JPS63254270A - Sealing mechanism between metal and ceramics - Google Patents

Sealing mechanism between metal and ceramics

Info

Publication number
JPS63254270A
JPS63254270A JP9009487A JP9009487A JPS63254270A JP S63254270 A JPS63254270 A JP S63254270A JP 9009487 A JP9009487 A JP 9009487A JP 9009487 A JP9009487 A JP 9009487A JP S63254270 A JPS63254270 A JP S63254270A
Authority
JP
Japan
Prior art keywords
sealing
metal
valve seat
thermal expansion
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9009487A
Other languages
Japanese (ja)
Other versions
JPH086808B2 (en
Inventor
Junichi Nishizawa
潤一 西澤
Tetsuo Okada
岡田 徹夫
Mitsuhiko Dosono
堂園 光彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP62090094A priority Critical patent/JPH086808B2/en
Priority to US07/179,942 priority patent/US4903938A/en
Priority to GB8808736A priority patent/GB2203522B/en
Publication of JPS63254270A publication Critical patent/JPS63254270A/en
Publication of JPH086808B2 publication Critical patent/JPH086808B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lift Valve (AREA)
  • Gasket Seals (AREA)

Abstract

PURPOSE:To maintain perfect sealing even if the temperature change is repeated, by inserting a soft metal sealing member into between a metal member and a ceramics member and attaching a sealing assisting member for offsetting the thermal expansion of metal onto the sealing member. CONSTITUTION:A ceramics valve seat 1B is constituted by inserting a soft metal ring 6 between a gas casing 5 which contacts the valve seat 1B and a standing base and installing a cylindrical sealing assisting member 7 consisting of an invar behind the metal ring 6. When stainless steel is used for metal member, Fe-Ni alloy having a low expansion rate is suitably used for the sealing assisting member. Though thermal expansion is generated in each part, and the expanded sealing material is introduced into the expanded sealing gap, and sealing is maintained, sealing material is introduced also into the generated gap, since the thermal expansion of the assisting material 7 is small, and the swelling-out rate into the parts between the ceramics valve seat 1B, metal member 5, and a member 8 is little. Therefore, the deformation applied onto the sealing member is small, and the sealing of the ceramics valve seat can be perfectly maintained for a long period.

Description

【発明の詳細な説明】 本発明は、反復する温度変化を伴う条件下に使用する、
金属とセラミックスとの間のシール機構の改良に関する
。 本発明は、とくに半導体製造装置のガス微少流量調
整バルブのシール機構に適用したとき、その意義が大き
い。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for use under conditions involving repeated temperature changes.
Related to improvements in sealing mechanisms between metals and ceramics. The present invention has great significance especially when applied to a sealing mechanism for a gas minute flow rate regulating valve in semiconductor manufacturing equipment.

たとえば最近の半導体製造装置は、より高い真空下での
運転条件が選ばれるようになり、これに供給するヘリウ
ム、アルゴン、酸素、各種の有機金属化合物のガスなど
の供給量を、微細に調整することが必要になって来た。
For example, recent semiconductor manufacturing equipment has been selected to operate under higher vacuum conditions, and the amount of helium, argon, oxygen, and various organometallic compound gases supplied to this equipment must be finely adjusted. It has become necessary.

高度の真空に保たれている半導体製造装置へ、ボンベな
どの圧力容器からかなりの圧力をもったガスを供給する
と、流量調整バルブの前後で、−次圧および二次圧の圧
力差が高い。 この高差圧に加えて、装置の運転一体止
の反復に伴う高温から低温への温度変化が大きい。 こ
のような苛酷な条件下に使用する微少流量調整バルブは
、微少な流量をコントロールする機能に加えて、閉止時
のリーク量が最少でおるとともに、それを長期間維持す
る信頼性が要求される。 従って、微少流量調整バルブ
において、シール機構は重要である。
When a gas with a considerable pressure is supplied from a pressure vessel such as a cylinder to semiconductor manufacturing equipment that is kept in a high vacuum, there is a large pressure difference between the secondary pressure and the secondary pressure before and after the flow rate adjustment valve. In addition to this high differential pressure, there is a large temperature change from high temperature to low temperature due to repeated shutdowns of the device. Micro flow rate adjustment valves used under such harsh conditions must not only have the ability to control minute flow rates, but also minimize the amount of leakage when closed, and must be reliable enough to maintain this for a long period of time. . Therefore, the sealing mechanism is important in minute flow rate adjustment valves.

