JPS63253103A - Steam turbine control device - Google Patents

Steam turbine control device

Info

Publication number
JPS63253103A
JPS63253103A JP8480687A JP8480687A JPS63253103A JP S63253103 A JPS63253103 A JP S63253103A JP 8480687 A JP8480687 A JP 8480687A JP 8480687 A JP8480687 A JP 8480687A JP S63253103 A JPS63253103 A JP S63253103A
Authority
JP
Japan
Prior art keywords
signal
main steam
pressure
control
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8480687A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Tsuchida
義之 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8480687A priority Critical patent/JPS63253103A/en
Publication of JPS63253103A publication Critical patent/JPS63253103A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

PURPOSE:To simultaneously control speed and extraction pressure, or main steam pressure, and simultaneously control back pressure and a main steam system, or an extraction pressure system by providing a main steam control system and an extraction pressure system besides a speed control system. CONSTITUTION:A main steam pressure control signal calculated from a main steam pressure analog signal 21 is compared with a limiting value from a main steam pressure limiter 41 through a lower value precedence circuit 42, and a main steam pressure control signal (r) is outputted from the circuit 42. Then, an extraction pressure control signal (o) calculated from an extraction pressure signal 18 is compared with the signal (r) through a high value precedence circuit 43, and a higher value is outputted as a main steam pressure driving signal (s). On the other hand, a lower value is selected out of respective fixed conversion signals of a back pressure signal 19, a frequency analog signal (f), a signal from a load limiter 34, and a main steam control valve driving signal (t) is obtained. Adding the main steam control valve driving signal (t) to the main steam pressure driving signal (s), an oil cylinder 15 of a main steam control valve is driven. Amplifying the main steam pressure driving signal (s) by means of an amplifier 40, an oil cylinder 16 of an extraction control valve is driven.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は蒸気タービン制御装置に関し、特に自家発プラ
ントに適用される抽気背圧タービン又は抽気タービン制
御する場合に適用した蒸気タービン制御装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a steam turbine control device, and particularly to a steam turbine control device applied to an extraction back pressure turbine or an extraction turbine applied to a private power plant. The present invention relates to a turbine control device.

(従来の技術) 最近の自家発プラント、特に製紙プラントにおいてはプ
ラントから生じる廃熱を利用する薬品回収ボイラー等か
らの発生蒸気を有効利用するための発電プラントが多く
なってきている。薬品回収ボイラー等により発生した蒸
気は、温度制御はされているが、圧力制御系の応答に一
次遅れを有して、蒸気タービン制御の追従性上問題があ
り1発電プラントに最適な圧力制御とはいかず、一般に
蒸気タービンの制御装置側にボイラーの圧力制御のアナ
ログ信号をとりこみ、タービン制御の機能に委ねること
が多く、よりタービン制御を複雑にしている。
(Prior Art) Recently, in private power generation plants, especially paper manufacturing plants, there have been an increasing number of power generation plants that effectively utilize steam generated from chemical recovery boilers and the like that utilize waste heat generated from the plants. Although the temperature of the steam generated by chemical recovery boilers is controlled, there is a first-order lag in the response of the pressure control system, which causes problems in the followability of steam turbine control. Instead, analog signals for boiler pressure control are generally taken into the steam turbine control device and left to the turbine control function, making turbine control even more complex.

従来このような蒸気タービンを制御する場合、蒸気ター
ビン発電機の回転数制御を外部の電子系統の周波数と同
期させて実行させるようにすることが多く、蒸気タービ
ンにおいて蒸圧タービン入力蒸気圧力をボイラー側から
の発気蒸気圧力を制御しようとする時には、回転数制御
を行なっていない状態でなければ行なうことができない
ようになされていた。
Conventionally, when controlling such a steam turbine, the rotation speed control of the steam turbine generator was often performed in synchronization with the frequency of an external electronic system, and the steam turbine input steam pressure was controlled by the boiler. When trying to control the steam pressure emitted from the side, it was possible to do so only when the rotational speed was controlled.

