JPS63252553A - Classification of superconductor fine particle - Google Patents

Classification of superconductor fine particle

Info

Publication number
JPS63252553A
JPS63252553A JP62087028A JP8702887A JPS63252553A JP S63252553 A JPS63252553 A JP S63252553A JP 62087028 A JP62087028 A JP 62087028A JP 8702887 A JP8702887 A JP 8702887A JP S63252553 A JPS63252553 A JP S63252553A
Authority
JP
Japan
Prior art keywords
superconductor
fine particles
particle
magnetic field
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62087028A
Other languages
Japanese (ja)
Inventor
Masatake Akaike
正剛 赤池
Keisuke Yamamoto
敬介 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62087028A priority Critical patent/JPS63252553A/en
Publication of JPS63252553A publication Critical patent/JPS63252553A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/021Separation using Meissner effect, i.e. deflection of superconductive particles in a magnetic field

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To easily perform beneficiation or classification under vacuum, by applying a magnetic field to powder containing a superconductor fine particle and floating the superconductor fine particle by Meissner effect. CONSTITUTION:A mixture consisting of superconductor particle 1 having a particle size of about 0.1mum or more, a superconductor fine particle 2 having a particle size of below about 0.1mum and other impurity fine particle 3 is charged into the chamber 4a of a stage 4 at the temp. allowing the superconductor particle to show superconductivity under vacuum. Next, when a DC current is applied to a conductor 6, DC magnetic field is generated on the stage 4 and only the superconductor fine particle 1 having a particle having a smaller particle size reaches a higher position. In this stage, the stage 4 is horizontally moved in the direction shown by the arrow by a pulse motor 8 and respective fine particle are allotted to chambers 4a-4c by partition plates 13 and the current to the conductor 6 is cut off to allow the floated fine particles to fall in the chambers concerned.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超電導体、常電導体、絶縁体等からなる微粒
子の混合物の中から超電導体微粒子のみを選鉱する方法
、更には異なる粒径の超電導体微粒子の混合物の中から
、ある特定範囲の粒径の超電導体微粒子を分級する方法
に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a method for beneficiation of only superconductor fine particles from a mixture of fine particles consisting of superconductors, normal conductors, insulators, etc. The present invention relates to a method for classifying superconductor fine particles having a particle size within a certain range from a mixture of superconductor fine particles.

(従来の技術〕 近年、セラミックス材料をある一定の組成で焼結するこ
とにより、比較的室温に近い低温において超電導性を示
す焼結体が得られることが見い出された。
(Prior Art) In recent years, it has been discovered that by sintering a ceramic material with a certain composition, a sintered body exhibiting superconductivity at a low temperature relatively close to room temperature can be obtained.

〔発明が解決しようとする問題点) しかし、上述のようにして得られた焼結体はその全てが
超電導性を示すのではなく、常電導体または絶縁体など
の不純物を含むこともあり、このような不純物を選択的
に除去することは困難であった。
[Problems to be Solved by the Invention] However, not all of the sintered bodies obtained as described above exhibit superconductivity, and they may contain impurities such as normal conductors or insulators. It has been difficult to selectively remove such impurities.

また、超電導体微粒子を分級する適当な方法も見い出さ
れておらず、粉体工学ハンドブック(井伊谷鋼−編集、
朝倉書店)に記載されているような一般的な粒子の分級
方法を、超電導体微粒子に応用する以外に方法がなかっ
た。
In addition, no suitable method for classifying superconductor particles has been found, and the Powder Engineering Handbook (edited by Kou Iitani,
There was no other way than to apply the general particle classification method described in Asakura Shoten) to superconductor fine particles.

従来の一般的な粒子の分級方法としては、目開きの違う
網を眼径の大きい方から順次積み重ねて分級する、いわ
ゆるふるい分は法や、流体中を沈降する粒子の終末沈降
速度を利用して分級する、いわゆる沈降法などが知られ
ている。
Conventional general particle classification methods include the so-called sieving method, in which nets with different mesh sizes are stacked in order from the largest to the largest, and the terminal sedimentation velocity of particles settling in a fluid is used. The so-called sedimentation method is known.

しかしながら、例えばふるい分は法においては、数−以
下のふるい口開きは製造不可能なので、極小粒径の分級
はできない。更には、ふるい目を通過させるため、微粒
子に加圧力を加えることが多く、その場合は真空中では
実施できない。
However, for example, in the sieve method, it is impossible to produce a sieve opening of less than a few, so it is not possible to classify extremely small particles. Furthermore, pressurizing force is often applied to the fine particles in order to pass them through a sieve, and in this case it cannot be carried out in a vacuum.

また沈降法においては、沈降速度が粒径たけでなくその
比重にも依存するので、厳密な分級ができない。また液
相沈降法を用いる場合は、液体と微粒子の分離に手間が
かり、沈降速度も一般に遅いので分級に時間がかかる。
Furthermore, in the sedimentation method, since the sedimentation rate depends not only on the particle size but also on its specific gravity, strict classification is not possible. Furthermore, when liquid phase sedimentation is used, it takes time to separate the liquid and fine particles, and since the sedimentation rate is generally slow, it takes time to classify them.

また当然のことながら、真空中では実施できない。Also, as a matter of course, this cannot be carried out in a vacuum.

本発明は上記問題点に鑑み成されたものであり、その目
的は、超電導体微粒子を他の常電導微粒子や絶縁体微粒
子との混合物の中から真空下で容易に選鉱でき、更には
ある範囲の大きさの粒径の超電導体微粒子を真空下で容
易に分級できる、新規な分級方法を提供することにある
The present invention has been made in view of the above-mentioned problems, and its purpose is to easily sort superconducting fine particles from a mixture with other normal conducting fine particles and insulating fine particles under vacuum, and furthermore, to An object of the present invention is to provide a new classification method that can easily classify superconductor fine particles having a particle size of .

〔問題点を解決するための手段〕[Means for solving problems]

本発明の上記目的は、超電導体微粒子を含む粉体に磁場
を印加して、超電導体微粒子を浮上させる工程を有する
ことを特徴とする超電導体微粒子の分級方法により達成
される。
The above object of the present invention is achieved by a method for classifying superconductor fine particles, which comprises a step of levitating the superconductor fine particles by applying a magnetic field to powder containing the superconductor fine particles.

〔作用〕[Effect]

本発明は、超電導体特有の磁気的性質であるマイスナー
効果を利用することに基づく。
The present invention is based on the use of the Meissner effect, which is a magnetic property unique to superconductors.

マイスナー効果とは、超電導体微粒子が超電導性を示す
温度下おいて、その微粒子に磁場を印加すると、その微
粒子が完全反磁性を示すという効果である。すなわち、
上記の温度下において、超電導体微粒子を含む粉体に磁
場を印加すると、その粒径が約0.1μ以上のものにつ
いてはマイスナー効果により空間に浮上する。一方、粒
径がそれ未満のもの、および常電導体や絶縁体等の微粒
子についてはマイスナー効果が発生しないので浮上しな
い。
The Meissner effect is an effect in which when a magnetic field is applied to superconductor particles at a temperature at which they exhibit superconductivity, the particles exhibit complete diamagnetism. That is,
When a magnetic field is applied to powder containing superconductor fine particles at the above-mentioned temperature, particles having a diameter of about 0.1 μm or more levitate in space due to the Meissner effect. On the other hand, particles with smaller diameters and fine particles such as normal conductors and insulators do not float because the Meissner effect does not occur.

したがって、このようにして浮上した超電導体微粒子を
収集することによって、まず常電導体や絶縁体等が混入
している粉末の中から超電導体微粒子のみを精度よく選
鉱することができる。更には、従来の分級方法では困難
であった、超電導体の粒径が0.1μs以上の微粒子と
それ未満の微粒子を容易に分級することができる。
Therefore, by collecting the floating superconductor fine particles in this manner, only the superconductor fine particles can be accurately beneficiated from the powder containing normal conductors, insulators, and the like. Furthermore, it is possible to easily classify superconductor fine particles having a particle size of 0.1 μs or more and fine particles smaller than that, which has been difficult with conventional classification methods.

そのうえ、水平面において磁場が一様であり、かつ磁場
の勾配が垂下方向に向いている状態では、超電導体微粒
子の浮上する高さは、その粒径の大きさに依存する。な
ぜならば、超電導体微粒子を浮上させる力は、印加され
る磁場を粒子内から外部に追い出す時の反発力により生
じるからである。つまり、例えば下側から磁場を印加す
る時などは、その下側付近は磁束密度が大きく、上に浮
上するほど磁束密度は小さい。すると、粒径が小さく軽
い超電導体微粒子は、その重さと釣り合うような小さな
反発力しか生じない位置まで浮上する。また、粒径が大
きく重い超電導体微粒子は、下側付近でその反発力と重
さが釣り合い、その付近に留まるのである。
Furthermore, when the magnetic field is uniform in the horizontal plane and the gradient of the magnetic field is directed in the downward direction, the height at which the superconductor particles float depends on the size of the particles. This is because the force that causes superconductor fine particles to levitate is generated by the repulsive force that occurs when an applied magnetic field is expelled from inside the particle to the outside. That is, when applying a magnetic field from below, for example, the magnetic flux density is high near the bottom, and the higher it floats, the lower the magnetic flux density is. Then, the small and light superconductor particles float to a position where only a small repulsion force is generated that balances their weight. In addition, for large and heavy superconductor fine particles, their repulsive force and weight balance near the bottom, and they remain near the bottom.

このようにして浮上した超電導体微粒子群のある高さの
部分を選択的に収集することによって、所望の粒径の超
電導体微粒子のみを分級することができる。
By selectively collecting a portion of the floating superconductor fine particles at a certain height in this manner, only superconductor fine particles having a desired particle size can be classified.

(実施例) 以下、本発明を実施例により更に詳細に説明する。(Example) Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例! 第1図は、本発明の実施例に用いる装置の斜視図および
側面図である。
Example! FIG. 1 is a perspective view and a side view of an apparatus used in an embodiment of the present invention.

この装置はテーブル部とステージ部から成り、テーブル
部上をステージ4が矢印の方向に平行移動できる構成に
なっている。
This device consists of a table section and a stage section, and is configured such that the stage 4 can move in parallel on the table section in the direction of the arrow.

テーブル部は、平板状鉄心5に導線6がコイル状に巻か
れており、直流電源7より電流を印加することによフて
、鉄心5上に直流磁場が発生するようになつている。ま
た鉄心5の両脇にはレール9が設置されたレール台IO
が備えられている。
In the table portion, a conductive wire 6 is wound in a coil around a flat iron core 5, and a DC magnetic field is generated on the iron core 5 by applying a current from a DC power source 7. In addition, a rail stand IO with rails 9 installed on both sides of the iron core 5
is provided.

非磁性体からなるステージ4は内部を3つの部室4a、
 4b、 4cに区切られた箱状台車であり、その仕切
り板13はステージ4の側壁と同じ高さであるが、仕切
り板!2は、それよりも低いものである。
The stage 4 made of non-magnetic material has three internal chambers 4a,
It is a box-shaped trolley divided into 4b and 4c, and its partition plate 13 is the same height as the side wall of stage 4, but it is a partition plate! 2 is lower than that.

車輪Itはパルスモータ−8により駆動され、ステージ
4がレール9に沿って移動できるようになっている。
The wheels It are driven by a pulse motor 8 so that the stage 4 can move along the rails 9.

次に、この装置の操作手順を説明する。Next, the operating procedure of this device will be explained.

まず、真空中において、また超電導体微粒子が超電導性
を示す温度下において、粒径が約0.1g以上の超電導
体微粒子1、粒径が約0.1−未満の超電導体微粒子2
、その他の不純物微粒子3からなる混合物をステージ4
の部室4aに投入する。次に、導線6に直流電流を印加
すると、ステージ4上に直流磁場が発生し、粒径が約0
.1−以上の超電導体微粒子1だけが浮上する。その浮
上位置は、粒径が比較的大きな微粒子は低い位置に浮上
して、粒径が比較的小さな微粒子は高い位置に浮上する
。この後、パルスモータ−8によりステージ4を矢印の
方向に水平移動させると、粒径が大きな微粒子は仕切り
板13に衝突し、部室4b上に留まる。粒径が小さな微
粒子は仕切り板13を飛び越え、部室4C上に位置する
。この状態になった時、ステージ4の平行移動を停止し
、導線6の電流を切ることにより、ステージ4上の直流
磁場が解除されて浮上していた微粒子1が落下する。
First, in a vacuum and at a temperature at which superconductor particles exhibit superconductivity, superconductor particles 1 having a particle size of about 0.1 g or more and superconductor particles 2 having a particle size of less than about 0.1 g are
, and other impurity particles 3 to stage 4.
into the club room 4a. Next, when a direct current is applied to the conducting wire 6, a direct current magnetic field is generated on the stage 4, and the particle size is approximately 0.
.. Only superconductor fine particles 1 with a value of 1- or more float. Regarding the floating position, fine particles having a relatively large particle size float to a low position, and fine particles having a relatively small particle size float to a high position. Thereafter, when the stage 4 is horizontally moved in the direction of the arrow by the pulse motor 8, the fine particles having a large particle size collide with the partition plate 13 and remain on the chamber 4b. Fine particles with a small particle size jump over the partition plate 13 and are located above the chamber 4C. When this state is reached, the parallel movement of the stage 4 is stopped and the current in the conductor wire 6 is cut off, so that the DC magnetic field on the stage 4 is released and the floating particles 1 fall.

このようにして、部室4a内には、不純物微粒子3と粒
径が約0.1μ未満の超電導体微粒子2が残り、部室4
bには、比較的大きな粒径の超電導体微粒子が分級され
、部室4Cには、比較的小さな粒径の超電導体微粒子が
分級される。
In this way, the impurity particles 3 and the superconductor particles 2 having a particle size of less than about 0.1μ remain in the chamber 4a.
In the chamber b, superconductor fine particles having a relatively large particle size are classified, and in the chamber 4C, superconducting fine particles having a relatively small particle size are classified.

なおこの装置においては、部室4bと部室4Cに分級さ
れる微粒子の粒径は、仕切り板13の高さや、印加する
直流磁場の強弱により制御することができる。また、部
屋や仕切り板の数を増すことによって、更に細かい分級
も可能である。
In this device, the particle size of the fine particles classified into the chamber 4b and the chamber 4C can be controlled by the height of the partition plate 13 and the strength of the applied DC magnetic field. Further, by increasing the number of rooms and partition plates, even finer classification is possible.

また、本発明は上述の実施例に限定されるものではなく
、超電導体微粒子lの浮上する高さの違いを利用する他
の分級方法として、例えば、浮上微粒子群の所定の高さ
に薄板を挿入して分級する方法、浮上微粒子群付近に気
流を発生させ、空間移動させて収集する方法なども用い
ることができる。
Furthermore, the present invention is not limited to the above-described embodiments, and as another classification method that utilizes the difference in the floating height of the superconductor fine particles, for example, a thin plate is placed at a predetermined height of the floating fine particles. It is also possible to use a method of inserting and classifying the particles, or a method of generating airflow near the floating particles and moving them spatially to collect them.

実施例2 第2図は本発明の実施例に用いる装置の斜視図および側
面図である。
Embodiment 2 FIG. 2 is a perspective view and a side view of an apparatus used in an embodiment of the present invention.

この装置は、浮上した超電導体微粒子群を更に水平方向
に移動させるような、進行波磁場を印加して分級する装
置である。
This device classifies floating superconductor fine particles by applying a traveling wave magnetic field that causes them to move further in the horizontal direction.

まず、この装置の構成を説明する。First, the configuration of this device will be explained.

平板状鉄心5にコイル状に巻きつけられた単一の導線6
に、直流電源7により直流電流を印加することによって
、鉄心5上に直流磁場が発生する構成になっている。ま
た、複数の導線14が鉄心5に一巻ずつ巻かれており、
この導線14の各々に電源15によりバイアス付加した
サイン波電流を印加することによって、鉄心5上に進行
波磁場が発生する構成になっている。鉄心5上にはステ
ージ4が設置され、そのステージ4の一端にはポケット
部4dが設けられている。
A single conducting wire 6 coiled around a flat iron core 5
Furthermore, by applying a DC current from a DC power supply 7, a DC magnetic field is generated on the iron core 5. Further, a plurality of conductive wires 14 are wound one turn each around the iron core 5,
A traveling wave magnetic field is generated on the iron core 5 by applying a biased sine wave current to each of the conductive wires 14 by a power source 15. A stage 4 is installed on the iron core 5, and a pocket portion 4d is provided at one end of the stage 4.

次に、この装置の操作方法および動作原理を図面を用い
て説明する。
Next, the operating method and principle of operation of this device will be explained using the drawings.

まず、真空中において、また超電導体微粒子が超電導性
を示す温度下において、第2図に示すように、ポケット
部4dと離れている位置のステージ4上に、粒径が約0
.1μ以上の超電導体微粒子1、粒径が約0.1H未満
の超電導体微粒子2.その他の不純物微粒子3からなる
混合物を投入する。次に、導fi6に直流電流を印加す
ると、第3図に示すような直流磁場16が発生し、粒径
が約0.1μ以上の超電導体微粒子1だけが浮上する。
First, in a vacuum and at a temperature at which superconducting fine particles exhibit superconductivity, as shown in FIG.
.. Superconductor fine particles 1 with a particle size of 1μ or more, superconductor fine particles with a particle size of less than about 0.1H2. A mixture consisting of other impurity fine particles 3 is introduced. Next, when a direct current is applied to the conductor fi 6, a direct current magnetic field 16 as shown in FIG. 3 is generated, and only the superconducting fine particles 1 having a particle size of about 0.1 μm or more are levitated.

また同時に電源15よりバイアス付加したサイン波電流
を導線14に印加すると、第4図に示すような進行波磁
場17が発生する。この進行波磁場17は、微粒子1に
対して矢印方向に移動する力を与える。
At the same time, when a biased sine wave current is applied to the conducting wire 14 from the power source 15, a traveling wave magnetic field 17 as shown in FIG. 4 is generated. This traveling wave magnetic field 17 applies a force to the particle 1 to move in the direction of the arrow.

なおこの装置においては、その分級レベルを磁場の強弱
によって制御することができる。例えば、弱い直流磁場
16を印加しながら進行波磁場17を印加すれば、比較
的粒径が小さく軽い微粒子1のみが浮上しながら移動し
、次にその直流磁場16を強くすれば、今度は粒径が大
きく重い微粒子1が浮上しながら移動する。また、その
移動速度は進行波磁場17の強弱により制御できる。な
お、このような装置はメカニカルな動きが無いため、故
陣が少なく、騒音も簾い。
In this device, the classification level can be controlled by the strength of the magnetic field. For example, if a traveling wave magnetic field 17 is applied while a weak DC magnetic field 16 is applied, only light particles 1 with a relatively small particle size will float and move, and if the DC magnetic field 16 is then strengthened, the particles will move. Fine particles 1 having a large diameter and being heavy move while floating. Moreover, the moving speed can be controlled by the strength of the traveling wave magnetic field 17. Furthermore, since there is no mechanical movement in this type of device, there are fewer dead lines and less noise.

また、本発明は上述の実施例に限定されるものではなく
、浮上した超電導体微粒子1を移動させながら分級する
他の方法として、例えば、ステージ4に勾配を与える方
法、または気流によって微粒子1を移動させる方法など
も用いることができる。
Furthermore, the present invention is not limited to the above embodiments, and there are other methods of classifying the floating superconductor particles 1 while moving them, for example, a method of giving a gradient to the stage 4, or a method of classifying the particles 1 by using an air flow. A method of moving it can also be used.

なお、実施例1,2においては、導線に電流を印加する
ことにより磁場を発生させたが、その替りに永久磁石を
用いることも可能である。
In addition, in Examples 1 and 2, the magnetic field was generated by applying a current to the conducting wire, but it is also possible to use a permanent magnet instead.

〔発明の効果〕〔Effect of the invention〕

以上説明してきたように、本発明によれば、超電導体微
粒子の選鉱と分級を同時に実施でき、その方法は容易で
あり、選鉱および分級の経過を目視できる。更には、真
空下において実施可能なので、気体の粘度および気流な
どに影響されることなく、高速で高精度な分級ができる
As described above, according to the present invention, beneficiation and classification of superconductor fine particles can be performed simultaneously, the method is easy, and the progress of beneficiation and classification can be visually observed. Furthermore, since it can be carried out under vacuum, it is possible to perform high-speed and highly accurate classification without being affected by gas viscosity, airflow, etc.

また未発明は、不純物を含む超電導性焼結体の純度を高
めることにおいて、非常に有用である。
The invention is also very useful in increasing the purity of superconducting sintered bodies containing impurities.

つまり本発明によれば、選鉱および分級が鱗単位でも実
施可能なので、その一つの微粒子内にM1電導性部分と
不純物部分が共存することが無い程度まで、焼結体を非
常に細かく粉砕して、選鉱および分級することができる
。その結果として、高純度の超電導性粉末が得られるの
である。
In other words, according to the present invention, ore beneficiation and classification can be carried out on a scale-by-scale basis, so the sintered body is ground very finely to the extent that the M1 conductive part and the impurity part do not coexist in one fine particle. , beneficiation and classification. As a result, highly pure superconducting powder is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、実施例1.2に用いた装置の斜
視図および側面図、 第3図は、実施例2の装置に発生する直流磁場を示す図
、 第4図は、実施例2の装置に発生する進行波磁場、およ
び超電導体微粒子の移動経路を示す図である。 1・・・粒径が約0.1.以上の超電導体微粒子2−・
粒径が約0.1J未満の超電導体微粒子3−・不純物微
粒子 4−・ステージ 4a、4b、4cm−一部屋   4d−ポケット部5
・・・鉄心      614・−導線7・・・直流電
源    8・軸パルスモータ−9・・・レール   
  10− レール台11−・・車輪      12
13−仕切り板+ 5−・・電源      1B−直
流磁場17−・・進行波磁場
1 and 2 are a perspective view and a side view of the device used in Example 1.2, FIG. 3 is a diagram showing the DC magnetic field generated in the device of Example 2, and FIG. 4 is a diagram showing the device used in Example 1.2. 3 is a diagram showing a traveling wave magnetic field generated in the device of Example 2 and a moving path of superconducting fine particles. FIG. 1... Particle size is approximately 0.1. The above superconductor fine particles 2-
Superconductor fine particles with a particle size of less than about 0.1 J 3- Impurity fine particles 4- Stages 4a, 4b, 4cm-One room 4d-Pocket portion 5
... Iron core 614 - Conductor 7 ... DC power supply 8 - Axis pulse motor - 9 ... Rail
10-Rail stand 11-...Wheel 12
13 - Partition plate + 5 - Power supply 1B - DC magnetic field 17 - Traveling wave magnetic field

Claims (1)

【特許請求の範囲】 1)超電導体微粒子を含む粉体に磁場を印加して、超電
導体微粒子を浮上させる工程を有することを特徴とする
超電導体微粒子の分級方法。 2)磁場を微粒子の下側から印加する特許請求の範囲第
1項記載の超電導体微粒子の分級方法。 3)進行波を伴なう磁場を印加する特許請求の範囲第1
項または第2項記載の超電導体微粒子の分級方法。
[Scope of Claims] 1) A method for classifying superconductor fine particles, comprising the step of: 1) applying a magnetic field to powder containing superconductor fine particles to levitate the superconductor fine particles. 2) A method for classifying superconductor fine particles according to claim 1, wherein a magnetic field is applied from below the fine particles. 3) Claim 1 of applying a magnetic field accompanied by traveling waves
The method for classifying superconductor fine particles according to item 1 or 2.
JP62087028A 1987-04-10 1987-04-10 Classification of superconductor fine particle Pending JPS63252553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62087028A JPS63252553A (en) 1987-04-10 1987-04-10 Classification of superconductor fine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62087028A JPS63252553A (en) 1987-04-10 1987-04-10 Classification of superconductor fine particle

Publications (1)

Publication Number Publication Date
JPS63252553A true JPS63252553A (en) 1988-10-19

Family

ID=13903499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62087028A Pending JPS63252553A (en) 1987-04-10 1987-04-10 Classification of superconductor fine particle

Country Status (1)

Country Link
JP (1) JPS63252553A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0317643A1 (en) * 1987-06-09 1989-05-31 Mitsubishi Denki Kabushiki Kaisha Method of producing oxide superconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0317643A1 (en) * 1987-06-09 1989-05-31 Mitsubishi Denki Kabushiki Kaisha Method of producing oxide superconductor
US5268353A (en) * 1987-06-09 1993-12-07 Mitsubishi Denki Kabushiki Kaisha Method for separating superconductor powder from nonsuperconductive powder

Similar Documents

Publication Publication Date Title
Jayawant Electromagnetic suspension and levitation
Shimoiizaka et al. Sink-float separators using permanent magnets and water based magnetic fluid
Aranson et al. Electrostatically driven granular media: phase transitions and coarsening
Svoboda A realistic description of the process of high-gradient magnetic separation
US4062765A (en) Apparatus and process for the separation of particles of different density with magnetic fluids
US5047387A (en) Method for the selecting superconducting powders
JPH01245867A (en) Apparatus for beneficiating and classifying superconductive fine particle
JPS63252553A (en) Classification of superconductor fine particle
EP0588451B1 (en) Purification apparatus for superconductor fine particles
US5182253A (en) Purification apparatus for superconductor fine particles
Liakopoulos et al. A bio-magnetic bead separator on glass chips using semi-encapsulated spiral electromagnets
Mikhailov The magnetic charge phenomenon on ferromagnetic aerosols
EP1150775A1 (en) Ferrohydrostatic separation method and apparatus
US5919737A (en) Method of separating a superconducting fraction from a mixture
Takayasu et al. Magnetic separation utilizing a magnetic susceptibility gradient
Catherall et al. Separation of binary granular mixtures under vibration and differential magnetic levitation force
Svoboda Theory of Processes of Magnetic Separation of Materials
Watson et al. A superconducting high-gradient magnetic separator with a current-carrying matrix
Gerber et al. The retention of strongly magnetic particles in single wire HGMS
Hasuda et al. The Principle and Moving Velocity of Particles. I. A Fundamental Study on Continuous High Gradient Magnetic Separation
Pitel et al. Computer analysis of the 10 Tesla superconducting magnet system of the Clarendon Laboratory for the purposes of an open-gradient magnetic separation
Fletcher et al. The electromagnetic separation of metals from insulators
JP2023517730A (en) Magnetic field gradient device and separation device
JPS58214357A (en) Extraction system of material to be treated of mobile magnetic field type crushing and mixing device
Gogosov et al. Some theoretical and practical problems of separation in magnetic fluids