従来は、シール材としてゴムのO−リングや接着剤、テ
フロンなどが用いられていたが、高真空下におけるガス
の発生や耐熱性の不足などの欠点が指摘されていた。 
それらに代るシール材としては、軟質金属製の、たとえ
ば金や銅の0−リングが使用されている。
Conventionally, rubber O-rings, adhesives, Teflon, and the like have been used as sealing materials, but drawbacks such as gas generation under high vacuum and lack of heat resistance have been pointed out.
As an alternative sealing material, an O-ring made of soft metal, such as gold or copper, is used.

しかし軟質金属製のシール材を用いたものは、温度変化
の反復に耐えず、次第にリーク量が増大するという欠点
がある。 この原因は、軟質金属はおおむね熱膨脹率が
大きく、高温時には膨張のためシール間隙にはみだし、
その変形が冷却後も完全に回復せずに蓄積するためであ
る。
However, those using a soft metal sealing material have the disadvantage that they cannot withstand repeated temperature changes and the amount of leakage gradually increases. The reason for this is that soft metals generally have a large coefficient of thermal expansion, and at high temperatures they expand and protrude into the seal gap.
This is because the deformation accumulates without being completely recovered even after cooling.

本発明の目的ば、上記の欠点を解消し、軟質金属製のシ
ール材の熱膨脹および収縮のサイクルがひきおこす変形
を吸収し、高い差圧と大きな温度差という苛酷な条件下
に使用しても、安定したシール機能を示すような、金属
とセラミックスとの間のシール機構を提供することにあ
る。
It is an object of the present invention to overcome the above-mentioned drawbacks, to absorb the deformation caused by thermal expansion and contraction cycles of soft metal sealing material, and to be able to absorb the deformation caused by the thermal expansion and contraction cycles of the soft metal sealing material, even when used under severe conditions of high differential pressure and large temperature difference. The object of the present invention is to provide a sealing mechanism between metal and ceramics that exhibits a stable sealing function.

本発明の金属とセラミックスとのシール機構は、金属部
材とセラミックス部材との間に軟質金属製のシール材を
挿入してなり、温度変化が反復する条件下に使用される
シール機構において、軟質金属の熱膨脹を相殺する熱膨
脹特性をもつ材料でつくったシール補助材をシール材に
接して設けたことを特徴とする。
The metal-ceramic sealing mechanism of the present invention is made by inserting a soft metal sealing material between a metal member and a ceramic member, and is used under conditions of repeated temperature changes. The present invention is characterized in that a seal auxiliary material made of a material having thermal expansion characteristics that offsets the thermal expansion of the seal material is provided in contact with the seal material.

本発明のシール機構は、30’C←→160°Cの熱サ
イクルテス1〜において、金リング部のリークi 10
0−9At cc/sec  (He カス) カ得う
レ、製造過程における金リングシール部組立ての良品歩
留りはほぼ100%に達t る。
The sealing mechanism of the present invention has leakage i 10 of the gold ring portion in thermal cycle tests 1 to 30'C←→160°C.
0-9 At cc/sec (He scum) The yield of non-defective products for the gold ring seal assembly during the manufacturing process reaches almost 100%.

本発明のシール機構のひとつの代表的な適用例は、前記
した半導体製造装置の真空雰囲気中に微少量のアルゴン
などのガスをコントロールされた速度で供給するための
、真空用の微少ガス流量調整バルブの弁座のシールであ
る。
One typical application example of the sealing mechanism of the present invention is minute gas flow rate adjustment for vacuum use to supply a minute amount of gas such as argon at a controlled rate into the vacuum atmosphere of the semiconductor manufacturing equipment described above. This is the seal for the valve seat.

