JPS6325522A - Temperature measurement by anti-stokes raman spectroscopy - Google Patents

Temperature measurement by anti-stokes raman spectroscopy

Info

Publication number
JPS6325522A
JPS6325522A JP16795786A JP16795786A JPS6325522A JP S6325522 A JPS6325522 A JP S6325522A JP 16795786 A JP16795786 A JP 16795786A JP 16795786 A JP16795786 A JP 16795786A JP S6325522 A JPS6325522 A JP S6325522A
Authority
JP
Japan
Prior art keywords
beams
light
temperature
stokes
lights
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16795786A
Other languages
Japanese (ja)
Inventor
Fumio Kato
文雄 加藤
Yoji Ishibashi
石橋 洋二
Isao Sato
勲 佐藤
Takashi Omori
隆司 大森
Shigeyuki Akatsu
赤津 茂行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16795786A priority Critical patent/JPS6325522A/en
Publication of JPS6325522A publication Critical patent/JPS6325522A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a handy and effective optical meter, by making two first beams cross each other in a measuring area as separated in stead of overlapping them. CONSTITUTION:The temperature of a combustion flame is measured by anti- Stokes Ramans method. At this point, laser lights with two different kinds of frequencies, omega1 and omega2 (omega1>omega2) produced to irradiate non-measuring material are supplied from a YAG laser 1 and a dye laser 2. These lights are transmitted through independent optical paths to a measuring position without being mixed together while being partially cut off with beam stops 10 and 11 but the cut faces thereof are made to oppose each other with a dichroic mirror 16 while the lights are sent to a convex lens 17 as two parallel beams close to each other. The two beams are so arranged to cross each other in a combustion cylinder 18 and after checked for the generation of an anti-Stokes light, the interval thereof is adjusted by moving a prism 9. Thereafter, the two beams are removed with a dichroic mirror 20 and thus, the anti-Stokes light is converted into an electrical signal with a photodetector through a spectroscope 23.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は燃焼火炎の温度計測のためのレーザラマン分光
法の中の光学系に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an optical system in laser Raman spectroscopy for temperature measurement of combustion flames.

〔発明の背景〕[Background of the invention]

ガスタービン燃焼器、ボイラ等の産業用燃焼筒は燃焼ゾ
ーンの最高温度は2000’C近い温度にもなる。この
燃焼反応ゾーンでの燃焼温度は燃焼反応速度や生成され
るNOx、Co等の燃焼生成物の発生量と密接な関係を
もっている。公害規制で注目されるNOxについては、
燃料中に含まれる窒素が少ない場合は、燃焼過程で発生
するいわゆるサーマルNOxが問題となるが、このサー
マルNOxは一般に高温域で発生するため、その抑制の
ためには燃料分散等による低温均一化燃焼法が採られる
のが普通である。このように燃焼反応ゾーンでの温度分
布はNOx抑制燃焼技術確立のために定量的に把握され
なくてはならない基本パラメータの一つに数えられてい
る。この方面の従来の対処法は熱電対を挿入して温度測
定を行なう試がなされてきたが、この熱電対方式では測
定できる温度範囲が限られるうえに高温域での測定精度
も幅対等の補正を要し、精度補償が難しいという問題。
In industrial combustion tubes such as gas turbine combustors and boilers, the maximum temperature in the combustion zone is close to 2000'C. The combustion temperature in this combustion reaction zone has a close relationship with the combustion reaction rate and the amount of combustion products such as NOx and Co produced. Regarding NOx, which is attracting attention in pollution regulations,
When the nitrogen content in the fuel is low, so-called thermal NOx generated during the combustion process becomes a problem, but since this thermal NOx is generally generated in a high temperature range, to suppress it, it is necessary to homogenize the temperature by dispersing the fuel etc. The combustion method is usually used. As described above, the temperature distribution in the combustion reaction zone is counted as one of the basic parameters that must be quantitatively understood in order to establish NOx suppression combustion technology. The conventional solution to this problem has been to insert a thermocouple to measure the temperature, but this thermocouple method has a limited measurable temperature range, and the measurement accuracy in high temperature ranges has also been affected by width correction. The problem is that accuracy compensation is difficult.

