JPS63251816A - Preventing means for abnormal vibration of pressure reducing valve - Google Patents

Preventing means for abnormal vibration of pressure reducing valve

Info

Publication number
JPS63251816A
JPS63251816A JP8770387A JP8770387A JPS63251816A JP S63251816 A JPS63251816 A JP S63251816A JP 8770387 A JP8770387 A JP 8770387A JP 8770387 A JP8770387 A JP 8770387A JP S63251816 A JPS63251816 A JP S63251816A
Authority
JP
Japan
Prior art keywords
pressure
valve
fluid
orifice
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8770387A
Other languages
Japanese (ja)
Other versions
JP2565706B2 (en
Inventor
Takeshi Yokoyama
武志 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TLV Co Ltd
Original Assignee
TLV Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TLV Co Ltd filed Critical TLV Co Ltd
Priority to JP62087703A priority Critical patent/JP2565706B2/en
Publication of JPS63251816A publication Critical patent/JPS63251816A/en
Application granted granted Critical
Publication of JP2565706B2 publication Critical patent/JP2565706B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Details Of Valves (AREA)
  • Control Of Fluid Pressure (AREA)

Abstract

PURPOSE:To eliminate the influence applied to a pressure reducing valve by securing such a mechanism where a valve body having an orifice at its center has displacement against the energizing force of a spring set in a casing when the secondary side pressure has a sudden change and the increase value of the secondary side pressure is ejected to outside through a hole drilled through the casing to outside. CONSTITUTION:When the primary side pressure has a normal slow change, a fluid can pass freely through an orifice 88 having a diameter smaller than those of pipes set before and after the orifice 88. However, the fluid cannot pass completely through the orifice 88 in case the pressure rises up due to a sudden change of pressure caused by the water hammer of a pipe set at the secondary side. Thus, the fluid displaces a valve body 90 toward the exit side against the force of a spring 92. Then, the side face of the body 90 opens an injecting port 94 and the fluid of the high pressure is ejected into the air. As a result, an instantaneous high-pressure fluid does not flow to a lower chamber of a diaphragm 28 and therefore both the diaphragm 28 and a pilot valve can have the normal stable actions. Thus, a pressure reducing valve is not affected even though the water hammer is produced.

Description

【発明の詳細な説明】 産業上の利用分野 本考案は蒸気や圧縮空気等の配管系に取り付けて、二次
側の流体圧力を一定の設定圧力に保つ減圧弁に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a pressure reducing valve that is attached to a piping system for steam, compressed air, etc. to maintain fluid pressure on the secondary side at a constant set pressure.

従来技術 従来の減圧弁を第2図に示す。本減圧弁は二次側圧力を
減圧弁本体内で検出するのではなく、ある程度離れた距
離の二次側配管から検出する外部検出型を示す。
Prior Art A conventional pressure reducing valve is shown in FIG. This pressure reducing valve is an external detection type in which the secondary side pressure is not detected within the pressure reducing valve main body, but from the secondary side piping located a certain distance away.

概略機構は減圧弁部1と気水分離器部2と排水弁部3と
から成る。本体10でへロ12.主弁口14、出口16
を形成する。入口12は一次側の高圧流体源に出口16
は二次側低圧域に接続する。
The general mechanism consists of a pressure reducing valve section 1, a steam/water separator section 2, and a drain valve section 3. Hero 12 with main body 10. Main valve port 14, outlet 16
form. The inlet 12 connects the outlet 16 to the primary high pressure fluid source.
is connected to the secondary low pressure area.

主弁口は弁座部材で形成する。主弁体18を主弁口14
を形成する弁座15の入口側端にコイルばねで弾性的に
付勢して配置する。
The main valve port is formed by a valve seat member. The main valve body 18 is connected to the main valve port 14
The valve seat 15 is elastically biased by a coil spring and placed at the inlet side end of the valve seat 15 forming the valve seat 15.