このような従来の蒸気タービン制御装置としてボイラー
及び蒸気タービン発電機との機能を第2図に示す。1は
ボイラー、2は主蒸気圧力検出器、3は主蒸気止め弁、
4は高圧タービン5への蒸気流量を制御する蒸気加減弁
、6はタービン抽気圧力及び低圧タービン7への蒸気流
量を制御する抽気加減弁、8は蒸気タービンのロータと
接続した発電機、9は速度検出用歯車、10は速度検出
用歯車9に対して回転数に応じて回転数を検出する電磁
ピックアップで、タービン回転数速度を周波数信号用と
して検出する。11は周波数/電圧変換器(以下F/V
変換器と略す)で検出した周波数信号を周波数アナログ
信号fに変換する。
FIG. 2 shows the functions of such a conventional steam turbine control device including a boiler and a steam turbine generator. 1 is a boiler, 2 is a main steam pressure detector, 3 is a main steam stop valve,
4 is a steam control valve that controls the steam flow rate to the high-pressure turbine 5; 6 is an extraction control valve that controls the turbine bleed pressure and the steam flow rate to the low-pressure turbine 7; 8 is a generator connected to the rotor of the steam turbine; 9 is a generator connected to the rotor of the steam turbine; The speed detection gear 10 is an electromagnetic pickup that detects the rotation speed of the speed detection gear 9 according to the rotation speed, and detects the turbine rotation speed as a frequency signal. 11 is a frequency/voltage converter (hereinafter referred to as F/V
converter) converts the detected frequency signal into a frequency analog signal f.

12は高圧タービン5からの抽気圧力を検出する抽気圧
力検出器で抽気圧力信号18に変換する。13は低圧タ
ービン7からの背圧を検出する背圧検出器で背圧信号1
9に変換する。ボイラー1からの主蒸気圧力を主蒸気圧
力検出器2にて検出して、主蒸気圧力検出器14にて主
蒸気圧力アナログ信号21に変換する。周波数アナログ
信号fと抽気圧力信号18と背圧信号19と主蒸気圧力
アナログ信号灯を蒸気タービン制御装置20に入力する
。該蒸気タービン制御装置20から蒸気加減弁制御信号
22と、抽気加減弁制御信号23を各々蒸気加減弁油筒
15.抽気加減弁油筒16を制御し、蒸気加減弁と抽気
加減弁を駆動する。
Reference numeral 12 denotes a bleed pressure detector that detects the bleed pressure from the high pressure turbine 5 and converts it into a bleed pressure signal 18. 13 is a back pressure detector that detects back pressure from the low pressure turbine 7, and back pressure signal 1
Convert to 9. The main steam pressure from the boiler 1 is detected by the main steam pressure detector 2 and converted into a main steam pressure analog signal 21 by the main steam pressure detector 14. The frequency analog signal f, the bleed pressure signal 18, the back pressure signal 19, and the main steam pressure analog signal lamp are input to the steam turbine control device 20. The steam control valve control signal 22 and the bleed air control valve control signal 23 are sent from the steam turbine control device 20 to the steam control valve oil cylinder 15. Controls the bleed air control valve oil cylinder 16 and drives the steam control valve and the bleed air control valve.

第3図は第2図の蒸気タービン制御装置のブロック図で
ある。
FIG. 3 is a block diagram of the steam turbine control device of FIG. 2.

背圧信号19は背圧設定器22と比較器26で比較し、
該比較した背圧偏差信号gを背圧制御回路27にて背圧
調定率にそった背圧制御信号iとする。
The back pressure signal 19 is compared with a back pressure setting device 22 and a comparator 26,
The compared back pressure deviation signal g is made into a back pressure control signal i in accordance with the back pressure adjustment rate in the back pressure control circuit 27.