さらには、プローブを挿入することにょつて燃焼場を本
来あるべき姿から変えてしまうという大きな問題をもっ
ていた。従って燃焼場を乱すことなく真の温度を測定す
るためには非接触な測定法が要望されてきた。
Furthermore, there was a major problem in that the insertion of the probe changed the combustion field from its original state. Therefore, a non-contact measurement method has been desired in order to measure the true temperature without disturbing the combustion field.

近年大出力レーザが出現するに至って、その応用研究が
燃焼分野でも行なわれるようになり、種種の方式が提案
され議論されてきているが、中でも非線形ラマン分光を
利用するものの有用性が特に注目されている。ラマン散
乱現象は1927年インドのラマンとクリシュナンによ
って発見されたもので、物質(分子)にある振動数ω1
の光を照射変調され振動数がωz= (ω1−Ω)とω
s= (ω工+Ω)の光が新しく発生するというもので
ある。
With the advent of high-power lasers in recent years, applied research has begun to be conducted in the field of combustion, and various methods have been proposed and discussed, but the usefulness of methods that utilize nonlinear Raman spectroscopy has received particular attention. ing. The Raman scattering phenomenon was discovered by Raman and Krishnan in India in 1927, and is a phenomenon that occurs when the frequency ω1 of a substance (molecule) is
The light is irradiated and modulated so that the frequency is ωz= (ω1−Ω) and ω
Light of s = (ω + Ω) is newly generated.

前者をストークス光、後者を反ストークス光と呼んでい
る。
The former is called Stokes light, and the latter is called anti-Stokes light.

後年、第4図に示すごとく入射光にω1の他にさらにω
2を同時に照射すると反ストークス光ω8が異常に高め
られて発生することが発見された。
In later years, as shown in Figure 4, in addition to ω1, the incident light
It has been discovered that when 2 and 2 are irradiated at the same time, anti-Stokes light ω8 is abnormally enhanced and generated.

二九は非線形ラマン効果によるもので、その具体的な説
明は省略するが、この方式の最大の特長は発生する反ス
トークス光がレーザ光同様のコヒーレントな単色光とし
てビーム状に指向性をもって散乱されるというものであ
った。レーザビームとして反ストークス光がω1.ω2
の重なり合う部分より発生するため、集光効率が高くと
れ、燃焼時の発光等によるノイズ成分に対するS/N比
が良いことが最大の利点である。この非線形ラマン分光
方式を英文の頭文字をとってCA RS (Coher
entAnti−8takes Raman 5pee
troscopy)と呼んでいる。
This is due to the nonlinear Raman effect, and although a detailed explanation will be omitted, the greatest feature of this method is that the generated anti-Stokes light is directionally scattered in a beam shape as coherent monochromatic light similar to laser light. It was said that Anti-Stokes light is used as a laser beam at ω1. ω2
The greatest advantage is that the light is generated from the overlapping portions of the light, so the light collection efficiency is high and the S/N ratio is good with respect to noise components caused by light emitted during combustion. This nonlinear Raman spectroscopy method is called CA RS (Coher
entAnti-8takes Raman 5pee
It is called troscopy.

第5図はこのCAR3法による窒素分子(N2)の反ス
トークス光を分光器によって分光したスペクトル分布を
示したもので温度は約1500’Cに相当するものであ
る。
FIG. 5 shows the spectral distribution of the anti-Stokes light of nitrogen molecules (N2) obtained by the CAR3 method using a spectrometer, and the temperature corresponds to about 1500'C.

ところで、燃焼ガスの温度や濃度はスペクトル分布とど
のような関係にあるか簡単に述べておかなけわばならな
い、基本的な定量化の作業は、量子力学の理論によって
反ストークス光スペクトル形状との比較によるものであ
る。しかしこの方法では時間がかかるので、いくつかの
近似的な方法が提案されている。その代表的なものとし
て、温度の定量化には、スペクトルの半値幅を利用する
ものがある。第5図の最初のスペクトルビークの半分の
高さのところの線幅を用いるものであるが、この線幅が
温度に対してほぼ線形関係にあり、温度の上昇に伴って
線幅は広がる特性を利用している。
By the way, it is important to briefly explain how the temperature and concentration of combustion gas are related to the spectral distribution.The basic quantification work is based on the anti-Stokes optical spectral shape and the shape of the spectrum using quantum mechanical theory. This is based on the comparison. However, since this method is time-consuming, several approximate methods have been proposed. A typical example of this is the use of the half-width of a spectrum to quantify temperature. The line width at half the height of the first spectral peak in Figure 5 is used, and this line width has a nearly linear relationship with temperature, and the line width widens as the temperature rises. is used.