以下、図面を参照してこの例について説明すれば、第1
図はバルブの縦断面図であり、第2図はその弁座のシー
ル機構を示す拡大図である。
This example will be explained below with reference to the drawings.
The figure is a longitudinal sectional view of the valve, and FIG. 2 is an enlarged view showing the sealing mechanism of the valve seat.

このバルブは、ガスチェンバーGCに導入されたガスの
微量を、ともにセラミックス(たとえばサファイア)製
の弁体1Aと弁座1Bとの間隙を通して流通させる構造
である。
This valve has a structure in which a small amount of gas introduced into the gas chamber GC flows through a gap between a valve body 1A and a valve seat 1B, both of which are made of ceramics (for example, sapphire).

接ガスケーシング5は、弁体に自由度をもたせるための
金属(たとえば SUS  304.316L、モネル
メタルなど)のダイヤフラム9により仕切られた空間で
あり、この中にガスが導入される。
The gas contact casing 5 is a space partitioned by a diaphragm 9 made of metal (for example, SUS 304.316L, Monel metal, etc.) to give the valve body a degree of freedom, and gas is introduced into this space.

スタンディングベース8は、耐食性のよい金属(たとえ
ば SUS  3’16L)でできており、各種の機器
に接続される。 ガスチェンバーに導入されたガスは、
スタンディングベース中央の孔を通って流通する。
The standing base 8 is made of metal with good corrosion resistance (for example, SUS 3'16L), and is connected to various devices. The gas introduced into the gas chamber is
It flows through the hole in the center of the standing base.

駆動系は、図示した例では空気式を用いているが、他の
方式(電磁式や電歪式〉でもよい。 駆動力を弁体IA
に伝えるために、ステム2を用いる。 弁体1Aにはバ
ネ4で押圧力を加え、この押圧力を調製するためにゴム
製のダイヤフラム3に空気圧を加えてバネの押圧力と反
対方向の力を生じさせる。
The drive system uses a pneumatic type in the illustrated example, but other types (electromagnetic type or electrostrictive type) may be used. The driving force is transferred to the valve body IA
Stem 2 is used to convey this information. A pressing force is applied to the valve body 1A by a spring 4, and in order to adjust this pressing force, air pressure is applied to a rubber diaphragm 3 to generate a force in the opposite direction to the pressing force of the spring.

この駆動系を用いることにより、空気圧が加えられない
ときは弁体1Aは弁座1Bに押しっ(プられており、ガ
スは流通しない。 空気圧が加えられてバネの押圧力が
減少すると、ガスが流通する。
By using this drive system, when air pressure is not applied, the valve body 1A is pushed against the valve seat 1B, and gas does not flow. When air pressure is applied and the pressing force of the spring decreases, the gas is distributed.

第2図にシール機構の一例を示す。 このシール機構は
、セラミックスの弁座1Bを、接ガスケーシング5とス
タンディングベース8との間に、軟質金属たとえば金の
リング6を挿入し、このリングの後方にたとえばアンバ
ー(FB−Ni低膨脹合金)でつくった円筒状のシール
補助材7を設けてなる。
FIG. 2 shows an example of a sealing mechanism. In this sealing mechanism, a ring 6 of soft metal such as gold is inserted between a ceramic valve seat 1B, a gas-contact casing 5 and a standing base 8, and a ring 6 of soft metal such as gold is inserted behind this ring. ) is provided with a cylindrical seal auxiliary material 7 made of.

シール材として使用される代表的な軟質金属は、金であ
る。 インジウム、銅、銀、アルミニウムなども使用で
きる。
A typical soft metal used as a sealant is gold. Indium, copper, silver, aluminum, etc. can also be used.