ピストン20をシリンダ22内に開動自在に配置し、ピ
ストン棒17を主弁口14を通して主弁体18の中央突
起棒13に当接せしめる。ビストンの下面とピストン棒
17とをほぼ半球面で接続する。入口12とピストン2
0の上部空間、叩らピストン室を連通ずる一次圧通路2
4にパイロット弁26を配置する。ダイヤフラム28を
その外周縁をフランジ30.32の間に挟んで取り付け
る。ダイヤフラム28の下方空間は二次圧通路34を通
して出口16に連通ずる。しかしこの場合、外部検出型
の為二次圧通路34の途中に中栓72を配置し、流体の
流れを断つ。その代わりパイロット弁26を収容するパ
イロットボディ74のフランジ部32付近に開口し、導
入管76を連結し、二次側の圧力をダイヤフラム下面に
導く。
A piston 20 is disposed in a cylinder 22 so as to be freely openable, and a piston rod 17 is brought into contact with a central protruding rod 13 of a main valve body 18 through a main valve port 14. The lower surface of the piston and the piston rod 17 are connected by a substantially hemispherical surface. Inlet 12 and piston 2
Primary pressure passage 2 that communicates the upper space of 0 and the beating piston chamber
A pilot valve 26 is disposed at 4. The diaphragm 28 is mounted with its outer peripheral edge sandwiched between the flanges 30,32. The space below the diaphragm 28 communicates with the outlet 16 through a secondary pressure passage 34 . However, in this case, since it is an external detection type, an inner plug 72 is placed in the middle of the secondary pressure passage 34 to cut off the flow of fluid. Instead, it opens near the flange portion 32 of the pilot body 74 that accommodates the pilot valve 26, connects the introduction pipe 76, and guides the pressure on the secondary side to the lower surface of the diaphragm.

パイロット弁26の弁棒36の頭部端面はダイヤフラム
28の中央下面に当接する。
The head end surface of the valve stem 36 of the pilot valve 26 abuts against the central lower surface of the diaphragm 28 .

ダイヤフラム28の上面にばね座38を介して、圧力設
定用のコイルばね40を当接せしめる。調節ねじ44を
スフリングケース70にねじ結合して取り付ける。
A pressure setting coil spring 40 is brought into contact with the upper surface of the diaphragm 28 via a spring seat 38. The adjustment screw 44 is screwed and attached to the suspension case 70.

調節ねじ44を左右に回すと、圧力設定ばね40のダイ
ヤフラム28を押し下げる弾性力が変る。
By turning the adjustment screw 44 left and right, the elastic force of the pressure setting spring 40 that pushes down the diaphragm 28 changes.

この圧力設定ばね40の弾性力を基準値として、ダイヤ
フラム28はその下面に作用する導入管76からの二次
側圧力に応じて湾曲し、弁棒36を変位せしめてパイロ
ット弁26を開閉せしめる。
Using the elastic force of the pressure setting spring 40 as a reference value, the diaphragm 28 bends in response to the secondary side pressure from the introduction pipe 76 acting on its lower surface, displacing the valve rod 36 and opening and closing the pilot valve 26.

この結果、−次側流体圧力がピストン室に導入され、ピ
ストン20が駆動され、主弁体18が変位せしめられ、
入口12の流体が弁口14を通って出口16に流れる。
As a result, the next side fluid pressure is introduced into the piston chamber, the piston 20 is driven, and the main valve body 18 is displaced.
Fluid at inlet 12 flows through valve port 14 to outlet 16.

これは二次側の流体圧力が低下すると弁口14が開き、
上昇すると閉じる様に自動的に作動する。
This is because when the fluid pressure on the secondary side decreases, the valve port 14 opens.
It automatically closes when it rises.

主弁口14の下方に円筒形状の隔壁部材46を取り付け
、これを囲む本体10との間に環状空間48を形成し、
その上部はコーン形状のスクリーン50を通して入口1
2に連通し、下部は排水弁室52の上部に連通ずる。ま
た、排水弁室52の上部は隔壁部材46の中央開口を通
して主弁口14に連通ずる。環状空間48には傾斜壁か
ら成る旋回羽根54を配置する。
A cylindrical partition member 46 is attached below the main valve port 14, and an annular space 48 is formed between it and the main body 10 surrounding the partition wall member 46,
The upper part of the inlet 1 is passed through a cone-shaped screen 50.
2, and the lower part communicates with the upper part of the drain valve chamber 52. Further, the upper part of the drain valve chamber 52 communicates with the main valve port 14 through the central opening of the partition member 46. A swirl vane 54 made of an inclined wall is arranged in the annular space 48.