濃度については、反ストークス光は理論的に測定分子密
度の2乗に比例することが知られているので、入射光の
変動がないとすると濃度はスペクトルの高さより算定で
きる。
Regarding the concentration, it is known that anti-Stokes light is theoretically proportional to the square of the measured molecule density, so if there is no fluctuation in the incident light, the concentration can be calculated from the height of the spectrum.

CAR5法における反ストースク先発生の条件としては
次の2式を満足する必要がある。
In the CAR5 method, the following two equations must be satisfied as conditions for the occurrence of an anti-Stask prior.

ua=2cv□−32・・・・・・(1)kg=2kl
−kz          ・・・・・・(2)→ 1に+l=□ nI =振動数ω、における相接率 C:光速 →:ベクトル量 (1)式はエネルギ保存則を(2)式は運動量保存則を
表わしている。(1)、(2)式を満足し測定物質が気
体の場合には第6図に示すようなビーム配置のものがす
でに提案されている。(a)方式はコーリニア方式と呼
ばれωlとω2の振動数をあらかじめ混合して一本のビ
ームとして測定対象物に照射するもので光学系は簡単で
あるが測定精度は測定環境によって著しく低下する。そ
の第1の問題は測定領域がはっきりしないこと。第2に
反ストークス光の強度は(3)式の如く示されるが。
ua=2cv□-32...(1)kg=2kl
-kz ...... (2) → 1 to +l = □ nI = frequency ω, interaction rate C: speed of light →: vector quantity Equation (1) is the law of conservation of energy, equation (2) is conservation of momentum It represents the rules. In the case where equations (1) and (2) are satisfied and the substance to be measured is a gas, a beam arrangement as shown in FIG. 6 has already been proposed. Method (a) is called the collinear method, in which the frequencies of ωl and ω2 are mixed in advance and irradiated onto the measurement object as a single beam.The optical system is simple, but the measurement accuracy deteriorates significantly depending on the measurement environment. . The first problem is that the measurement area is not clear. Second, the intensity of anti-Stokes light is expressed as in equation (3).

■3αN2112I2・L2       ・・・・・
・(3)N:分子数密度(単位体積当りの分子数)工1
 :振動数ω1のレーザ光強度 工2 :振動数ω1のレーザ光強度 L:反ストークス光の発生領域 測定領域内で温度変化が急激である場合は、上式に示さ
れる如く反ストークス光はN2に比例することから低温
領域からの信号光が強くなって発生するという基本的問
題を含んでいる。一方、第6図(b)は上記の問題を解
決し空間分解能を上げるようにしたものでBOXCAR
5法と呼ばれω1を2本の一ムに分割し3本のビームを
測定領域内で交差させるもので交差領域からのみ反スト
ークス光が発生するので空間分解能が高くなるという特
長をもつが反面、3本のビームを交差させなければなら
ず光軸調整が天辺困難となる欠点をもつ。
■3αN2112I2・L2・・・・・・
・(3) N: Molecular number density (number of molecules per unit volume) engineering 1
: Laser light intensity with frequency ω1 2 : Laser light intensity with frequency ω1 L: Anti-Stokes light generation area If the temperature change is rapid within the measurement area, the anti-Stokes light is N2 as shown in the above equation. The basic problem is that the signal light from the low-temperature region becomes stronger because it is proportional to . On the other hand, Figure 6(b) is a BOXCAR that solves the above problem and increases the spatial resolution.
It is called the 5 method, and it divides ω1 into two beams and intersects the three beams within the measurement area. Anti-Stokes light is generated only from the intersection area, so it has the advantage of high spatial resolution. However, it has the disadvantage that the three beams must intersect, making it difficult to adjust the optical axis.

次に実缶測定用にはどちらの光学系を採用すべきかとな
ると(a)、(b)両方式とも問題があり、何んらかの
改良が必要となってくる。
Next, when it comes to which optical system should be adopted for measuring actual cans, both methods (a) and (b) have problems, and some kind of improvement is required.

実缶測定に要求される必須条件として (イ)光学系が単純で光軸合せが容易なこと。As an essential condition for actual can measurement (a) The optical system is simple and optical axis alignment is easy.

(ロ)測定領域(空間分解能)が明瞭であること。(b) The measurement area (spatial resolution) must be clear.

がある。There is.

本発明では上記の2項目を満足する光学系を提供し、実
缶温度測定の実現を図るものである。
The present invention provides an optical system that satisfies the above two items and aims to realize actual can temperature measurement.

〔発明の目的〕[Purpose of the invention]

本発明の目的はガスタービン燃焼器やボイラ等の大型燃
焼筒内の温度計測をラマン分光法で行なう場合、簡便で
有効的な光学系を提供するものである。
An object of the present invention is to provide a simple and effective optical system when measuring the temperature inside a large combustion cylinder such as a gas turbine combustor or boiler using Raman spectroscopy.

〔発明の概要〕[Summary of the invention]

先に示した反ストークス光強度を表わす(3)式は(1
)、(2)式で示したエネルギ保存、運動量保存(位相
整合条件とも言う)が成り立つとした場合の式となるが
、現実問題として厳密に運動量保存を満たすことは難し
く、幾らかのミスマツチ状態にあると考えるのが普通で
ある。このミスマツチ状態にある場合の反ストークス光
強度は次式で示される。
Equation (3) representing the anti-Stokes light intensity shown earlier is (1
), this equation assumes that conservation of energy and conservation of momentum (also called phase matching conditions) shown in equation (2) hold true, but as a practical matter, it is difficult to strictly satisfy conservation of momentum, and some mismatch conditions may occur. It is common to think that there is The anti-Stokes light intensity in this mismatched state is expressed by the following equation.

・・・・・・(4) Lcコーヒレント長と呼ばれる量で液体では数mのオー
ダ気体では数10■〜数mのオーダとなる。ちなみに窒
素は73備、N Oxは7mとなる。
(4) This is a quantity called the Lc coherent length, which is on the order of several meters for liquids and on the order of several tens of square meters to several meters for gases. By the way, nitrogen is 73m, and NOx is 7m.

第7図はミスマツチング状態の反ストークス光の強度を
コヒーレント長をパラメータに示したものである。L 
c=: ooは位相整合(phasa+matahin
g)条件を表わす。反ストークス発生領域りの小さい範
囲では、Lcが数10−よりも大きい場合は位相整合状
態(Lc−oo)との差異はほとんどないことがわかる
。このことはミスマツチング状態でも使用の可能性を示
唆している。しかしこの状態では信号光強度は低位にあ
るが検出できるかという問題があるが、これまでの実績
で測定領域の長さが数10ミクロン程度でもレーザのパ
ワ(0〜300mJ)を上げることによって分光器で分
光できるだけの光強度は得られているので本質的な問題
とはならない。
FIG. 7 shows the intensity of anti-Stokes light in a mismatched state using the coherent length as a parameter. L
c=: oo is phase matching (phasa+matahin
g) represents a condition; It can be seen that in a small range around the anti-Stokes generation region, when Lc is larger than several 10-, there is almost no difference from the phase matching state (Lc-oo). This suggests the possibility of use even in mismatched conditions. However, in this state, there is a problem as to whether it is possible to detect the signal light intensity, which is at a low level.However, we have shown that even if the length of the measurement area is several tens of microns, by increasing the laser power (0 to 300 mJ), we can perform spectroscopic analysis. This is not an essential problem since the light intensity is sufficient for spectroscopy with the instrument.

そこで本発明の要点として第6図に示したコーリニア方
式の改良方式として、最初にビームを重ね合せることは
せず2つの別々のビームとして測定領域で交差させる方
式を提案した。このようにすることにより光学系も比較
的簡単であるうえに空間分解能も高くとれるため、先に
示した実缶測定の要件を満たすことができる。
Therefore, as a key point of the present invention, as an improved method of the collinear method shown in FIG. 6, we have proposed a method in which the beams are not superimposed at first but are made into two separate beams that intersect in the measurement area. By doing so, the optical system is relatively simple and high spatial resolution can be obtained, so that the requirements for actual can measurement described above can be met.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第2.第3図により説明する
。第1図は本発明によるCAR3方式の全光学配置を示
した。振動数ω1.ω2の2本のレーザ光はYAGレー
ザ1と色素レーザ(Dyeレーザ)2より供給される。
Hereinafter, one embodiment of the present invention will be described in Section 2. This will be explained with reference to FIG. FIG. 1 shows the entire optical arrangement of the CAR3 system according to the present invention. Frequency ω1. Two laser beams of ω2 are supplied from a YAG laser 1 and a dye laser (Dye laser) 2.

今仮にω1に532nm波長の光を選定し、窒素分子の
反ストークス光を得ようとするためには窒素の固有振動
数(ラーマンシフト)が波数表示で2331an−”で
あるのでω2として約607.3nm波長の光を照射す
る必要がある。色素レーザは種々の色素溶液を用いるこ
とにより発生する光の波長を変えることができるうえに
幅広い波長域の光を放射できるのが特長である。本CA
R3方式の場合も色素レーザ光ω2は約607.3nm
を中心波長として約5nmの幅をもつ光として供給され
、得られる反ストークス光は第5図に1例を示したよう
に473.3nm付近に中心波長をもち、測定温度に応
じであるスペクトル分布の幅をもつ光として検出される
Now, if we were to select light with a wavelength of 532 nm as ω1 and obtain the anti-Stokes light of nitrogen molecules, the natural frequency (Raman shift) of nitrogen would be 2331an-'' in wave number expression, so ω2 would be approximately 607. It is necessary to irradiate light with a wavelength of 3 nm.Dye lasers are characterized by being able to change the wavelength of the light generated by using various dye solutions and emitting light in a wide wavelength range.This CA
In the case of the R3 method, the dye laser beam ω2 is approximately 607.3 nm.
The resulting anti-Stokes light has a center wavelength around 473.3 nm, as shown in an example in Figure 5, and has a spectral distribution that varies depending on the measurement temperature. It is detected as light with a width of .

ω1、ω2は計測位置まで混合することなく独立した光
学パスを通って伝送される。ω1はプリズム4.テレス
コープ6、プリズム7.8を通る。
ω1 and ω2 are transmitted through independent optical paths without being mixed to the measurement position. ω1 is prism 4. Passes through telescope 6 and prism 7.8.

ω2はプリズム3.テレスコープ5を通り計測位置近傍
まで導かれる。途中テレスコープ5,6を通す目的は、
ω1とω2ビーム広がり角度の違いによって生ずるビー
ム径の違いを調整するために用いられる。本発明の根幹
をなす部分は以下に説明する2ビームの絞り機構とその
配置にある。
ω2 is prism 3. It passes through the telescope 5 and is guided to the vicinity of the measurement position. The purpose of passing telescopes 5 and 6 on the way is
It is used to adjust the difference in beam diameter caused by the difference in the ω1 and ω2 beam spread angles. The essential part of the present invention lies in the two-beam diaphragm mechanism and its arrangement, which will be explained below.

ω1.ω2の光は10.11に配置したビーム絞り装置
によって任意幅の光にカットして後方に伝送できる。第
2図は絞り装置11を拡大して示した図である。ビーム
絞り装置1oも11と同じ機構でこの絞り装置はナイフ
ェツジ12.13とナイフェツジを左右に移動する移動
台14.15よりなる。
ω1. The ω2 light can be cut into light of arbitrary width by the beam diaphragm device placed at 10.11 and transmitted to the rear. FIG. 2 is an enlarged view of the aperture device 11. As shown in FIG. The beam aperture device 1o has the same mechanism as the beam aperture device 11, and this aperture device consists of a knife 12.13 and a movable table 14.15 for moving the knife left and right.

ナイフェツジ12.13はその先端部が鋭角に切り込ん
だ板状のもので絞り装置10.11を通った光はナイフ
ェツジ前のビーム形状が第2図の斜線で示すようにほぼ
円形に近い形であるとするとナイフェツジを通った後の
光の断面は、ビームのカット割合によって例えば第2図
に示す如く半円弧状のものになったりする。このように
カットされたビーム形状を部分円弧ビームと呼ぶことに
する。10.11によって成形されたビームは45°配
置のダイクロイックミラ16によって近接した2本の平
行ビームとなって凸レンズ17に送られる。ダイクロイ
ックミラ16の裏面にはω1に対して90%近い反射効
率を有し、ω2に対してはほとんど透過する特殊なコー
テングが施されている。
The knife 12.13 has a plate shape with its tip cut at an acute angle, and the beam shape of the light passing through the diaphragm 10.11 before the knife is almost circular, as shown by the diagonal lines in Figure 2. In this case, the cross section of the light after passing through the knife will take on the shape of a semicircular arc, for example, as shown in FIG. 2, depending on the cutting ratio of the beam. The beam shape cut in this way will be referred to as a partial arc beam. The beam shaped by 10.11 becomes two parallel beams close to each other by a dichroic mirror 16 arranged at 45° and is sent to a convex lens 17. The back surface of the dichroic mirror 16 is coated with a special coating that has a reflection efficiency of nearly 90% for ω1 and almost transmits ω2.

