JPS6325405A - Electromagnetic 'pumpless' boiler - Google Patents

Electromagnetic 'pumpless' boiler

Info

Publication number
JPS6325405A
JPS6325405A JP2178186A JP2178186A JPS6325405A JP S6325405 A JPS6325405 A JP S6325405A JP 2178186 A JP2178186 A JP 2178186A JP 2178186 A JP2178186 A JP 2178186A JP S6325405 A JPS6325405 A JP S6325405A
Authority
JP
Japan
Prior art keywords
fuel
combustion
air
net
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2178186A
Other languages
Japanese (ja)
Inventor
Naoyuki Aoki
尚行 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2178186A priority Critical patent/JPS6325405A/en
Publication of JPS6325405A publication Critical patent/JPS6325405A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to improve the combustion efficiency of the boiler and to save a fuel by stirring a combustible mixed gas from a first venturi part and a second venturi part and bringing atomized oil particles into collision with in candescent wire nets. CONSTITUTION:A combustible mixed gas higher than the upper limit of a combustion range prepared by mixing air and a fuel at a first venturi part 1 using combustion air is passed through preheating nets 4 formed by two incandescent wire nets of 500 meshes to preheat the combustible mixed gas to high temperatures. The combustible mixed gas together with a threefold furnace heating net 5 concurrently used as a speed reducing net and a mixing net, are burnt while passing through a furnace heating net 5 concurrently used as a speed reducing net and a mixing net. Thus, since the wire net is thus heated to incandescency, oil particles are reduced to half immediately when they come into collision with wire nets and are vaporized, and therefore have a property equivalent to that of a gaseous fuel. In conclusion, the gaseous fuel has a combustion speed at which combustion is finished instantaneously simultaneously with the ignition, if the mixing ratio of the gaseous fuel and air is within the combustion range. Hence, it is possible to approach the complete combustion.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は主に家庭用給湯器などの小形ボイラーの燃焼の
高効率化に係わり特に燃料の噴霧に従来の様に電磁ポン
プを用いない燃焼装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is mainly concerned with improving the combustion efficiency of small boilers such as domestic water heaters. Regarding equipment.

(従来の技術) 従来のボイラーは別添第2図の様にただ単に電磁ポンプ
で燃料を噴霧し、後方より送風器を用いて燃焼空気を送
りパーナルチップの先端を過ぎてから空気と燃料を混合
せしめ別添第2図2の燃焼筒(炉)で燃焼させているに
過ぎない。
(Prior technology) As shown in attached Figure 2, conventional boilers simply spray fuel with an electromagnetic pump, and then send combustion air from behind using a blower to mix air and fuel after passing the tip of the Parnall tip. It is simply burned in the combustion tube (furnace) shown in Figure 2 of the attachment.

(発明が解決しようとする問題点) その為に燃料と燃焼空気の混合速度か遅く完全燃焼しに
くく完全燃焼する前に燃焼反応が終わってしまう。だか
らと言って送風量を大きくして混合速度を早め様とする
と燃料が吹き飛ばされ連続燃焼出来ず失火してしまう。
(Problem to be solved by the invention) For this reason, the mixing speed of fuel and combustion air is slow, making it difficult to achieve complete combustion, and the combustion reaction ends before complete combustion occurs. However, if you try to increase the air flow rate to increase the mixing speed, the fuel will be blown away and continuous combustion will not be possible, resulting in a misfire.

燃焼反応に於いて燃焼速度をすめるには色々な方法があ
るが従来の燃焼方式では燃焼空気を速く送るしかほかに
方法がない9しかし前述した様にそれには限界があり、
灯油の場合、発熱量が1.1000kcal/kgであ
るのに従来の燃焼方式では5500 k c a、 1
〜7000 k c a l / k g Lか利用出
来ていない本発明は燃焼速度を早くする事に限界が有る
従来の燃焼方式の不都合を排除する為に成された物で燃
焼効率を高め燃料の節約を行う効率の良いボイラーを提
供する事を目的としている。
There are various ways to increase the combustion rate in combustion reactions, but with conventional combustion methods, the only way to do so is to send the combustion air faster.9 However, as mentioned above, there are limits to this.
In the case of kerosene, the calorific value is 1.1000 kcal/kg, but in the conventional combustion method, it is 5500 kcal/kg.
~7000kcal/kgL The present invention was created in order to eliminate the disadvantages of the conventional combustion method, which has a limit in increasing the combustion rate.It increases combustion efficiency and increases the amount of fuel. The aim is to provide efficient boilers that save money.