抽気圧力信号18は抽気圧力設定器23と比較器27で
比較して抽気圧力偏差信号30を出力する6周波数アナ
ログ信号fは速度設定器24と比較器31で比較し、該
比較した速度偏差信号りを速度制御回路31に入力して
、速度偏差信号りを速度調定率にそった速度制御信号j
とする。主蒸気圧力アナログ信号21は主蒸気圧力設定
器25と比較器32で比較し。
The bleed pressure signal 18 is compared with a bleed pressure setter 23 and a comparator 27 to output a bleed pressure deviation signal 30. The 6-frequency analog signal f is compared with a speed setter 24 and a comparator 31, and the compared speed deviation signal is input into the speed control circuit 31, and the speed deviation signal is converted into a speed control signal j that follows the speed regulation rate.
shall be. The main steam pressure analog signal 21 is compared with the main steam pressure setting device 25 by a comparator 32.

該比較した主蒸気圧力偏差信号kを主蒸気圧力制御回路
33にて、主蒸気圧力調定率にそった主蒸気圧力制御信
号Ωとする。
The compared main steam pressure deviation signal k is used as a main steam pressure control signal Ω in line with the main steam pressure adjustment rate in the main steam pressure control circuit 33.

該各々の背圧信号i、速度制御信号j、主蒸気圧力制御
信号aは低値優先回路(LVG)28により各々の低い
値が選択演算し速度制御信号mとして出力される。速度
制御信号mは主蒸気加減弁制御回路35に入力され、主
蒸気加減弁制御回路35は負荷制限器制御回路34との
信号を比較し、低値優先された主蒸気圧力信号nを出力
する。主蒸気圧力信号nと抽気圧力制御信号0とを加算
器36にて加算し、その各々の主蒸気圧力信号nと抽気
圧制御信号0を加算して増巾器37にて主蒸気加減弁制
御信号を増巾して主蒸気加減弁油筒15を駆動して、主
蒸気加減弁4を制御してボイラー1からの蒸気量を制御
し、高圧タービンを駆動回転する。
The respective lower values of the back pressure signal i, speed control signal j, and main steam pressure control signal a are selectively calculated by a low value priority circuit (LVG) 28 and outputted as the speed control signal m. The speed control signal m is input to the main steam regulator control circuit 35, and the main steam regulator control circuit 35 compares the signal with the load limiter control circuit 34 and outputs a main steam pressure signal n with priority given to the lower value. . The adder 36 adds the main steam pressure signal n and the bleed pressure control signal 0, and the main steam pressure signal n and the bleed pressure control signal 0 are added together, and the amplifier 37 controls the main steam regulating valve. The signal is amplified to drive the main steam control valve oil cylinder 15 to control the main steam control valve 4 to control the amount of steam from the boiler 1 and drive and rotate the high pressure turbine.

一方、抽気加減弁への制御は、抽気圧力偏差信号30を
抽気圧力制御回路38に印加し、抽気圧力調定率にそっ
た抽気圧力制御信号に変換し、抽気圧力制御回路39と
の比較演算した抽気圧制御偏差信号を抽気圧力制御信号
0として加算器39に入力し、先の低値優先された背圧
制御信号i、速度制御信号j、主蒸気圧力制御信号0の
うち、低い値が出力される。
On the other hand, the control to the bleed air adjustment valve is performed by applying the bleed pressure deviation signal 30 to the bleed pressure control circuit 38, converting it into a bleed pressure control signal in accordance with the bleed pressure adjustment rate, and performing a comparison calculation with the bleed pressure control circuit 39. The bleed pressure control deviation signal is input to the adder 39 as the bleed pressure control signal 0, and among the back pressure control signal i, speed control signal j, and main steam pressure control signal 0 given priority to the previous low value, the lower value is output. be done.

速度制御信号mが加算器39にて出力され、増巾器40
にて抽気加減弁制御信号を増巾して抽気加減弁油筒16
を制御する。
The speed control signal m is outputted by the adder 39, and the amplifier 40
The width of the bleed air adjustment valve control signal is increased by the bleed air adjustment valve oil cylinder 16.
control.