第3図は以上のようにして成形された振動数ω1゜ω2
の部分円弧ビームの配置関係と2ビームの交差点より発
生する反ストークス光の発生状況を示している。
Figure 3 shows the frequency ω1゜ω2 formed as above.
It shows the arrangement of the partial arc beams and the generation of anti-Stokes light generated from the intersection of the two beams.

ビームを部分円弧に成形する理由はレンズ近傍の非測定
領域は通常室温に近い温度であると考えられるのでこの
領域では両ビーム間の接触がないようにビーム間隔を決
定することが第一条件であるが、間隔を大きくとりすぎ
ると両ビームの交差領域が小さくなりその結果反ストー
クス光の強度が弱くなるという問題と反ストークスの放
射方向がレンズ中心軸となす角度が大きくなる結果。
The reason for shaping the beam into a partial arc is that the non-measurement area near the lens is usually at a temperature close to room temperature, so the first condition is to determine the beam spacing so that there is no contact between the two beams in this area. However, if the interval is too large, the area where both beams intersect will become smaller, resulting in a problem of weakening the intensity of the anti-Stokes light and an increase in the angle that the anti-Stokes radiation direction makes with the lens center axis.

受光側で光の捕集が困難になるという問題がでてくるの
で必然的にビーム間隔には制限がでてくるが、ビームの
対向する面を直線面としておくことにより、通常の円弧
面ビームに比べてビーム間隔を小さくできるという有利
さがある。また、コーリニア方式はビームが1本でレン
ズ面に入るので光軸調整が極めて簡単であったが、本方
式においても、最初はコーリニアの光学系を組んでおい
て信号光の発生を確認してからビーム間の間隔を調整が
できる。それには最初第1図のダイクロイックミラ17
の後方でω1.ω2の光を重ね合せるように配置してお
き、反ストークス光の発生を確認した後はプリズム9を
動かすことによってω1の光をダイクロイックミラ16
上で左右に移動させることによってω2のビームとの間
隔を所定の位置まで変えることができる。この作業は信
号光の発生をモニタしながら行なえるので比較的短時間
のうちに光学系のセットが完了できる。
The problem arises that it becomes difficult to collect the light on the receiving side, so there is inevitably a limit to the beam spacing, but by making the opposing surfaces of the beams straight lines, it is possible to It has the advantage that the beam spacing can be made smaller compared to the conventional method. In addition, in the colinear method, the optical axis adjustment was extremely easy because a single beam entered the lens surface, but with this method as well, the first step is to set up a colinear optical system and check the generation of signal light. The spacing between the beams can be adjusted from First, the dichroic mirror 17 shown in Figure 1
Behind ω1. The arrangement is such that the ω2 light is superimposed, and after confirming the generation of anti-Stokes light, the ω1 light is transferred to the dichroic mirror 16 by moving the prism 9.
By moving left and right on the top, the distance from the ω2 beam can be changed to a predetermined position. Since this work can be done while monitoring the generation of signal light, the setting of the optical system can be completed in a relatively short time.

反ストークス光は次のような手順で検出される。Anti-Stokes light is detected by the following procedure.