金属部材としてステンレス鋼を使用する場合、シール補
助材としてはFe−Ni系低膨脹合金が適当である。 
低膨脹合金には、合金組成によって種々の熱膨脹係数を
もったものがあるから、使用場面に応じて適切なものを
えらぶとよい。
When stainless steel is used as the metal member, a low expansion Fe--Ni alloy is suitable as the sealing aid.
Some low expansion alloys have various coefficients of thermal expansion depending on the alloy composition, so it is best to select an appropriate one depending on the usage situation.

本発明に従うシール機構においては、常温では第3図の
ようにシールが行なわれており、温度が上昇した場合は
第4図のようになる。 ここで各部分の熱膨脹は起り、
拡大したシール間隙に膨張したシール材が出てきてシー
ルを保つが、シール補助材7の熱膨脹が小さく、そのた
めに生じた空隙にもシール材は出て行くため、セラミッ
クス弁座1Bと金属製の部材5,8との間にはみ出ず度
合は少ない。 従って、シール材が受ける変形の程度は
、第6図の場合にくらべて緩和されており、温度変化の
反復によって蓄積する変形量は、はるかに小さくなる。
In the sealing mechanism according to the present invention, sealing is performed as shown in FIG. 3 at normal temperature, and as shown in FIG. 4 when the temperature rises. Thermal expansion of each part occurs here,
The expanded seal material comes out into the expanded seal gap and maintains the seal, but the thermal expansion of the seal auxiliary material 7 is small, and the seal material also comes out into the gap created by this, so the ceramic valve seat 1B and the metal The degree of protrusion between the members 5 and 8 is small. Therefore, the degree of deformation that the sealing material undergoes is relaxed compared to the case of FIG. 6, and the amount of deformation that accumulates due to repeated temperature changes is much smaller.

このようにして、セラミックス弁座のシールは長期にわ
たって完全に保たれる。
In this way, the seal of the ceramic valve seat remains intact over a long period of time.

本発明で用いるシール補助材を用いず金リングだけを用
いた場合、常温では第5図のようにシールが行なわれて
いるが、温度の上昇に伴って第6図のように変化する。
When only the gold ring is used without using the sealing aid used in the present invention, sealing is performed as shown in FIG. 5 at room temperature, but changes as shown in FIG. 6 as the temperature rises.

 すなわちシール機構の構成部分すべてが熱膨脹するが
、線膨張率を、金属部材がα 、シール部材がα2、セ
ラミックスがα3とすると、 α2〉α1〉α3 の関係にあるから、セラミックス弁座1Bと部材5およ
び8とのシール間隙は温度の上昇につれて拡大し、最も
よく膨張するシール材がそこへはみ出してくることで、
シールが保たれる。 しかし従来の構造では、シール材
は、温度の低下につれてほぼ元の形状をとりもどすが、
軟質で変形しやすいから、度量なる温度変化に伴って少
しずつ変形が蓄積され、遂にはシールの完全さが損なわ
れるに至る。
In other words, all the constituent parts of the seal mechanism undergo thermal expansion, but if the coefficient of linear expansion is α for the metal member, α2 for the seal member, and α3 for the ceramic, the relationship is α2>α1>α3, so the ceramic valve seat 1B and the member The seal gap between 5 and 8 expands as the temperature rises, and the sealing material that expands the most protrudes into it.
Seal is maintained. However, in the conventional structure, the sealing material regains almost its original shape as the temperature decreases;
Since it is soft and easily deformed, deformation accumulates little by little as temperature changes, and the integrity of the seal is eventually compromised.

上記の欠点は、本発明により解消した。 すなわち、本
発明のシール機構は、常用の金属とセラミックスとの間
のシールにおいて、温度変化の反復があってもシールの
完全さがよく保たれる。
The above drawbacks have been overcome by the present invention. That is, the sealing mechanism of the present invention maintains the integrity of the seal well even with repeated temperature changes in conventional metal-to-ceramic seals.

