JPS63252263A - Signal measurement - Google Patents

Signal measurement

Info

Publication number
JPS63252263A
JPS63252263A JP8746487A JP8746487A JPS63252263A JP S63252263 A JPS63252263 A JP S63252263A JP 8746487 A JP8746487 A JP 8746487A JP 8746487 A JP8746487 A JP 8746487A JP S63252263 A JPS63252263 A JP S63252263A
Authority
JP
Japan
Prior art keywords
signal
waveform
interval
value
signal measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8746487A
Other languages
Japanese (ja)
Inventor
Takayoshi Hirata
平田 能睦
Kiminori Yamaguchi
山口 公典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ono Sokki Co Ltd
Original Assignee
Ono Sokki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ono Sokki Co Ltd filed Critical Ono Sokki Co Ltd
Priority to JP8746487A priority Critical patent/JPS63252263A/en
Publication of JPS63252263A publication Critical patent/JPS63252263A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To achieve a measurement of power of a signal intermittently transmitted from a transmitting section effectively without being accompanied by noise, by receiving the intermittently transmitted signal to accumulate differences of integrated values between first and second sections of a squared of a waveform thereof. CONSTITUTION:A pulse (a) with a cycle 2T generated by a pulse generator 1 is passed through a band pass filter 2 and outputted from a speaker 3 as acoustic signal. On the other hand, in a receiving sector, the pulse is converted into an electrical signal with a microphone 4 and a proper amplitude is applied to an attenuator 6 through a band pass filter 5 to determine the square of a waveform with a square device 7. Then, the squared value is applied to a differential accumulator 8 to accumulate differences of integrated values between first and second sections. When the last pulse is generated from the pulse generator 1 and the final differential accumulation ends, the results are displayed at an output section 9.

Description

【発明の詳細な説明】 本発明は、信号測定法に関するもので、特に信号のパワ
ー測定における雑音の抑圧を効果的に行なう方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a signal measurement method, and particularly to a method for effectively suppressing noise in signal power measurement.

雑音抑圧法として、信号に同期して受信波形の加算を行
なう同期加算法がよく知られている。この方法ではN回
の信号加算によって平均的にみて雑音成分のパワーを信
号に対し1/Nに減らすことができる。従って、SNN
1329dB改善するには100回の信号加算を行なえ
ばよいが、例えばパルス音を用いて壁の遮音測定を行な
う場合、高い周波数帯域ではSN比を改善する為に加算
回数が増加し、測定に時間がかかることと、同期をとる
のに高い精度が要求されるという問題が出る。
A well-known noise suppression method is a synchronous addition method in which received waveforms are added in synchronization with signals. In this method, the power of the noise component can be reduced to 1/N of the signal on average by adding the signal N times. Therefore, SNN
To improve by 1329 dB, it is enough to perform signal addition 100 times, but for example, when measuring the sound insulation of a wall using pulsed sound, the number of additions increases in order to improve the S/N ratio in high frequency bands, and it takes time to measure. The problem arises that it takes a long time and that high precision is required for synchronization.

そこで本発明の目的は、信号のパワー測定において雑音
を効果的に減じ、且つ製電に高い精度を要求しない信号
測定法を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a signal measurement method that effectively reduces noise in signal power measurement and does not require high accuracy in electrical manufacturing.

今、k回目の受信応答w rl、(t)、その信号成分
をs、(tl、雑音成分をn k(t)とすると、r、
 ft) = s k(tl + nl、 m    
     (1)と表わせる。信号成分は時間Tを経過
後十分に減衰するものとし、雑音成分は全時間に渡って
存在しているものと考える。
Now, let the k-th reception response w rl, (t), its signal component be s, (tl, and the noise component n k (t), then r,
ft) = s k(tl + nl, m
It can be expressed as (1). It is assumed that the signal component is sufficiently attenuated after time T has elapsed, and that the noise component is present throughout the entire time.

ここで、(1)式を二乗して時間t=0からTiで積分
した値をRk(0)とし、5k(o)、Nk(O)はそ
れぞれ信号成分の二乗積分値、雑音成分の二乗積分値、
Ek(0)は信号成分と雑音成分の積の積分値を表わす
ものとすれば、 TLkfol=Skfo)+2B、k(o)+Nkfo
)    (2)と表わされる。
Here, the value obtained by squaring equation (1) and integrating over Ti from time t=0 is set as Rk(0), and 5k(o) and Nk(O) are the square integral value of the signal component and the square of the noise component, respectively. integral value,
If Ek(0) represents the integral value of the product of the signal component and the noise component, then TLkfol=Skfo)+2B, k(o)+Nkfo
) (2).

同様に、(I)式を二乗してt=Tから2T−!で積分
した値をRk(r)、Sk■とNkCr)をそれぞれ信
号成分、雑音成分の二乗値の積分:L Rkmを信号成
分と雑音成分の積の積分値とすれば、Rkm” 8@ 
(T)+ 2 El (T)+ N+、 (n   f
3)と表わされる。
Similarly, by squaring equation (I), t=T to 2T-! Rk(r) is the integrated value, and Sk■ and NkCr) are the integrals of the squared values of the signal component and noise component, respectively: L.If Rkm is the integral value of the product of the signal component and the noise component, then Rkm" 8@
(T)+ 2 El (T)+ N+, (n f
3).

本発明による信号測定法に従って、第1の区間(t=0
〜T)と第2の区間(t=T〜2T)の受信応答の二乗
波形の積分値の差をに=1からKまで累積した値をPと
し、S、Ω)=S、K(O)とすると、S、■<s、a
)、E、(1)、9E、D)であるので、これら微小項
を無視すれば、近似的に P/K =S、 (0)+E+M、−M2(41となる
。ただし、Eは(2)式右辺の第2項(正負の値をとる
)の累積値をKで割った唾であり、MlとM2はそ九ぞ
れ(2)式、(3)式の右辺第3項の雑音パワーの累積
値をKで割った匝を表わす。
According to the signal measurement method according to the invention, the first interval (t=0
~T) and the integral value of the square waveform of the reception response in the second interval (t = T ~ 2T) = P is the accumulated value from 1 to K, and S, Ω) = S, K(O ), then S, ■<s, a
), E, (1), 9E, D), so if these minute terms are ignored, it becomes approximately P/K = S, (0) + E + M, -M2 (41. However, E is ( 2) The cumulative value of the second term (takes positive and negative values) on the right side of the equation is divided by K, and Ml and M2 are the third term on the right side of equation (2) and (3), respectively. It represents the cumulative value of noise power divided by K.

Ekρ)は互に無相関な信号と雑音の積の積分筐である
から、Kが大きくなれば(4)式においてEは充分に無
視できるほど小さい値となる。またMlとM2はそれぞ
れの区間の雑音パワーの平均値であるが、Kが大きくな
れば「大数の法則」に従って、それらは一つの値に近づ
き、その差は十分に小さいものとなる。よって、Kが大
きくなれば十分な近似でもって P/に=SI(01(5) と表わすことができる。
Since Ekρ) is an integral case of the product of a mutually uncorrelated signal and noise, as K becomes larger, E becomes a sufficiently small value to be ignored in equation (4). Furthermore, Ml and M2 are the average values of the noise power in each section, and as K becomes larger, they approach one value according to the "law of large numbers" and the difference between them becomes sufficiently small. Therefore, if K becomes large, P/ can be expressed as =SI(01(5)) with sufficient approximation.

本発明による信号測定法の雑音抑圧効果を一般的に示す
ことは難かしいが、次のような場合を考えてその効果が
大きいこを考慮できょう。すなわち、特殊な場合として
、K回の測定におけるある1つの測定の第1もしくは第
2の区間だけに雑音が加わったとすると、そのような場
合の雑音抑圧は1/にとなる。第1、第2の区間共に雑
音があれば(通常の場合)は、雑音抑圧効果は上記の場
合よりもはるかに大きい。従って同期加算法に比べて本
測定法は非常に優れた雑音抑圧法を提供することができ
ると言える。
Although it is difficult to demonstrate the noise suppression effect of the signal measurement method according to the present invention in general, it is possible to consider the following cases to see how large the effect is. That is, as a special case, if noise is added only to the first or second section of one measurement in K measurements, the noise suppression in such a case will be 1/. If there is noise in both the first and second sections (normal case), the noise suppression effect is much greater than in the above case. Therefore, it can be said that this measurement method can provide an extremely superior noise suppression method compared to the synchronous addition method.

更に、本信号測定法においては、応答信号の累積におい
て、信号成分が第1(もしくはどちらか片方)の区間に
入るようにすればよいので、同期に対する精度は、従来
の同期加算法に比べるとはるかに低いものでよい。従っ
て実用化に際して経済的な装置を提供することが可能と
なる。
Furthermore, in this signal measurement method, the signal component only needs to fall into the first (or either) interval in the accumulation of response signals, so the accuracy of synchronization is lower than that of the conventional synchronous addition method. It could be much lower. Therefore, it is possible to provide an economical device when put into practical use.

次に、図面を用いて本発明の詳細な説明する。Next, the present invention will be explained in detail using the drawings.

図1は本発明の実施例に係わる信号測定装置のブロック
図である。周期2Tで発生するパルスを所望の帯域フィ
ルタを通し、音響信号としてスピーカから出力する。一
方、受信側ではマイクロホンによって電気信号に変換し
、帯域フィルタを通し、適切な振幅を7ツテネータで与
えて、波形の二乗を求め、差分累積器によって第1の区
間の積分値と第2の区間の積分値の差を累積する。パル
ス発生器から最後のパルスが発せられ、最後の差分累積
が終った時点でその結果が出力部で表示される。例えば
図1のスピーカとマイクロホンの間に壁があり、その遮
音度の測定を行なっているものとすれば、スピーカ側で
の音圧は1回のパルス発生で得た二乗積分値で与え、壁
を隔てた側では20回の累積を行なったとすると、累積
値を20で割って畠力値とすれば、遮音度はスピーカ側
の二乗積分値を呂力値で割って対数で表わしたデシベル
値によって与えられることになる。
FIG. 1 is a block diagram of a signal measuring device according to an embodiment of the present invention. Pulses generated at a period of 2T are passed through a desired bandpass filter and output as an acoustic signal from a speaker. On the other hand, on the receiving side, the signal is converted into an electrical signal by a microphone, passed through a bandpass filter, and an appropriate amplitude is given by a 7-tensioner to obtain the square of the waveform. Accumulate the difference between the integral values of . When the last pulse is emitted from the pulse generator and the last difference accumulation is completed, the result is displayed at the output. For example, if there is a wall between the speaker and the microphone in Figure 1, and the degree of sound insulation is being measured, the sound pressure at the speaker side is given by the square integral value obtained from one pulse generation, and the wall If the cumulative value is divided by 20 to obtain the power value, then the sound insulation degree is the decibel value obtained by dividing the square integral value on the speaker side by the power value and expressed in logarithm. It will be given by

図1で示された装置の演算に係わる部分全体または一部
をデジタル信号処理によって行なってもよい。例えば7
ツテネータ出力をAD変換器でデジタル信号として、以
下の信号処理をデジタル演算で行なっても・よい。
All or part of the calculation-related portion of the device shown in FIG. 1 may be performed by digital signal processing. For example 7
The output of the tutenator may be converted into a digital signal by an AD converter, and the following signal processing may be performed by digital calculation.

また、演算処理が増して特に益するところはないが、第
1の区間の長さと第2の区間の長さを違えた場合は、そ
れらの長さをT、およびT2とすると、第1の区間の積
分値をT2倍、第2の区間の積分値を11倍してからそ
れら積分値の差を求めるようにして、差分を計測区間に
渡って累積した値を得るようにすることができる。
Also, although there is no particular benefit from the increase in calculation processing, if the length of the first section and the length of the second section are different, then if those lengths are T and T2, then the first section will be The integral value of the interval can be multiplied by T2, the integral value of the second interval can be multiplied by 11, and then the difference between these integral values can be calculated, thereby obtaining a value that accumulates the difference over the measurement interval. .

尚、本発明は上記の実施例に限定されるものではない1
例えば第1の区間と第2の区間の積分値を信号計測区間
に渡ってそれぞれ合計し、それらの差を求めて差分を累
積した値を得てもよい。
Note that the present invention is not limited to the above embodiments.
For example, the integral values of the first section and the second section may be summed over the signal measurement section, and the difference between them may be determined to obtain a value that is an accumulation of the differences.

4、図の簡単な説明 図1は本発明に基づく信号測定装置(音響測定)のブロ
ック図とその各部の波形例を示したものである。
4. Brief Explanation of the Figures Figure 1 shows a block diagram of a signal measurement device (acoustic measurement) based on the present invention and waveform examples of each part thereof.