(問題点を解決する為の手段) 燃焼装置に於いて燃焼速度をいかにして早くするか、と
言う事が燃焼効率のアッフ゛、つまり燃料の節約につな
がる。燃焼室の容積が限られている小形のボイラーに於
いては特にそうである。燃料と空気による燃焼反応に於
ける燃焼速度に関する要因としては、燃焼空気の温度、
着火温度(燃焼を開始させる時の着火温度が高いと燃焼
範囲が広くなる)、可燃性混合気の温度、霧化された燃
料の油粕の大きさ、油粕と燃焼空気の混合速度及び混合
時間、炉内温度(燃焼室内に於ける着火温度を決定する
のは炉壁と火炎からの放射熱である)過剰空気量、など
があげられる。本発明はこれらの要因を利用、解決すべ
く別添第1図に示す手段を講じた燃焼装置である。
(Means for solving the problem) How to increase the combustion rate in a combustion device will lead to an increase in combustion efficiency, which will lead to fuel savings. This is especially true in small boilers where the volume of the combustion chamber is limited. Factors related to the combustion rate in the combustion reaction between fuel and air include the temperature of the combustion air,
Ignition temperature (the higher the ignition temperature when starting combustion, the wider the combustion range), the temperature of the flammable mixture, the size of the atomized fuel scum, the mixing speed and mixing time of the oil scum and combustion air, Examples include furnace temperature (radiant heat from the furnace wall and flame determines the ignition temperature in the combustion chamber), excess air volume, etc. The present invention is a combustion apparatus that utilizes and solves these factors as shown in FIG. 1 attached hereto.