従って、入口12の流体は、主弁口14が開いて環状空
間48を通過するとぎに、旋回羽根54で方向を曲げら
れて旋回せしめられる。液体は外側に撮り出されて周囲
の本体内壁に当たって排水弁室52に流下し、軽い気体
は中央部を旋回して、隔壁部材46の中央開口から主弁
口14に向い、そこを通過して出口16に流れ去る。
Therefore, when the main valve port 14 opens and the fluid in the inlet 12 passes through the annular space 48, its direction is bent by the swirl vanes 54 and the fluid is swirled. The liquid is taken out to the outside, hits the surrounding inner wall of the main body, and flows down into the drain valve chamber 52, while the light gas swirls around the center and heads from the central opening of the partition member 46 toward the main valve port 14, passing there. Flows away to outlet 16.

排水弁室52の底部には、排水口56に通じる排水弁口
58を形成する。フロートカバー62で覆って、球形の
弁フロート60を変位自在に収容する。フロートカバー
62の上部には通気孔64を開ける。
A drain valve port 58 communicating with the drain port 56 is formed at the bottom of the drain valve chamber 52 . Covered with a float cover 62, a spherical valve float 60 is movably accommodated. A ventilation hole 64 is opened in the upper part of the float cover 62.

従って、弁フロート60は排水弁室52の水位と共に浮
上降下して排水弁口58を開閉し、排水弁室52に溜る
水を自動的に排除する。
Therefore, the valve float 60 floats up and down with the water level in the drain valve chamber 52 to open and close the drain valve port 58, and automatically removes water accumulated in the drain valve chamber 52.

本発明が解決しようとする問題点 前述した減圧弁を含め現存する全ての減圧弁に於て、蒸
気使用機器の始動時、又はバルブの急開弁によって減圧
弁の二次側に急激な流れが生じると、著しい撮動を伴う
ウォーターハンマが二次側配管で発生する。このつを−
ターハンマによる急激な圧力上弁が、減圧弁のダイヤフ
ラムの下面に作用してパイロット弁が急閉する。それに
伴って主弁口を閉弁せしめ、二次側への流体を停止し、
圧力は急降下する。再びダイヤフラムが圧力設定ばねに
より下へ撓み、パイロット弁が急開して二次側圧力が急
上昇する。
Problems to be Solved by the Present Invention In all existing pressure reducing valves, including the pressure reducing valve mentioned above, a sudden flow occurs on the secondary side of the pressure reducing valve when steam-using equipment is started or due to a sudden opening of the valve. When this occurs, water hammer with significant imaging occurs in the secondary piping. This one-
The sudden increase in pressure caused by the turret hammer acts on the lower surface of the diaphragm of the pressure reducing valve, causing the pilot valve to close suddenly. Accordingly, the main valve port is closed and the fluid to the secondary side is stopped.
The pressure drops rapidly. The diaphragm is bent downward again by the pressure setting spring, the pilot valve opens suddenly, and the secondary pressure rises rapidly.

この様に運転初期に発生するウォーターハンマは減圧弁
のチャタリングを誘発し、ざらにはウォーターハンマを
増長させることになる。
In this way, the water hammer that occurs at the beginning of operation induces chattering in the pressure reducing valve, which ultimately increases the water hammer.

従って、本発明の技術的課題は、二次側配管でウォータ
ーハンマが発生してもなんら減圧弁に影響を与えること
がない構成の減圧弁を得ることにある。
Therefore, a technical object of the present invention is to obtain a pressure reducing valve having a structure that does not affect the pressure reducing valve in any way even if water hammer occurs in the secondary side piping.