従って、このシール機構は、例に挙げて説明した、真空
下に運転する半導体製造装置に供給する雰囲気ガスの微
少流量を調整するバルブのシールに使用したとき、とく
に有用である。 そのほか、同様な条件の下に置かれる
他の機器にも適用できることは、容易に理解されるであ
ろう。
Therefore, this sealing mechanism is particularly useful when used for sealing a valve that adjusts the minute flow rate of atmospheric gas supplied to a semiconductor manufacturing apparatus operated in a vacuum, as described by way of example. It will be easily understood that the present invention can also be applied to other devices under similar conditions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のシール機構を適用した微少、  ガ
ス流量調整バルブの構造を示す縦断面図である。 第2図は、第1図の要部を示す拡大図である。 第3図ないし第6図は、本発明のシール機構の作用を説
明するための、第2図に対応する模式的な断面図であっ
て、第3図は本発明に従って補助シール材を設けた場合
における常温の状態を示し、第4図はその高温の状態を
示す。 第5図は単に軟質金属のリングを用いた場合に
おける常温の状態を示し、第6図はその高温の状態を示
す。 1A・・・弁 体    1B・・・弁 座5・・・接
ガスケーシング 6・・・シール材(軟質金属製のリング)7・・・シー
ル補助材(低膨脹合金の円筒)8・・・スタンディング
ベース 特許出願人    日揮株式会社 代理人  弁理士  須 賀 総 夫 第1図 第2図 14開口UG3−25427(1(4)第3図    
  第4図 第5図      第6図
FIG. 1 is a longitudinal sectional view showing the structure of a minute gas flow rate adjustment valve to which the sealing mechanism of the present invention is applied. FIG. 2 is an enlarged view showing the main parts of FIG. 1. 3 to 6 are schematic cross-sectional views corresponding to FIG. 2 for explaining the operation of the sealing mechanism of the present invention, and FIG. 3 is a schematic cross-sectional view corresponding to FIG. FIG. 4 shows the normal temperature state, and FIG. 4 shows the high temperature state. FIG. 5 shows the normal temperature state when a soft metal ring is simply used, and FIG. 6 shows the high temperature state. 1A... Valve body 1B... Valve seat 5... Gas contact casing 6... Seal material (soft metal ring) 7... Seal auxiliary material (low expansion alloy cylinder) 8... Standing Base Patent Applicant JGC Corporation Representative Patent Attorney Souo Suga Figure 1 Figure 2 14 Opening UG3-25427 (1 (4) Figure 3
Figure 4 Figure 5 Figure 6

Claims (3)

【特許請求の範囲】[Claims] (1)金属部材とセラミックス部材との間に軟質金属製
のシール材を挿入してなり、温度変化が反復する条件下
に使用されるシール機構において、軟質金属の熱膨脹を
相殺する熱膨脹特性をもつ材料でつくったシール補助材
をシール材に接して設けたことを特徴とする金属とセラ
ミックスとのシール機構。
(1) A soft metal sealing material is inserted between a metal member and a ceramic member, and has thermal expansion characteristics that offset the thermal expansion of the soft metal in a sealing mechanism used under conditions of repeated temperature changes. A sealing mechanism between metal and ceramics characterized by a sealing auxiliary material made of a material provided in contact with the sealing material.
(2)シール補助材を、シール間隙に対してシール材よ
り後方に設けた特許請求の範囲第1項のシール機構。
(2) The sealing mechanism according to claim 1, wherein the sealing auxiliary material is provided behind the sealing material with respect to the sealing gap.
(3)金属部材がステンレス鋼であり、シール材として
金を、シール補助材としてFe−Ni低膨脹合金を使用
した特許請求の範囲第1項のシール機構。
(3) The sealing mechanism according to claim 1, wherein the metal member is stainless steel, gold is used as the sealing material, and Fe-Ni low expansion alloy is used as the sealing auxiliary material.
JP62090094A 1987-04-13 1987-04-13 Sealing mechanism between metal and ceramics Expired - Fee Related JPH086808B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62090094A JPH086808B2 (en) 1987-04-13 1987-04-13 Sealing mechanism between metal and ceramics
US07/179,942 US4903938A (en) 1987-04-13 1988-04-11 Micro flow control valve
GB8808736A GB2203522B (en) 1987-04-13 1988-04-13 Micro-flow control valve.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62090094A JPH086808B2 (en) 1987-04-13 1987-04-13 Sealing mechanism between metal and ceramics