(作 用) 混合気予熱筒及び混合気予熱網の作用としては燃料と混
合させる前に燃焼空気を暖めてやれば良く燃焼するが空
気が膨張し体積が増す事によって空気密度が小さく成り
空気重量が減少し、より正確な完全燃焼から遠ざかる9
しかるにこの物理現象によってそれぞれの時節に於ける
常温の空気で燃焼させる場合でも、燃焼空気を暖めて使
用しても結果的にはほぼ同じであってさほど変わりが無
い。よって燃料と燃焼空気を混合させ混合気に成った状
態で加熱、暖めて燃焼させる、そうする事によってこれ
までの矛盾、つまり空気を暖めてやれば良く燃焼するが
密度が小さくなり空気重量が減少し完全燃焼から離れて
しまう、暖めてもそのままでも結果は同じであると言う
暖める効果を利用出来なかった矛盾を無くず作用である
。減速網兼混合網兼炉内加熱網の作用の内の減速網作用
としては、ベンチュリー効果を利用して燃料を噴霧する
には空気の流速を速くしなければならないがそのま才の
流速では燃焼が吹き消されてし才うので可燃性混合気の
流速を減速し、別添第1図1の第1ベンチュリー部と別
添第1図2の第2ベンチュリー部からの可燃性混合気を
損料し炉内停留時間を長くし完全燃焼に近づける。混合
網としてはベンチュリー部で霧化され吹き飛んで来る油
粕を金網の細かい織り線に衝突させる事によって油粕は
半分と成り燃焼空気との接触面積は2倍となる。しかる
に燃焼空気との混合速度は2倍、混合時間は1/2に短
縮される、がしかしそれ以−Eのメリットとして金網は
高温に赤熱されているので油粕は金網に衝突すると同時
に半分に成りかつ気化してしまう為に気体燃料と同じ性
質を持つ。つまり気体燃料は空気との混合率が燃焼範囲
内であれば着火と同時に瞬間的に燃焼を終える燃焼速度
を持つ為完全燃焼により近づく事が出来る。炉内加熱網
としては可燃性混合気の燃焼範囲は着火する時の着火源
の温度が高いと広く成る性質を有している、連続燃焼す
る燃焼ガスへの着火源は火炎からの伝幡、炉壁と火炎か
らの放射熱が上げられる常に火炎の中に有りかつ炉壁と
接合している金網を炉内に配置しておく事に因って、燃
料を燃焼させ炉内温度を何度まで上げられるかの要因で
ある1、燃料の種類 2、空気比 3、燃焼効率4、燃
力i用?;2気の温度 5、火炎からの放射6、炉壁か
らの伝導。の内の5と6を利用する事になり炉内の高温
維持と可燃性混合気に直接5と6を作用させる事が出来
、炉内の高温維持イコール燃焼範囲の拡大イコール燃焼
速度のアップ イコール完全燃焼により近づくイ:1−
ル燃料の節約につながる。又、実際の燃焼反応に於いて
は理論空気量の統べてか可燃分子に接触し燃焼する事は
不可能で有るから必ず過剰空気が必要で有るが炉内を高
温維持しておく事により燃焼効率が良くなり必要以−に
の過剰空気を必要とせず、それを暖めるロスも無くなり
理論空気量により近い空気量で完全燃焼に近い燃焼を行
う事が出来る。
(Function) The function of the mixture preheating tube and mixture preheating network is that if the combustion air is warmed before being mixed with fuel, it will burn better, but as the air expands and increases in volume, the air density decreases and the air weight decreases. decreases, moving away from more accurate complete combustion9
However, due to this physical phenomenon, even when combustion is performed with air at room temperature at each time of the year, the results are almost the same, and there is not much difference even if the combustion air is heated. Therefore, by mixing the fuel and combustion air and heating the mixture to form a mixture, the mixture is heated and combusted.By doing so, we are able to overcome the contradictions that have existed up until now: if the air is warmed, it will burn better, but its density will decrease and the weight of the air will decrease. This action eliminates the contradiction of not being able to take advantage of the warming effect, which deviates from complete combustion, and the result is the same whether heated or not. The moderating network function of the moderating network, mixing network, and in-furnace heating network is that in order to atomize fuel using the Venturi effect, the flow velocity of the air must be increased, but at its natural flow velocity, combustion will not occur. The flow rate of the flammable air-fuel mixture is reduced and the flammable air-fuel mixture from the first venturi section shown in Figure 1 of Attachment 1 and the second venturi section of Figure 2 of Attachment 1 is reduced. This increases the residence time in the furnace and brings it closer to complete combustion. As a mixing net, the oil sludge that is atomized and blown away by the venturi section collides with the fine woven lines of the wire mesh, thereby reducing the amount of oil sludge by half and doubling the contact area with the combustion air. However, the mixing speed with the combustion air is doubled and the mixing time is shortened to 1/2, but the advantage of -E is that the wire mesh is red-hot to a high temperature, so the oil scum is halved as soon as it collides with the wire mesh. And because it vaporizes, it has the same properties as gaseous fuel. In other words, if the mixture ratio with air is within the combustible range, gaseous fuel has a combustion speed that instantly ends combustion at the same time as ignition, so it can approach complete combustion. As for the in-furnace heating network, the combustion range of a flammable mixture becomes wider when the temperature of the ignition source at the time of ignition is high, and the ignition source for continuously burning combustion gas is transmission from the flame. By arranging a wire mesh inside the furnace that is always inside the flame and connected to the furnace wall, the radiant heat from the furnace wall and flame is raised, which burns the fuel and lowers the temperature inside the furnace. The factors that determine how high it can be raised are: 1. Type of fuel 2. Air ratio 3. Combustion efficiency 4. For fuel i? ;2 Air temperature 5, radiation from the flame 6, conduction from the furnace wall. By using 5 and 6, it is possible to maintain the high temperature inside the furnace and directly act on the flammable mixture. Maintaining the high temperature inside the furnace = expanding the combustion range = increasing the combustion speed A closer to complete combustion: 1-
leads to fuel savings. In addition, in actual combustion reactions, it is impossible to contact and burn combustible molecules due to the theoretical amount of air, so excess air is always required, but by keeping the temperature inside the furnace high, combustion can be achieved. Efficiency is improved, unnecessary excess air is not required, there is no loss in heating it, and combustion can be performed close to complete combustion with an air amount closer to the theoretical air amount.

(実 施 例) 断面形状が別添第1図に示す椙遣である電磁ポンプレス
ボイラー。
(Example) An electromagnetic pumpless boiler with a cross-sectional shape shown in attached Figure 1.

前述した実施例に於いて燃料の噴霧には電磁ポンプの代
わりにベンチクーリー効果を利用するとして説明したが
これは燃料の粘度、気温の関係等で燃料のIIJit霧
に電磁ポンプを用いてもよい。
In the above-mentioned embodiment, it was explained that the bench Cooley effect is used instead of the electromagnetic pump for atomizing the fuel, but depending on the viscosity of the fuel, the temperature, etc., an electromagnetic pump may be used for the IIJit mist of the fuel. .

前々述した実施例に於いて第1ベンチュリー部と第2ベ
ンチュリー部は同じ燃料を使用するとして説明したがこ
れはそれぞれ別の燃料を用いても良い。
In the embodiments previously mentioned, it has been explained that the first venturi section and the second venturi section use the same fuel, but they may use different fuels.