反ストークス光は2ビームの交差位置よりビーム状にな
ってω1、ω2の2つのビーム進行方向とほぼ近い方向
に放射される。この反ストークス光は燃焼筒18の外部
に配置された凸レンズ19に入りレンズの焦点位置に絞
り込まれる。この際ω1゜ω2の光は必要ないのでレン
ズ後方に設けたダイクイックミラ20によって反射され
外部に捨てられる。レンズ19の焦点位置に光フアイバ
受光部21を置き信号光を光フアイバケーブル22内に
導き分光器23まで伝送する。分光器23は焦点距離1
m、回折格子1800本/Iのダブルのものを使用する
。分光されたスペクトルは、ホトダイオードを512チ
ャンネル分もつ光検出装置24によって電気信号に変換
され、その後デジタル処理されスペクトルとしてモニタ
に表示される。
The anti-Stokes light forms a beam from the intersection of the two beams and is emitted in a direction substantially close to the two beam traveling directions ω1 and ω2. This anti-Stokes light enters a convex lens 19 disposed outside the combustion tube 18 and is focused at the focal point of the lens. At this time, since the light of ω1°ω2 is not needed, it is reflected by the diquick mirror 20 provided at the rear of the lens and thrown away to the outside. An optical fiber receiver 21 is placed at the focal point of the lens 19, and the signal light is guided into an optical fiber cable 22 and transmitted to a spectrometer 23. The spectrometer 23 has a focal length of 1
m, a double diffraction grating of 1800 lines/I is used. The separated spectrum is converted into an electrical signal by a photodetector 24 having 512 channels of photodiodes, and then digitally processed and displayed on a monitor as a spectrum.

以上図をもって説明したように比較的火炎断面幅の広い
産業用燃焼装置等の火炎温度を非線形ラマン散乱の一つ
であるCAR3法を適用して測定する場合、従来よく用
いられてきたコーリニア方式では温度勾配の急なものを
測定する場合、信号光発生領域が不明確であることから
低温度域の影響がスペクトルに反映され精度的に問題視
されてきたが、本発明ではこの欠点を解決するために2
ビームを近接させて配置し測定部においてのみ交差させ
るものであるために、測定部のみの情報がスペクトルに
反映され、高い精度の測定が実現できる6またコーリニ
ア方式とよく似た光学系であるため光学系の調整が短時
間でできるというのが実用上の利点である。
As explained with the diagram above, when measuring the flame temperature of industrial combustion equipment, etc., which has a relatively wide flame cross section, by applying the CAR3 method, which is a type of nonlinear Raman scattering, the collinear method that has been commonly used When measuring objects with steep temperature gradients, since the signal light generation region is unclear, the influence of the low temperature range is reflected in the spectrum, which has been seen as a problem in terms of accuracy.The present invention solves this drawback. for 2
Because the beams are placed close together and intersect only at the measurement section, information from only the measurement section is reflected in the spectrum, making it possible to achieve highly accurate measurements6.Also, because it is an optical system very similar to the collinear method, The practical advantage is that the optical system can be adjusted in a short time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例によるCAR8法の全体光学
系の説明図、第2図はビームをカットするビーム絞り装
置の斜視図、第3図は部分円弧型ビームを用いたビーム
配置を示す説明図、第4図はCAR8法による信号光の
発生原理を示す説明図、第S図は反ストークス光のスペ
クトル分布を示した線図、第6図は従来提案されている
ビームの配置法の説明図、第7図は反ストークス発生域
長さと光強度との関係をコヒーレント長をパラメータに
とって示した線図である。
Fig. 1 is an explanatory diagram of the entire optical system of the CAR8 method according to an embodiment of the present invention, Fig. 2 is a perspective view of a beam diaphragm device that cuts the beam, and Fig. 3 is a beam arrangement using a partially circular arc beam. Figure 4 is an explanatory diagram showing the principle of signal light generation using the CAR8 method, Figure S is a diagram showing the spectral distribution of anti-Stokes light, and Figure 6 is a previously proposed beam arrangement method. FIG. 7 is a diagram showing the relationship between the anti-Stokes generation region length and the light intensity using the coherent length as a parameter.

Claims (1)

【特許請求の範囲】[Claims] 1、燃焼火炎の温度をラマン分光法の一つである反スト
クスラマン分光法(CARS)で計測する方法であり、
被測定物質に照射する2種類の振動数ω_1、ω_2(
ω_1>ω_2)のレーザ光を光学系の途中で部分的に
カットし、被測定物質にこれら光を絞り込むために用い
る投光側最終凸レンズ面で、互いに部分カットされたω
_1、ω_2のビームをカット面を対向させかつ両ビー
ム間をわずかに離して配置させることにより、ビームの
絞り込まれる測定領域の空間分解能が制御できることを
特徴とする反ストクスラマン分光法による温度計測法。
1. A method of measuring the temperature of combustion flame using anti-Stox Raman spectroscopy (CARS), which is a type of Raman spectroscopy.
Two types of frequencies ω_1 and ω_2 (
The final convex lens surface on the light emission side is used to partially cut the laser beams of ω_1>ω_2) in the middle of the optical system and focus these lights on the substance to be measured.
A temperature measurement method using anti-Stox Raman spectroscopy, characterized in that the spatial resolution of the measurement area into which the beams are focused can be controlled by arranging the beams of _1 and ω_2 with their cut surfaces facing each other and with a slight distance between the two beams.
JP16795786A 1986-07-18 1986-07-18 Temperature measurement by anti-stokes raman spectroscopy Pending JPS6325522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16795786A JPS6325522A (en) 1986-07-18 1986-07-18 Temperature measurement by anti-stokes raman spectroscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16795786A JPS6325522A (en) 1986-07-18 1986-07-18 Temperature measurement by anti-stokes raman spectroscopy