Publications (2)

Publication Number Publication Date
JPS63254270A true JPS63254270A (en) 1988-10-20
JPH086808B2 JPH086808B2 (en) 1996-01-29

Family

ID=13988930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62090094A Expired - Fee Related JPH086808B2 (en) 1987-04-13 1987-04-13 Sealing mechanism between metal and ceramics

Country Status (1)

Country Link
JP (1) JPH086808B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0425679A (en) * 1990-05-18 1992-01-29 Kubota Corp Valve element structure of slide valve for high temperature service
JP2002115766A (en) * 2000-10-10 2002-04-19 Sasakura Engineering Co Ltd Low-temperature metal touch type butterfly valve
JP2011513665A (en) * 2008-02-29 2011-04-28 ダイオネックス コーポレイション Valve assembly
WO2011115144A1 (en) * 2010-03-16 2011-09-22 日清紡メカトロニクス株式会社 Packing for laminator
CN114413285A (en) * 2022-01-29 2022-04-29 中国航发湖南动力机械研究所 Big return bend seal structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54115660A (en) * 1977-11-29 1979-09-08 Itt Connecting of ring element
JPS62158253U (en) * 1986-03-31 1987-10-07

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54115660A (en) * 1977-11-29 1979-09-08 Itt Connecting of ring element
JPS62158253U (en) * 1986-03-31 1987-10-07

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0425679A (en) * 1990-05-18 1992-01-29 Kubota Corp Valve element structure of slide valve for high temperature service
JP2002115766A (en) * 2000-10-10 2002-04-19 Sasakura Engineering Co Ltd Low-temperature metal touch type butterfly valve
JP2011513665A (en) * 2008-02-29 2011-04-28 ダイオネックス コーポレイション Valve assembly
WO2011115144A1 (en) * 2010-03-16 2011-09-22 日清紡メカトロニクス株式会社 Packing for laminator
CN114413285A (en) * 2022-01-29 2022-04-29 中国航发湖南动力机械研究所 Big return bend seal structure

Also Published As

Publication number Publication date
JPH086808B2 (en) 1996-01-29

Similar Documents

Publication Publication Date Title
DE60029275D1 (en) Resilient, high-temperature resistant seals for different materials
KR100361064B1 (en) Controller
US4903938A (en) Micro flow control valve
US7080558B2 (en) Process seal for process control transmitter
WO2002016809A3 (en) Seal assembly with two sealing mechanisms for providing static and dynamic sealing
US5620187A (en) Contracting/expanding self-sealing cryogenic tube seals
JPH0215754B2 (en)
EP0149908A3 (en) Hydraulic apparatus having seal assembly for containing fluid leakage
JPS63254270A (en) Sealing mechanism between metal and ceramics
US11320056B2 (en) Valve device
CA2419916A1 (en) Sealing assembly
CA2486703A1 (en) High pressure and temperature seal for downhole use
JPH0875017A (en) Diaphragm valve
JPS61256066A (en) Compound sealing member combined with shape memory alloy
US3669408A (en) Metal to metal sea for extreme temperature applications
US11162597B2 (en) Flow path assembly and valve device
WO2020158512A1 (en) Flow passage assembly, valve device employing said flow passage assembly, fluid control device, semiconductor manufacturing device, and semiconductor manufacturing method
JPH0926052A (en) Actuator
JP2536864B2 (en) Micro flow control valve
JP2000161491A (en) Hollow metal o ring with ring
JPH0579572A (en) High pressure gas counterflow preventing valve
JP2005163899A (en) Gate valve for vacuum
JPH10339371A (en) Hollow metal o-ring with ring, and manufacture thereof
KR20220057969A (en) Gasket
SU1216524A1 (en) Method of hermetic sealing of all-metal release-vacuum joint

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees