JPS6325240B2 - - Google Patents

Info

Publication number
JPS6325240B2
JPS6325240B2 JP10059182A JP10059182A JPS6325240B2 JP S6325240 B2 JPS6325240 B2 JP S6325240B2 JP 10059182 A JP10059182 A JP 10059182A JP 10059182 A JP10059182 A JP 10059182A JP S6325240 B2 JPS6325240 B2 JP S6325240B2
Authority
JP
Japan
Prior art keywords
skirt
tank
plate
welded
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10059182A
Other languages
Japanese (ja)
Other versions
JPS58217900A (en
Inventor
Kenichi Hatsutori
Kenichi Kuwabara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP10059182A priority Critical patent/JPS58217900A/en
Publication of JPS58217900A publication Critical patent/JPS58217900A/en
Publication of JPS6325240B2 publication Critical patent/JPS6325240B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/08Mounting arrangements for vessels
    • F17C13/082Mounting arrangements for vessels for large sea-borne storage vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0128Shape spherical or elliptical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0123Mounting arrangements characterised by number of vessels
    • F17C2205/013Two or more vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は液化ガス用の球形タンクの支持装置に
関し、タンクを確実に支持し、しかも使用中の温
度変化によるタンクの膨脹又は収縮に容易に対応
できるようにしたものである。 (従来技術) 例えば液化ガス輸送用船舶の独立型貨物タンク
方式としてたとえば特公昭51−20797号(第7図
参照)がしられている。このタンクの支持方式は
球形タンクをその赤道面にそつて溶接した竪型円
筒状のスカートbによつて支持するもので、スカ
ートは全体的に竪防撓材と水平リング桁によつて
補強された円筒殻によつて構成されている。 スカートの上端は球形タンクの赤道部に組込ま
れた赤道リングaに溶接結合され、又下端は直接
船体に溶接固着されている。この赤道リングは下
縁に溝cを有している。スカートbは円筒殻即ち
円筒形胴板によつて構成されているので、タンク
の熱収縮に対する追従性が極めて悪く、又スカー
トb内の温度分布状態によつて、スカートbの変
形及び赤道リングa附近の熱応力が大きく変化す
るという欠点をもつている。 その原因は、主軸線に直角な面で切断した円筒
胴板の円形断面にそつて一様な軸対称変位が与え
られるとき、その断面部の胴板内に生ずる円周方
向の歪みによつてその変形が拘束されるためであ
る。 さらにタンク内に液化ガスが満されるとき、赤
道リングの下縁溝c部におけるタンクTとスカー
トb間の間隙に開きを生ずるが、その溝底に応力
集中現象を伴つて該部に応力集中を生ずる結果と
なる。この集中応力を許容の応力値以内に収める
ため、スカート内の温度勾配を適切に制御する必
要が生じ、防熱施工上の困難な問題を提起する欠
点をもつている。 (発明の解決しようとする問題点) 本発明は叙上の公知球形タンクの支持装置の問
題点を解決し、タンク使用中タンクの温度変化が
あつても、簡単な構成でこの温度変化に容易に応
じられるようにして、応力集中の問題のない強固
な支持装置を提供することを目的とするものであ
る。 (発明の解決手段) 球形タンクの赤道面に沿つて溶接され、赤道面
から下方に延びる連続したスカートによつて基台
に固着された大容量の液化ガス用球形タンクにお
いて、前記スカートが上部スカートと下部スカー
トからなり、前記上部スカートは円周方向にコル
ゲートされた竪型コルゲート壁によつて構成さ
れ、該コルゲート壁の上部はタンク表面にコルゲ
ート線即ち球面とコルゲートとの接触線に沿つて
直接溶接され、又前記下部スカートは水平リング
状棚板を介し上部スカート下端と固着され、下端
で基台に固着される円筒状の垂直胴板を備えてい
ることを特徴とするものである。 そしてこのように球形タンクを支持する円筒形
スカートに、その半径方向断面が円周方向にコル
ゲートされた竪型コルゲート壁を採用することに
より、熱荷重によるタンクの膨脹及び収縮に対応
し、タンク壁に生ずる熱応力を効果的に吸収させ
うるようにした。 (実施例) 第1図において、球形タンク1は上部スカート
2及び下部スカート3を介し、船体4の内底5上
に設置される。上部スカート2はタンク1の赤道
面6に、また下部スカート3は船体4の内底5に
それぞれ溶接固着される。上部スカート2はその
水平断面が第2図に示すように、円周方向にコル
ゲートされた形状即ち波をうつた形状をしてお
り、スカートの垂直主軸線と同心の円弧状をして
いる外側板7及び内側板8と、両者を適当な丸味
をもつて接続する斜板9からなり、上部スカート
全体はその垂直主軸に対し対称になるように構成
されている。 タンク1は上部スカート2によつて支持される
が、両者が結合される箇所の詳細が第3図及び第
4図に示される。第3図において、上部スカート
2の上端部はコルゲート線即ちコルゲートと球面
との接触線10のように形どられ、その接触線に
沿つてタンク壁11に直接溶接される。第4図に
示すように、垂直に延びている上部スカートの内
側板8はタンクの赤道線12より下方に一定の距
離をおいてタンク壁11に溶接13され、また外
側板7はタンクの赤道線12附近まで垂直に延
び、それより上方で図示のように湾曲したタンク
壁11に溶接14される。さらに、タンク壁と上
部スカート2はほゞ水平に配置された塞板15に
よつて相互に溶接結合されているが、その実施可
能な構成が第4図に示されている。塞板15と上
部スカートの一部を形成する波型のフランジプレ
ート16から成るT型リング部材とタンク壁11
との溶接17が完了すると、上部スカート2を構
成する外側板7、内側板8、及び斜板9はフラン
ジプレート16端において夫々突合せ溶接18さ
れる。塞板15はタンク内に液化ガスが満される
とき、タンク壁11と上部スカート2の内側板8
が取合う間隙19に開きを生ずるのを阻止するた
めに設けられるもので、それによつてタンク壁1
1と上部スカート2が直接結合される溶接部に生
ずる熱応力を著しく減少することが可能になる。
この塞板15の設置位置はタンク壁に生ずる付加
応力を勘案して熱応力計算によつて決定される。 第5図において、上部スカート2と下部スカー
ト3の接続部をスカート内部より見た斜視図が示
される。下部スカート3は水平リング棚板20、
垂直胴板21、外側覆板22及び内側覆板23に
よつて構成される。比較的厚い垂直胴板21はス
カートの垂直主軸を心とする円筒胴をなし、第6
図に示すようにその上端は水平リング状棚板20
に、また下端は船体内底5に溶接固着される。上
部スカート2の外側板7、内側板8及び斜板9は
第6図に示すように水平リング状棚板20に溶接
24され、それを介して覆板22,23に接続さ
れるが、覆板が水平リング状棚板20と接する上
端部の水平断面形状は上部スカート2の水平断面
形状と同一で第6図に示すように上下方向に整合
している。 覆板22,23は第5図に示す接触線25のよ
うに形どられ、その接触線に沿つて垂直胴板21
に溶接27され、また水平リング棚板20とは第
6図に示すように溶接26される。この下部スカ
ート3を設ける構造方式にすると、上部スカート
2をそのまゝ下方に延長して直接船体内底5に固
着する構造方式と比較し、スカート内の熱応力及
びタンク壁に生ずる付加応力を効果的に吸収する
ことができる。 (効果) 以上の構成であるから、タンク内に極低温の液
化ガスが満され、タンク及びスカートが収縮して
も、上部スカート2はその半径方向の変位に容易
に対応することができ、タンク壁に生じる熱応力
を効果的に吸収できる。 因みに次表は半径21mのアルミ合金製球形タン
クを、アルミ合金製スカートで支える方式におい
て、タンクを−190℃に冷却した状態について熱
応力解析を行つた結果である。
(Industrial Application Field) The present invention relates to a support device for a spherical tank for liquefied gas, which supports the tank reliably and can easily cope with expansion or contraction of the tank due to temperature changes during use. be. (Prior Art) For example, Japanese Patent Publication No. 51-20797 (see FIG. 7) is known as an independent cargo tank system for ships for transporting liquefied gas. The support method for this tank is to support a spherical tank by a vertical cylindrical skirt b welded along its equatorial plane, and the entire skirt is reinforced by vertical stiffeners and horizontal ring girders. It consists of a cylindrical shell. The upper end of the skirt is welded to an equatorial ring a built into the equatorial portion of the spherical tank, and the lower end is welded directly to the hull. This equatorial ring has a groove c on its lower edge. Since the skirt b is composed of a cylindrical shell, that is, a cylindrical body plate, its ability to follow the thermal contraction of the tank is extremely poor, and depending on the temperature distribution inside the skirt b, the deformation of the skirt b and the equatorial ring a It has the disadvantage that the thermal stress in the vicinity changes greatly. The reason for this is that when a uniform axially symmetrical displacement is applied along a circular cross section of a cylindrical body plate cut perpendicular to the main axis, distortion in the circumferential direction occurs within the body plate at that cross section. This is because the deformation is restricted. Furthermore, when the tank is filled with liquefied gas, an opening occurs in the gap between the tank T and the skirt b at the lower edge groove c of the equatorial ring, and stress concentration occurs at the bottom of the groove. The result is that In order to keep this concentrated stress within an allowable stress value, it is necessary to appropriately control the temperature gradient within the skirt, which has the drawback of posing difficult problems in heat insulation construction. (Problems to be Solved by the Invention) The present invention solves the problems of the above-mentioned known support devices for spherical tanks, and even if there is a temperature change in the tank while the tank is in use, this invention can easily accommodate this temperature change with a simple structure. It is an object of the present invention to provide a strong support device that can be adapted to various situations and that does not have the problem of stress concentration. (Solution of the Invention) A large-capacity liquefied gas spherical tank welded along the equatorial plane of the spherical tank and fixed to the base by a continuous skirt extending downward from the equatorial plane, wherein the skirt is connected to the upper skirt. and a lower skirt, and the upper skirt is constituted by a vertical corrugated wall corrugated in the circumferential direction, and the upper part of the corrugated wall is directly connected to the tank surface along the corrugated line, that is, the contact line between the spherical surface and the corrugated. The lower skirt is welded, and the lower skirt is fixed to the lower end of the upper skirt through a horizontal ring-shaped shelf plate, and has a cylindrical vertical body plate fixed to the base at the lower end. By adopting a vertical corrugated wall whose radial cross section is corrugated in the circumferential direction on the cylindrical skirt that supports the spherical tank in this way, the tank wall can cope with expansion and contraction of the tank due to thermal load. This makes it possible to effectively absorb thermal stress caused by (Example) In FIG. 1, a spherical tank 1 is installed on an inner bottom 5 of a hull 4 via an upper skirt 2 and a lower skirt 3. The upper skirt 2 is welded to the equatorial plane 6 of the tank 1, and the lower skirt 3 is welded to the inner bottom 5 of the hull 4. As shown in Fig. 2, the upper skirt 2 has a corrugated shape in the circumferential direction, that is, a wavy shape in its horizontal cross section, and an outer arcuate shape concentric with the vertical main axis of the skirt. Consisting of a plate 7, an inner plate 8, and a swash plate 9 connecting them with suitable roundness, the entire upper skirt is constructed symmetrically about its vertical principal axis. The tank 1 is supported by the upper skirt 2, details of where the two join together are shown in FIGS. 3 and 4. In FIG. 3, the upper end of the upper skirt 2 is shaped like a corrugated line, ie, a contact line 10 between the corrugate and the spherical surface, and is directly welded to the tank wall 11 along the contact line. As shown in Figure 4, the vertically extending inner plate 8 of the upper skirt is welded 13 to the tank wall 11 at a distance below the tank equator line 12, and the outer plate 7 is welded 13 to the tank wall 11 at a distance below the tank equator line 12. It extends vertically to about line 12 and is welded 14 to the tank wall 11 which is curved above it as shown. Furthermore, the tank wall and the upper skirt 2 are welded together by means of a substantially horizontally arranged closing plate 15, a possible configuration of which is shown in FIG. A tank wall 11 and a T-shaped ring member consisting of a closing plate 15 and a corrugated flange plate 16 forming part of the upper skirt.
When the welding 17 with the upper skirt 2 is completed, the outer plate 7, the inner plate 8, and the swash plate 9 constituting the upper skirt 2 are butt welded 18 at the ends of the flange plate 16, respectively. The closing plate 15 is connected to the tank wall 11 and the inner plate 8 of the upper skirt 2 when the tank is filled with liquefied gas.
This is provided to prevent the gap 19 between the tank walls 1 and 1 from opening.
1 and the upper skirt 2 are directly connected to each other, it is possible to significantly reduce the thermal stresses occurring in the welded portion.
The installation position of this closing plate 15 is determined by thermal stress calculation taking into consideration the additional stress generated on the tank wall. In FIG. 5, a perspective view of the connecting portion between the upper skirt 2 and the lower skirt 3 is shown as seen from inside the skirt. The lower skirt 3 has a horizontal ring shelf 20,
It is composed of a vertical body plate 21, an outer cover plate 22, and an inner cover plate 23. The relatively thick vertical body plate 21 forms a cylindrical body centered on the vertical main axis of the skirt.
As shown in the figure, its upper end is a horizontal ring-shaped shelf board 20.
In addition, the lower end is welded and fixed to the inner bottom 5 of the hull. The outer plate 7, inner plate 8 and swash plate 9 of the upper skirt 2 are welded 24 to a horizontal ring-shaped shelf plate 20, as shown in FIG. The horizontal cross-sectional shape of the upper end of the plate where it contacts the horizontal ring-shaped shelf board 20 is the same as the horizontal cross-sectional shape of the upper skirt 2, and is aligned in the vertical direction as shown in FIG. The cover plates 22 and 23 are shaped like a contact line 25 shown in FIG.
Welded 27 to the horizontal ring shelf 20, and welded 26 to the horizontal ring shelf 20 as shown in FIG. By adopting a structural method in which this lower skirt 3 is provided, thermal stress within the skirt and additional stress generated on the tank wall can be reduced, compared to a structural method in which the upper skirt 2 is extended downward and directly fixed to the bottom 5 of the hull. Can be absorbed effectively. (Effects) With the above configuration, even if the tank is filled with cryogenic liquefied gas and the tank and skirt contract, the upper skirt 2 can easily accommodate the displacement in the radial direction. It can effectively absorb thermal stress generated on the wall. Incidentally, the following table shows the results of thermal stress analysis for a 21m radius aluminum alloy spherical tank supported by an aluminum alloy skirt, with the tank cooled to -190°C.

【表】
(単位:Kg/mm2
これによると、本発明の構成ではスカート下端
部の応力が約60%に減少するという顕著な効果が
現われており、スカート構造更にはタンク全体の
安全性向上に寄与している。その他、タンクとス
カートの結合部におけるスカート、タンク及び塞
板の何れも応力が減少していることがわかる。 又、タンクとスカートとの結合構造が簡単であ
るから、溶接が非常に容易である。 スカートの温度分布が変化しても、その応答は
至つて鈍感で、スカート及びタンク壁に生ずる熱
応力に大きな変化は起らない。従つて、赤道リン
グ附近のスカートの防熱対策を重要視する必要が
ない。 以上の説明において、船舶用として説明した
が、陸上用の球形タンクにも勿論利用可能であ
る。この場合には船体に代る取付基台を要するの
は言うまでもない。
【table】
(Unit: Kg/ mm2 )
According to this, the structure of the present invention has a remarkable effect of reducing the stress at the lower end of the skirt by about 60%, contributing to improving the safety of the skirt structure and the tank as a whole. In addition, it can be seen that the stress at the junction between the tank and the skirt is reduced in all of the skirt, tank, and closing plate. Further, since the structure for connecting the tank and the skirt is simple, welding is very easy. Even if the temperature distribution of the skirt changes, the response is very insensitive and no significant change occurs in the thermal stress generated in the skirt and tank wall. Therefore, there is no need to place importance on heat insulation measures for the skirt near the equatorial ring. Although the above description has been made for use in ships, it can of course also be used in spherical tanks for use on land. Needless to say, in this case, a mounting base is required in place of the hull.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の支持装置に支持された球形タ
ンクの側面図。第2図は第1図の―断面図。
第3図は上部スカートとタンクとの結合部の拡大
図。第4図は第3図の―断面と―断面の
合成断面図。第5図は上部スカートと下部スカー
トとの接続部の斜視図。第6図は第5図の―
断面と―断面の合成断面図。第7図は特公昭
51−20797号公報における赤道リングとスカート
及びタンクの結合構造を示す。 図において;1…球形タンク、2…上部スカー
ト、3…下部スカート、4…船体、5…(船体
の)内底、6…赤道面、7…外側板、8…内側
板、9…斜板、10…接触線、11…タンク壁、
12…赤道線、13,14,17,18,24,
26,27…溶接、15…塞板、16…フランジ
プレート、19…間隙、20…水平リング状棚
板、21…垂直胴板、22,23…覆板、25…
接触線、a…赤道リング、b…スカート、c…
溝、T…タンク。
FIG. 1 is a side view of a spherical tank supported by the support device of the present invention. Figure 2 is a sectional view of Figure 1.
Figure 3 is an enlarged view of the joint between the upper skirt and the tank. FIG. 4 is a composite sectional view of the -section and -section of FIG. 3. FIG. 5 is a perspective view of the connection between the upper skirt and the lower skirt. Figure 6 is the same as Figure 5.
Composite cross-sectional view of cross-section and cross-section. Figure 7 shows Tokko Akira.
The joint structure of the equatorial ring, skirt, and tank in Publication No. 51-20797 is shown. In the figure: 1... Spherical tank, 2... Upper skirt, 3... Lower skirt, 4... Hull, 5... Inner bottom (of the hull), 6... Equatorial plane, 7... Outer plate, 8... Inner plate, 9... Swash plate. , 10... contact line, 11... tank wall,
12...equator line, 13, 14, 17, 18, 24,
26, 27... Welding, 15... Closing plate, 16... Flange plate, 19... Gap, 20... Horizontal ring-shaped shelf plate, 21... Vertical body plate, 22, 23... Covering plate, 25...
Contact line, a...equatorial ring, b...skirt, c...
Groove, T...tank.

Claims (1)

【特許請求の範囲】[Claims] 1 球形タンクの赤道面に沿つて溶接され、赤道
面から下方に延びる連続したスカートによつて基
台に固着された大容量の液化ガス用球形タンクに
おいて、前記スカートが上部スカートと下部スカ
ートからなり、前記上部スカートは円周方向にコ
ルゲートされた竪型コルゲート壁によつて構成さ
れ、該コルゲート壁の上部はタンク表面に球面と
コルゲートとの接触線に沿つて直接溶接され、又
前記下部スカートは水平リング状棚板を介し上部
スカート下端と固着され、下端で基台に固着され
る円筒状の垂直胴板を備えていることを特徴とす
る液化ガス用球形タンクの支持装置。
1. A large-capacity liquefied gas spherical tank that is welded along the equatorial plane of the spherical tank and fixed to the base by a continuous skirt that extends downward from the equatorial plane, the skirt consisting of an upper skirt and a lower skirt. , the upper skirt is constituted by a vertical corrugated wall corrugated in the circumferential direction, the upper part of the corrugated wall is directly welded to the tank surface along the contact line between the spherical surface and the corrugate, and the lower skirt is A support device for a spherical tank for liquefied gas, comprising a cylindrical vertical body plate that is fixed to the lower end of an upper skirt through a horizontal ring-shaped shelf board and fixed to a base at its lower end.
JP10059182A 1982-06-14 1982-06-14 Supporting equipment of spherical tank for liquefied gas Granted JPS58217900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10059182A JPS58217900A (en) 1982-06-14 1982-06-14 Supporting equipment of spherical tank for liquefied gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10059182A JPS58217900A (en) 1982-06-14 1982-06-14 Supporting equipment of spherical tank for liquefied gas

Publications (2)

Publication Number Publication Date
JPS58217900A JPS58217900A (en) 1983-12-17
JPS6325240B2 true JPS6325240B2 (en) 1988-05-24

Family

ID=14278111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10059182A Granted JPS58217900A (en) 1982-06-14 1982-06-14 Supporting equipment of spherical tank for liquefied gas

Country Status (1)

Country Link
JP (1) JPS58217900A (en)

Also Published As

Publication number Publication date
JPS58217900A (en) 1983-12-17

Similar Documents

Publication Publication Date Title
US5727492A (en) Liquefied natural gas tank and containment system
US4345861A (en) Universal tank and ship support arrangement
US3092063A (en) Construction of liquefied gas carriers
US3978808A (en) Double wall cargo tank for transporting cryogenics
JPS6135999Y2 (en)
US4079689A (en) Partial secondary barriers for self-supporting, axi-symmetrical tanks on board vessels
US3414155A (en) Walls for liquefied gas storage tanks
US3882591A (en) Method of constructing a low temperature liquefied gas tank of a membrane type
US3882809A (en) Storage vessel for ship transport of liquefied gas
US4099649A (en) Apparatus for transporting fluids at low temperature
JPS6325240B2 (en)
GB2032506A (en) Tank
JPH0243958B2 (en)
JPH0214720Y2 (en)
US4430954A (en) Cargo tank support
JPH0425915B2 (en)
JP3108067B1 (en) Tank support structure for liquefied gas carrier
JP3495500B2 (en) LNG carrier moss type spherical tank support skirt structure
JPS60176887A (en) Liqefied gas carrying vessel
JPH0138080Y2 (en)
JPH0424600B2 (en)
JPS584798Y2 (en) Spherical tank support device
KR830001295B1 (en) Tank support device for low temperature liquefied gas transportation
JPH0353120Y2 (en)
JP2851474B2 (en) Liquefied gas tank of liquefied gas carrier