前々前述した実施例に於いては燃料の噴霧にベンチュリ
ー効果を利用するとして説明したがこれは電磁ポンプと
組合せて用いても良い。
In the embodiments previously described, the Venturi effect is used for atomizing the fuel, but this may be used in combination with an electromagnetic pump.

(発明の効果) 本発明に於ける燃焼方式は従来の燃焼方式の主要部品で
ある電磁ポンプを省略する事が出来、構造が遥かに簡単
に成る。よって故障も少なくなるし、燃料の節約Gこも
なる。
(Effects of the Invention) The combustion method according to the present invention can omit the electromagnetic pump, which is a main component of the conventional combustion method, and the structure becomes much simpler. This results in fewer breakdowns and fuel savings.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の断面図である。 第2図は従来の燃焼方式の断面図である9第1図。 1−・・第1ベンチュリー部。 2・・・第2ベンチュ
リー部。 3・・・混合気予熱筒。 4・・・混合気予
熱網5・・・減速網兼混合網兼炉内加熱網。 6・・・燃料パイプ。 7・・・混合気予熱綱取付はス
テー。 8・・・予熱筒取付はステー。 −矢・・・送風器から送られて来る燃焼空気。 第2図 1・・・電磁ポンプ92・・・燃焼筒(炉)。 3・・・バーナーチップ。 −〉・・・送風器から送ら
れて来る燃焼空気。
FIG. 1 is a cross-sectional view of the present invention. FIG. 2 is a cross-sectional view of a conventional combustion system. 1-...1st venturi section. 2...Second venturi section. 3...Mixture preheating tube. 4... Mixture preheating net 5... Speed reduction net, mixing net, and furnace heating net. 6...Fuel pipe. 7...Mixture preheating cable installation stay. 8... Stay for preheating cylinder installation. -Arrow: Combustion air sent from the blower. Fig. 2 1...Electromagnetic pump 92...Combustion cylinder (furnace). 3...Burner chip. −〉・・・Combustion air sent from the blower.

Claims (1)

【特許請求の範囲】  燃料の噴霧に従来の様に電磁ポンプを用いず燃料を燃
焼させる際にボイラー自体で必要とする燃焼空気を用い
てベンチュリー効果を起引し、空気と燃料を混ぜて出来
た燃焼範囲上限以上の可燃性混合気を2枚の赤熱された
500メッシューの金網で出来た予熱網別添第1図4に
通過させ高温に予熱した後に別添第1図2の第2ベンチ
ュリー部に90°の角度で設けた4つの混合気噴出口よ
り噴出される混合気と共に3重に成っている別添第1図
5の減速網兼混合網兼炉内加熱網を通過させながら燃焼
させる事を特徴とするボイラー。 {実施態様}前記電磁ポンプレスボイラー は混合気予熱網を2枚とし、減速網兼混合網兼炉内加熱
網を3枚として説明したが使用燃料によって混合気予熱
網は1枚から50枚までの間の任意の枚数で、減速網兼
混合網兼炉内加熱網も1枚から50枚までの間の任意の
枚数でそれぞれ組合せて使用する事を特徴とする特許請
求の範囲第1項記載の電磁ポンプレスボイラー。 前々記電磁ポンプレスボイラーは第2ベンチュリー部の
燃料噴出口を90°の角度で4ヵ所として説明したがこ
れは1ヵ所から64ヵ所までの間の任意の値で選ぶ事を
特徴とする特許請求の範囲第1項記載の電磁ポンプレス
ボイラー。 前々前記電磁ポンプレスボイラーは混合気予熱網を50
0メッシューとして説明したがこれは使用燃料によって
10メッシューから1000メッシューまでの間の任意
の値の金網を選んで使用する事を特徴とする特許請求の
範囲第1項記載の電磁ポンプレスボイラー。
[Claims] The venturi effect is created by using the combustion air required by the boiler itself when burning fuel, instead of using an electromagnetic pump as in the past for fuel spray, and by mixing air and fuel. The flammable air-fuel mixture, which is above the upper limit of the flammability range, is passed through a preheating mesh made of two red-hot 500 mesh wire meshes, and after being preheated to a high temperature, it passes through the second venturi shown in Attachment 1, Figure 2. The mixture is combusted as it passes through the triple speed reduction network/mixing network/in-furnace heating network shown in Figure 5 of Attachment 1 along with the mixture ejected from four air-fuel mixture jets installed at 90° angles in the section. A boiler characterized by: {Embodiment} The electromagnetic pumpless boiler was described as having two air-fuel mixture preheating nets and three speed reduction nets/mixing nets/furnace heating nets, but the number of air-fuel mixture preheating nets may range from 1 to 50 depending on the fuel used. Claim 1, characterized in that the speed reduction net, the mixing net, and the furnace heating net are used in combination in any number between 1 and 50. electromagnetic pumpless boiler. The aforementioned electromagnetic pumpless boiler was described as having four fuel injection ports at an angle of 90° in the second venturi section, but this patent is characterized in that the fuel injection ports can be selected at any value between 1 and 64 locations. An electromagnetic pumpless boiler according to claim 1. Previously, the electromagnetic pumpless boiler had a mixture preheating network of 50
2. The electromagnetic pumpless boiler according to claim 1, wherein, although the wire mesh has been described as 0 mesh, a wire mesh having an arbitrary value between 10 mesh and 1000 mesh may be selected and used depending on the fuel used.
JP2178186A 1986-02-03 1986-02-03 Electromagnetic 'pumpless' boiler Pending JPS6325405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2178186A JPS6325405A (en) 1986-02-03 1986-02-03 Electromagnetic 'pumpless' boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2178186A JPS6325405A (en) 1986-02-03 1986-02-03 Electromagnetic 'pumpless' boiler

Publications (1)

Publication Number Publication Date
JPS6325405A true JPS6325405A (en) 1988-02-02

Family

ID=12064603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2178186A Pending JPS6325405A (en) 1986-02-03 1986-02-03 Electromagnetic 'pumpless' boiler

Country Status (1)

Country Link
JP (1) JPS6325405A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100375169C (en) * 1997-02-13 2008-03-12 三星电子株式会社 Compatible different thickness optical recording medium light picking device
CN100403418C (en) * 1996-08-29 2008-07-16 三星电子株式会社 Objective lens compatible with optical recording medium with different thickness

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100403418C (en) * 1996-08-29 2008-07-16 三星电子株式会社 Objective lens compatible with optical recording medium with different thickness
CN100375169C (en) * 1997-02-13 2008-03-12 三星电子株式会社 Compatible different thickness optical recording medium light picking device
CN100380477C (en) * 1997-02-13 2008-04-09 三星电子株式会社 Optical pick device capable of being compatible with different thickness optical recording medium
CN100380482C (en) * 1997-02-13 2008-04-09 三星电子株式会社 Object lens with compatibility of optical recording media with different thickness
CN100458938C (en) * 1997-02-13 2009-02-04 三星电子株式会社 Optical pick-up device with compatibility of optical recording media with different thickness

Similar Documents

Publication Publication Date Title
US5542840A (en) Burner for combusting gas and/or liquid fuel with low NOx production
US3890088A (en) Apparatus for reducing formation of oxides of nitrogen in combustion processes
US4262482A (en) Apparatus for the premixed gas phase combustion of liquid fuels
CN107420892A (en) A kind of outer circulation smoke backflow formula all-premixing burner
US4728282A (en) Method and apparatus for conducting a substantially isothermal combustion process in a combustor
DE69520136D1 (en) Raw gas burners and process for burning oxygen-containing components in a process gas
US6718773B2 (en) Method for igniting a thermal turbomachine
US4003691A (en) Recirculating burner
US3652194A (en) Blue-flame liquid-fuel burner process, apparatus and utilization systems
US4721454A (en) Method and apparatus for burning nitrogen-containing fuels
US4218211A (en) Energy recovery system
US4927349A (en) Method for burning nitrogen-containing fuels
EP0073265A1 (en) Method and apparatus for burning a fuel
USRE24682E (en) johnson
JPS6325405A (en) Electromagnetic 'pumpless' boiler
CN106051817A (en) Ignition nozzle for heat accumulation burner and burner
US4900246A (en) Apparatus for burning nitrogen-containing fuels
JPS6021281B2 (en) Low NOx burner for high temperature firing furnace
CN220229146U (en) Ultralow nitrogen combustor for crude oil heating furnace
KR900003227B1 (en) Heating device in duct burner
SU1686260A1 (en) Burner
RU2133411C1 (en) Fuel-air burner of gas-turbine engine combustion chamber
SU1028948A1 (en) Fire-box
SU1179023A1 (en) Gas burner
SU1626046A2 (en) Gas and fuel oil hearth burner