法で作成したのでは実際に溶融金属中に浸漬
して使用した場合内側層のZrB2と外側層のC−Mg
O等との層間に隙間を生じてしまい。In other words, if the inner layer and the outer layer are formed separately and simply fitted together, when the inner layer and the outer layer are actually immersed in molten metal and used, the inner layer of ZrB2 and the outer layer of C-Mg will be separated.
A gap is created between the layers with O, etc.
その部分への溶融金属侵入により内側層が外周部から損
耗するためにZrB、を使用してもその効果が大幅に減
少してしまう。第三に内側層のZrB、はビッカース硬
度の極めて大きい硬質材料であり硬い無機質の粉末を大
量に流しても摩耗しにくく粉末吹込み用ノズルとして適
している。Even if ZrB is used, its effectiveness is greatly reduced because the inner layer is worn away from the outer periphery due to the penetration of molten metal into that area. Thirdly, the inner layer ZrB is a hard material with extremely high Vickers hardness, and is not easily worn even when a large amount of hard inorganic powder is flowed, making it suitable as a powder injection nozzle.
第1図は、本発明複合ノズルの曲型例を示すもので、(
a)は断面図、(b)は何面側である。
図面にて、1は7.r B 、質内側層、2はカーボン
含有外側層である。FIG. 1 shows an example of the curved shape of the composite nozzle of the present invention.
A) is a cross-sectional view, and (b) is a side view. In the drawing, 1 is 7. r B , a solid inner layer, 2 a carbon-containing outer layer.
Claims (2)
であって、ZrB_2質耐火物を主体とする内側層と、
この内側層の外周部に内周部を直接密着せしめたカーボ
ン含有耐火物の外側層とからなることを特徴とする複合
ノズル。(1) A nozzle for blowing gas or gas and powder into molten metal, and an inner layer mainly made of ZrB_2 refractory;
A composite nozzle comprising an outer layer of a carbon-containing refractory whose inner circumference is directly adhered to the outer circumference of the inner layer.
であって、ZrB_2質耐火物を主体とする円筒状の焼
結体を内側層とし、この外側にカーボン含有耐火粉粒物
を充填して外側層とし、これを不焼成状態で乾燥して、
あるいは乾燥後所定の温度まで加熱焼成して該内側層の
外周部に該外側層の内周部を直接密着せしめたことを特
徴とする複合ノズルの製造方法。(2) A nozzle for injecting gas or gas and powder into molten metal, the inner layer is a cylindrical sintered body mainly made of ZrB_2 refractory, and the outer layer is carbon-containing refractory powder granules. Fill it to form an outer layer, dry it in an unfired state,
Alternatively, a method for producing a composite nozzle, which comprises heating and baking to a predetermined temperature after drying to bring the inner circumference of the outer layer into direct contact with the outer circumference of the inner layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8714487A JPS63255315A (en) | 1987-04-10 | 1987-04-10 | Complex nozzle and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8714487A JPS63255315A (en) | 1987-04-10 | 1987-04-10 | Complex nozzle and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63255315A true JPS63255315A (en) | 1988-10-21 |
Family
ID=13906786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8714487A Pending JPS63255315A (en) | 1987-04-10 | 1987-04-10 | Complex nozzle and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63255315A (en) |
-
1987
- 1987-04-10 JP JP8714487A patent/JPS63255315A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU712600B2 (en) | Nozzle for use in continuous casting of steel | |
US5411997A (en) | Mud material used for iron tap hole in blast furnace | |
US5868956A (en) | Nozzle for use in continuous casting of steel | |
WO1996027568A1 (en) | Unshaped refractories and gunning refractories prepared therefrom | |
JPS63255315A (en) | Complex nozzle and its production | |
US6475426B1 (en) | Resin-bonded liner | |
KR100393233B1 (en) | Casting and its manufacturing process with an outer layer capable of forming an impermeable layer in the gas | |
JP4416946B2 (en) | Ceramic composite | |
JPH10510474A (en) | Stop rod having an outer layer capable of forming a gas impermeable layer | |
JP4118058B2 (en) | Immersion nozzle for casting | |
JP5489568B2 (en) | Gas injection nozzle | |
JP3197680B2 (en) | Method for producing unburned MgO-C brick | |
JPS6141861B2 (en) | ||
JPH09296212A (en) | Lance for blowing gas | |
JPH0578180A (en) | Carbon fiber-containing refractory | |
JPS6153150A (en) | Nozzle for molten steel casting | |
JP2954454B2 (en) | MgO-C non-fired brick | |
JPS62202860A (en) | Nozzle for molten steel casting | |
JPS589874A (en) | Refractories for blast furnace lining | |
JPH11246265A (en) | High corrosion resistant fused silica-containing refractory | |
KR20000023576A (en) | Ceramic compositions | |
JPS6041016B2 (en) | refractory | |
JP2000288697A (en) | Refractory for continuous casting | |
JPH0355427B2 (en) | ||
JPS6324945B2 (en) |