Claims (1)

【特許請求の範囲】 1、送信部から間欠的に発せられる各信号に同期して信
号計測を行なうようにされた受信部において、前記各信
号の受信波形から二乗波形もしくは整流波形を求めるこ
と、前記二乗波形もしくは整流波形の第1の区間の積分
値と第2の区間の積分値の差分を前記信号計測の区間累
積した値を求めること、前記累積した値に対応する量を
出力すること、を少なくとも含んで成る信号測定法。 2、前記積分値は、前記二乗波形もしくは整流波形の標
本化値を加算して得るものである特許請求の範囲第1項
記載の信号測定法。 3、前記差分は、前記標本化値を前記第1の区間で加算
したものから前記第2の区間での前記標本化値を差し引
いて得るものである特許請求の範囲第1項および第2項
記載の信号測定法。 4、前記第2の区間は、前記各信号が消滅もしくは十分
減衰した時間に設定されたものである特許請求の範囲第
1項、第2項および第3項記載の信号測定法。 5、前記第1の区間の長さと前記第2の区間の長さは等
しいものである特許請求の範囲第1項ないし第4項記載
の信号測定法。 6、前記信号計測は遮音測定に関するものである特許請
求の範囲第1項ないし第5項記載の信号測定法。
[Claims] 1. Determining a squared waveform or a rectified waveform from the received waveform of each signal in a receiving section configured to perform signal measurement in synchronization with each signal intermittently emitted from the transmitting section; determining a value by accumulating the difference between an integral value in a first interval and an integral value in a second interval of the squared waveform or rectified waveform over the interval of the signal measurement, and outputting a quantity corresponding to the accumulated value; A signal measurement method comprising at least: 2. The signal measuring method according to claim 1, wherein the integral value is obtained by adding sampled values of the square waveform or rectified waveform. 3. Claims 1 and 2, wherein the difference is obtained by subtracting the sampled value in the second interval from the sum of the sampled values in the first interval. Signal measurement method described. 4. The signal measuring method according to claims 1, 2, and 3, wherein the second interval is set at a time when each of the signals disappears or sufficiently attenuates. 5. The signal measuring method according to claims 1 to 4, wherein the length of the first section and the length of the second section are equal. 6. The signal measurement method according to any one of claims 1 to 5, wherein the signal measurement is related to sound insulation measurement.
JP8746487A 1987-04-09 1987-04-09 Signal measurement Pending JPS63252263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8746487A JPS63252263A (en) 1987-04-09 1987-04-09 Signal measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8746487A JPS63252263A (en) 1987-04-09 1987-04-09 Signal measurement

Publications (1)

Publication Number Publication Date
JPS63252263A true JPS63252263A (en) 1988-10-19

Family

ID=13915609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8746487A Pending JPS63252263A (en) 1987-04-09 1987-04-09 Signal measurement

Country Status (1)

Country Link
JP (1) JPS63252263A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920865B2 (en) * 1977-07-01 1984-05-16 株式会社日立製作所 EGR mechanism of engine with turbo gear

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920865B2 (en) * 1977-07-01 1984-05-16 株式会社日立製作所 EGR mechanism of engine with turbo gear

Similar Documents

Publication Publication Date Title
US5437506A (en) System for measuring the transfer time of a sound-wave in a gas and thereby calculating the temperature of the gas
JPH02280199A (en) Reverberation device
JP2012058701A (en) Acoustic device
US7260227B2 (en) Method and device for measuring sound wave propagation time between loudspeaker and microphone
CN105103219A (en) Noise reduction method
CN113194381B (en) Volume adjusting method and device, sound equipment and storage medium
JPS63252263A (en) Signal measurement
RU59244U1 (en) NOISE DOSIMETER
JP2648626B2 (en) Acoustic fluid temperature measuring device and measuring method
JPS60108779A (en) Sound source position measuring apparatus
JPH0225126B2 (en)
JP3244252B2 (en) Background noise average level prediction method and apparatus
JPS6244349Y2 (en)
JPS63235826A (en) Reverberation measuring method
JP2000316199A (en) Howling preventing device
JPH0454439B2 (en)
Hak et al. Effect of stimulus speed error on measured room acoustic parameters
JPH02309800A (en) Sound field controller
JPS6110182Y2 (en)
JPS6153650B2 (en)
SU714660A1 (en) Impedance characteristics measuring device
JPS6048693B2 (en) Reverberation curve measuring device
SU588493A1 (en) Meter of ultrasound propagation time in materials
JPH0543979B2 (en)
JPH0135288B2 (en)