Publications (1)

Publication Number Publication Date
JPS6325522A true JPS6325522A (en) 1988-02-03

Family

ID=15859179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16795786A Pending JPS6325522A (en) 1986-07-18 1986-07-18 Temperature measurement by anti-stokes raman spectroscopy

Country Status (1)

Country Link
JP (1) JPS6325522A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02223830A (en) * 1989-02-23 1990-09-06 Japan Spectroscopic Co Raman spectrochemical analyzer
JP2003015050A (en) * 2001-07-03 2003-01-15 Olympus Optical Co Ltd Laser microscope
CN103335742A (en) * 2013-07-12 2013-10-02 杭州欧忆光电科技有限公司 High-precision distributed optical fiber temperature sensing system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02223830A (en) * 1989-02-23 1990-09-06 Japan Spectroscopic Co Raman spectrochemical analyzer
JP2003015050A (en) * 2001-07-03 2003-01-15 Olympus Optical Co Ltd Laser microscope
CN103335742A (en) * 2013-07-12 2013-10-02 杭州欧忆光电科技有限公司 High-precision distributed optical fiber temperature sensing system

Similar Documents

Publication Publication Date Title
US4081215A (en) Stable two-channel, single-filter spectrometer
Axelsson et al. Laser-induced incandescence for soot particle size and volume fraction measurements using on-line extinction calibration
US6154277A (en) Absolute intensity measurements in laser induced incandescence
US11300452B2 (en) Spectral measurement method, spectral measurement system, and broadband pulsed light source unit
Spearrin et al. Fiber-coupled 2.7 µm laser absorption sensor for CO2 in harsh combustion environments
Therssen et al. Determination of the ratio of soot refractive index function E (m) at the two wavelengths 532 and 1064 nm by laser induced incandescence
JP2008002815A (en) Wavelength variable pulse light generator, and optical tomographic measuring instrument using the same
US11313760B2 (en) Device and method for measuring transmittance curve of Fabry-Parot using whispering gallery mode laser source
Nyholm et al. Single-pulse two-dimensional temperature imaging in flames by degenerate four-wave mixing and polarization spectroscopy
CN107356407A (en) The device of synchro measure high-capacity optical fiber laser power, spectrum and beam quality
JPH11266045A (en) Narrow-band module inspection device
JPS6325522A (en) Temperature measurement by anti-stokes raman spectroscopy
CN209961360U (en) Temperature measuring device based on carbon monoxide femtosecond laser induced fluorescence spectroscopy technology
Voigt et al. Planar measurements of CO concentrations in flames at atmospheric and elevated pressure by laser-induced fluorescence
Snelling et al. Measurement of soot concentration and bulk fluid temperature and velocity using modulated laser-induced incandescence
Shimizu et al. Measurement of the apex angle of a small prism by an oblique-incidence mode-locked femtosecond laser autocollimator
Hughes et al. A comparison of suction pyrometer and CARS derived temperatures in an industrial scale flame
Eckbreth CARS investigations in flames
JPS5887447A (en) High-precise measuring method for group refractive index
KR100449654B1 (en) Method and apparatus for monitoring the density of Gadolinium atomic vapor
Zhao et al. Quantifying Acetylene Mole Fraction in Rich Flat Laminar Premixed C2H4/Air Flames
WO2001071320A1 (en) Method and apparatus for analyzing vaporized metal
Dufitumukiza et al. Soot volume fraction measurements with two-color laser induced incandescence method–comparison of imaging and spectral configuration mode
JPS63309833A (en) Zero-dispersion wavelength measuring method for optical fiber
Wang et al. High-precision temperature measurement using frequency-division multiplexing laser dispersion spectroscopy for dynamic combustion monitoring