このような蒸気タービン制御装置にて制御し、蒸気ター
ビンを運転制御する場合に外部の電力系統の周波数と同
期することが必要な場合のみならず、蒸気タービン発電
機が所内単独運転が要求される場合がある。
When controlling the operation of a steam turbine using such a steam turbine control device, it is not only necessary to synchronize the frequency of the external power system, but also when the steam turbine generator is required to operate independently within the station. There are cases.

(発明が解決しようとする問題点) しかし、第3図に示すように、背圧制御信号i。(Problem to be solved by the invention) However, as shown in FIG. 3, the backpressure control signal i.

速度制御信号j、主蒸気圧力制御信号Ωが全て低値優先
回路に接続されていることにより、そのうちの1つの信
号を低値優先するために、3つの制御信号のうち1つの
制御信号を取り出すことになるので、速度制御と主蒸気
圧力制御又は背圧制御と速度制御、速度制御と背圧制御
を同時に行なうことは困難である。
Since the speed control signal j and the main steam pressure control signal Ω are all connected to the low value priority circuit, one of the three control signals is extracted in order to give low value priority to one of the signals. Therefore, it is difficult to simultaneously perform speed control and main steam pressure control, back pressure control and speed control, or speed control and back pressure control.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は速度制御系とは別に主蒸気圧力制御系と抽気圧
力制御系を設けることにより、速度制御と抽気圧力又は
主蒸気圧力を同時に制御が行なえると共に、背圧制御と
主蒸気系又は抽気圧力制御系をも同時に制御を行ない、
かつタービン制御系の最適制御を行なうものである。
(Means for Solving the Problems) The present invention provides a main steam pressure control system and a bleed pressure control system separately from a speed control system, so that speed control and bleed pressure or main steam pressure can be controlled simultaneously. , simultaneously controlling the back pressure control and the main steam system or extraction pressure control system,
It also performs optimal control of the turbine control system.

(作  用) 本発明は速度制御に関係なく、かつタービン制御に影響
を与えることなく、主蒸気圧力制御又は背圧制御が実行
でき、かつ所内単独運転時においても、主蒸気圧力制御
かつ背圧制御が行なえる。
(Function) The present invention can perform main steam pressure control or back pressure control regardless of speed control and without affecting turbine control, and can perform main steam pressure control and back pressure control even during isolated operation within a station. Can be controlled.

(実 施 例) 第1図は本発明の実施例を示すブロック図であり、第3
図との同一部分又は同一機能については同一符号を符し
ている。ボイラー1からの主蒸気圧力を主蒸気圧力検出
器により、主蒸気圧力変換器を通して、主蒸気圧力を電
気信号に変換した主蒸気圧力アナログ信号21をとり出
し、該主蒸気圧゛カアナログ21を主蒸気圧力検出器2
5と比較器32にて設定値と比較し、該比較器32が3
の主蒸気圧力偏差信号Qと主蒸気圧力制御回路48にて
主蒸気圧力調定率に従って演算された主蒸気圧力制御信
号Rに変換され、主蒸気圧力制限器41からの制限値と
低値優先回路42にて比較され、低い値の信号が出力さ
れる。
(Embodiment) FIG. 1 is a block diagram showing an embodiment of the present invention.
The same parts or functions as those in the figures are designated by the same reference numerals. The main steam pressure from the boiler 1 is detected by the main steam pressure detector, and the main steam pressure analog signal 21 which is converted from the main steam pressure into an electrical signal is taken out through the main steam pressure converter. Steam pressure detector 2
5 and the set value in the comparator 32, and the comparator 32
The main steam pressure deviation signal Q is converted into the main steam pressure control signal R calculated in accordance with the main steam pressure adjustment rate by the main steam pressure control circuit 48, and the limit value from the main steam pressure limiter 41 and the low value priority circuit are converted. The signals are compared at 42, and a signal with a lower value is output.

該低値優先回路42にて出力される低値主蒸気圧力制御
信号rは抽気圧力制御回路38にて抽気圧力調定率と抽
気圧力制限回路によって制御され、演算された抽気圧力
制御信号0を高値優先回路43にて比較し、抽気圧力制
御信号0と主蒸気圧力制御回路信号とを高値の方が値が
主蒸気圧力駆動信号Sとして加算器39に、背圧信号1
9と周波数アナログ信号fとを比較して、該低値の蒸気
加減弁駆動信号tが定数回路45を通して加算され、増
巾器40にて増巾して、抽気加減弁制御信号Uを出力し
て抽気加減弁油筒16を駆動する。
The low value main steam pressure control signal r outputted from the low value priority circuit 42 is controlled by the bleed pressure adjustment rate and the bleed pressure limiting circuit in the bleed pressure control circuit 38, and the calculated bleed pressure control signal 0 is set to a high value. The priority circuit 43 compares the bleed pressure control signal 0 and the main steam pressure control circuit signal, and the higher value is set as the main steam pressure drive signal S and is sent to the adder 39 as the back pressure signal 1.
9 and the frequency analog signal f, the steam control valve drive signal t having the lowest value is added through a constant circuit 45, amplified by an amplifier 40, and outputted as a bleed control valve control signal U. to drive the bleed air control valve oil cylinder 16.

又、背圧信号19は背圧制御信号iと周波数アナログ信
号fの速度制御信号jは、低値優先回路46にて低い値
が出力されて、速度制御信号m−1として出力され、負
荷制限器34からの負荷制限信号と速度制御信号n−1
を低値優先回路47にて比較演算して低い値を主蒸気加
減弁駆動信号tとして、先の主蒸気圧力駆動信号Sを定
数回路44を通して加算器36にて加算して、増巾器3
7を通して主蒸気加減弁制御信号Vを出力して主蒸気加
減弁油筒15を駆動させる6 〔発明の効果〕 このように本発明の構成において、主蒸気圧力が高くな
ると、主蒸気圧力設定器25にて設定した設定値と比較
して、偏差信号が主蒸気圧力側に大きくなり、それによ
り蒸気加減弁油筒へ開信号を出して主蒸気流量が出ると
主蒸気圧力が低下してくる。主蒸気圧力が低下してくる
と、抽気圧力信号18側の制御により抽気加減弁油筒1
6への抽気加減弁制御信号が閉側に動作して、高圧ター
ビン5で増加した出力を抽気加減弁5を閉方向に制御す
ることにより、高圧タービン5と低圧タービン7の主蒸
気圧力を常に一定に保とうとする。
Further, the back pressure signal 19 is a back pressure control signal i, and the speed control signal j of the frequency analog signal f is outputted as a low value by a low value priority circuit 46, and is output as a speed control signal m-1, and is used for load limiting. Load limit signal and speed control signal n-1 from device 34
The low value priority circuit 47 compares and calculates the lower value as the main steam control valve drive signal t, and the previous main steam pressure drive signal S is added through the constant circuit 44 in the adder 36, and the amplifier 3
7 to output the main steam regulating valve control signal V to drive the main steam regulating valve oil cylinder 15. [Effects of the Invention] As described above, in the configuration of the present invention, when the main steam pressure becomes high, the main steam pressure setting device Compared to the set value set in step 25, the deviation signal becomes larger on the main steam pressure side, which causes an open signal to be sent to the steam control valve oil cylinder and the main steam flow rate is output, causing the main steam pressure to decrease. . When the main steam pressure decreases, the bleed air adjustment valve oil cylinder 1 is controlled by the bleed air pressure signal 18 side.
The bleed control valve control signal to 6 is operated to the closing side, and the output increased by the high pressure turbine 5 is controlled to close the bleed control valve 5, thereby maintaining the main steam pressure of the high pressure turbine 5 and the low pressure turbine 7 at all times. Try to keep it constant.

よって1本発明は主蒸気圧力制御系を設けることにより
、速度制御や背圧制御、抽気圧力制御とは関係なく、常
に主蒸気圧力を一定に制御することができ、安定したタ
ービン制御が行なえる。
Therefore, 1. By providing a main steam pressure control system, the present invention can always control the main steam pressure to a constant level regardless of speed control, back pressure control, and extraction pressure control, and stable turbine control can be performed. .

更に回転周波数が外部の電力系統と同期させて運転して
いる場合も、常に周波数アナログ信号に関係なく、背圧
信号、主蒸気圧力信号により同時に安定した制御を行な
うことができる。
Furthermore, even when operating with the rotational frequency synchronized with an external power system, stable control can always be performed simultaneously using the back pressure signal and the main steam pressure signal, regardless of the frequency analog signal.

本発明の蒸気タービン制御装置はディジタル論理により
回路構成ができることは勿論、アナログ回路構成により
、安定した抽気背圧タービン制御ができ、薬品回収ボイ
ラーとしての発生蒸気を有効に利用できる蒸気タービン
制御装置である。
The steam turbine control device of the present invention not only has a circuit configuration using digital logic, but also has an analog circuit configuration that allows for stable extraction back pressure turbine control and makes it possible to effectively utilize the steam generated as a chemical recovery boiler. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示すブロック図、第2図は従
来のボイラー及び蒸気タービン発電機との機能を示すブ
ロック図、第3図は従来の蒸気り−ビン制御装置のブロ
ック図である。 1・・ボイラ      2・・・主蒸気圧力検出器3
・・・主蒸気止め弁   4・・・蒸気加減弁5・・・
高圧タービン   6・τ・抽気加減弁7・・・低圧タ
ービン   8・・・発電機9・・・速度検出用歯車 
 10・・・電磁ピックアップ11・・・F/V変換器
   12・・・抽気圧力検出器13・・・背圧検出器
    14・・・主蒸気圧力変換器15・・・蒸気加
減弁油筒  16・・・抽気加減弁油筒17・・・ター
ビン回転数周波数信号 18・・・抽気圧力信号   19・・・背圧信号20
・・・蒸気タービン制御装置 20−1・・・蒸気タービン制御装置 21・・・主蒸気アナログ信号 22・・・背圧設定器    23・・・抽気圧力設定
器24・・・速度設定器    25・・・主蒸気圧力
設定器27・・・背圧制御回路   31−1・・・速
度制御回路38・・・抽気圧力制御回路 42・・・低
値優先回路43・・・高値優先回路   44・・・定
数回路45・・・定数回路     48・・・抽気圧
力制限回路48−1・・・主蒸気圧力制御回路 47・・・低値優先回路   36・・・加算器39・
・・加算器      37・・・増巾器40・・・増
巾器 代理人 弁理士 則 近 憲 佑 同  第子丸 健 第  2  図
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a block diagram showing the function of a conventional boiler and a steam turbine generator, and Fig. 3 is a block diagram of a conventional steam tank control device. be. 1... Boiler 2... Main steam pressure detector 3
...Main steam stop valve 4...Steam control valve 5...
High pressure turbine 6, τ, extraction control valve 7...Low pressure turbine 8...Generator 9...Speed detection gear
10... Electromagnetic pickup 11... F/V converter 12... Bleed pressure detector 13... Back pressure detector 14... Main steam pressure converter 15... Steam control valve oil cylinder 16 ...Bleed air adjustment valve oil cylinder 17...Turbine rotation speed frequency signal 18...Bleed air pressure signal 19...Back pressure signal 20
... Steam turbine control device 20-1 ... Steam turbine control device 21 ... Main steam analog signal 22 ... Back pressure setting device 23 ... Extraction pressure setting device 24 ... Speed setting device 25. ... Main steam pressure setting device 27 ... Back pressure control circuit 31-1 ... Speed control circuit 38 ... Bleed pressure control circuit 42 ... Low value priority circuit 43 ... High value priority circuit 44 ...・Constant circuit 45...Constant circuit 48...Bleed pressure limiting circuit 48-1...Main steam pressure control circuit 47...Low value priority circuit 36...Adder 39・
... Adder 37 ... Multiplier 40 ... Multiplier agent Patent attorney Nori Chika Nori Yudo Ken Daishimaru Figure 2

Claims (1)

【特許請求の範囲】[Claims] 背圧信号と回転数アナログ信号と抽気圧力信号と主蒸気
圧力アナログ信号とを入力する蒸気タービン制御装置の
抽気背圧タービン又は抽気タービンの蒸気タービン制御
装置において、抽気圧力信号からの抽気圧力制御信号と
主蒸気圧力アナログ信号の主蒸気制御信号とを高値優先
した主蒸気駆動信号と、背圧制御信号、周波数アナログ
信号の速度制御信号を低値優先回路を通した主蒸気加減
弁駆動信号により、該主蒸気駆動信号、主蒸気加減弁駆
動信号による両制御系を速度制御回路とを加算して、抽
気加減弁と主蒸気加減弁を制御することを特徴とする蒸
気タービン制御装置。
In the steam turbine control device of the steam turbine control device of the steam turbine control device, which inputs the back pressure signal, the rotation speed analog signal, the extracted pressure signal, and the main steam pressure analog signal, the extracted pressure control signal from the extracted pressure signal is input. The main steam control signal of the main steam pressure analog signal is given priority to the high value, and the back pressure control signal and the speed control signal of the frequency analog signal are passed through the main steam control valve drive signal through the low value priority circuit. A steam turbine control device characterized in that the bleed air control valve and the main steam control valve are controlled by adding both control systems based on the main steam drive signal and the main steam control valve drive signal to a speed control circuit.
JP8480687A 1987-04-08 1987-04-08 Steam turbine control device Pending JPS63253103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8480687A JPS63253103A (en) 1987-04-08 1987-04-08 Steam turbine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8480687A JPS63253103A (en) 1987-04-08 1987-04-08 Steam turbine control device

Publications (1)

Publication Number Publication Date
JPS63253103A true JPS63253103A (en) 1988-10-20

Family

ID=13840958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8480687A Pending JPS63253103A (en) 1987-04-08 1987-04-08 Steam turbine control device

Country Status (1)

Country Link
JP (1) JPS63253103A (en)

Similar Documents

Publication Publication Date Title
US4120159A (en) Steam turbine control system and method of controlling the ratio of steam flow between under full-arc admission mode and under partial-arc admission mode
JPS6158644B2 (en)
CA1082057A (en) Boiler feed water pump control systems
US4853552A (en) Steam turbine control with megawatt feedback
GB1267590A (en) Automatic extraction and exhaust pressure type turbine control system
JPS63253103A (en) Steam turbine control device
JPS607169B2 (en) Turbine control device for driving water pump
JP2578328B2 (en) Output control method for back pressure turbine generator
JPS63140301A (en) Electric final control element controller
JP2749123B2 (en) Power plant control method and device
JPS59115406A (en) Load controller of composite cycle power generating plant
GB2176248A (en) Turbine control
JPH059603B2 (en)
JPH059604B2 (en)
JPS6039843B2 (en) steam turbine control device
JPS5985404A (en) Fuel flow-rate controller for combined type power generation apparatus
JPS6115244B2 (en)
US3939660A (en) Acceleration control arrangement for turbine system, especially for HTGR power plant
JPH02201003A (en) Electric-hydraulic governor apparatus
JPS6153527B2 (en)
JP2659779B2 (en) Boiler feedwater flow control device
JPS63212706A (en) Method for operating blow-off valve of geothermal power plant
JPH0333889B2 (en)
JPS5987518A (en) Water level control device
JPH0331882B2 (en)