問題点を解決するための技術的手段 上記問題点を解決する為に講じた本発明の技術的手段は
、ダイヤフラムの上面に圧力設定ばねの弾性力を作用せ
しめ、下面に二次側配管圧力を作用せしめ、両力のバラ
ンスにより弁口を開閉して流邑を制御することにより、
二次側圧力を一定に保つ構造の減圧弁に於て、二次側の
圧力をダイヤフラム下面に導入する通路に、ケーシング
内に付勢ばねを配置し、そのばねに対し入口側にオリフ
ィスを開けた弁体を当接せしめ、弁体が入口からの急激
な圧力でばねを付勢して出口側へ移動した時に、ケーシ
ング側壁に設けられた孔が開口し、その孔から流体を外
部へ排除する機構の衝撃弁を取付けたものである。
Technical means for solving the problems The technical means of the present invention taken to solve the above problems is to apply the elastic force of a pressure setting spring to the upper surface of the diaphragm, and to apply the pressure of the secondary piping to the lower surface. By controlling the flow by opening and closing the valve port with the balance of both forces,
In a pressure reducing valve that maintains a constant pressure on the secondary side, a biasing spring is placed inside the casing in the passage that introduces the pressure on the secondary side to the lower surface of the diaphragm, and an orifice is opened on the inlet side of the spring. When the valve body contacts the valve body and moves toward the outlet side by urging the spring with the sudden pressure from the inlet, the hole provided in the side wall of the casing opens and the fluid is expelled from the hole. It is equipped with an impact valve with a mechanism that

この衝撃弁は外部検出型減圧弁でも、内部検出型のもの
でも両方に適応できるものである。
This impact valve is applicable to both external detection type pressure reducing valves and internal detection type pressure reducing valves.

作用 上記衝撃弁は通常の圧力変化による流体の流れに対して
は弁体のオリフィスを円滑に通過させるが、ウォーター
ハンマによる急激な圧力上昇があれば、流体がオリイス
を通過しきれずに弁体が付勢ばねを付勢して出口側へ移
動する。この時、ケーシング側面に設けられた孔から流
体が排除される。但し、ケーシング側面に設けられた孔
は通常時には弁体の側面で塞がれているので流体は流出
しない。
Function The above-mentioned impact valve allows fluid to pass smoothly through the orifice of the valve body due to normal pressure changes, but if there is a sudden pressure increase due to a water hammer, the fluid cannot pass through the orifice and the valve body energize the biasing spring and move to the exit side. At this time, fluid is expelled from the holes provided in the side of the casing. However, since the hole provided in the side surface of the casing is normally closed by the side surface of the valve body, no fluid flows out.

発明の効果 二次側配管でウォーターハンマが発生して急激な圧力変
動があっても、衝撃弁により減圧弁の圧力検知部、つま
りダイヤフラム室になんら影響を及ぼすことがない。従
って常に安定した二次圧を保つように作動する。又この
ことにより、ウォーターハンマを増長させることはなく
、早く所望の設定圧に落ちつく。
Effects of the Invention Even if water hammer occurs in the secondary piping and there is a sudden pressure change, the impact valve does not have any effect on the pressure sensing part of the pressure reducing valve, that is, the diaphragm chamber. Therefore, it operates to maintain stable secondary pressure at all times. Moreover, this prevents the water hammer from increasing and quickly settles down to the desired set pressure.

実施例 上記の技術的手段の具体例を示す実施例を説明する(第
1図参照)。
Embodiment An embodiment illustrating a specific example of the above technical means will be described (see FIG. 1).

第1図は第2図の従来の減圧弁のパイロットボディ74
のダイヤフラム下面室に通じる接続口に衝撃弁80を取
付けたものである。
Figure 1 shows the pilot body 74 of the conventional pressure reducing valve shown in Figure 2.
An impact valve 80 is attached to the connection port leading to the lower chamber of the diaphragm.

衝撃弁80は中空で入口を有する弁ケーシング82と中
空で回りに環状の空間を有するホルダー84をねじ部8
6で螺合する。弁ケーシング82の中空底部にオリフィ
ス88を開口した弁体90を配置し、反対側にばね92
を収容して弁体90を入口側へ付勢せしめる。弁ケーシ
ング82の円筒部に於て、弁体90が底部104に着座
した状態で、その側面に当接する部分に噴出口94を開
口する。弁体90の側面と弁ケーシング82の円周壁に
当接する部分に0リング96を介在させる。
The impact valve 80 includes a valve casing 82 that is hollow and has an inlet, and a holder 84 that is hollow and has an annular space around the threaded portion 8 .
Screw together with 6. A valve body 90 with an orifice 88 is disposed in the hollow bottom of the valve casing 82, and a spring 92 is disposed on the opposite side.
is accommodated to urge the valve body 90 toward the inlet side. In the cylindrical portion of the valve casing 82, a spout 94 is opened at a portion of the cylindrical portion of the valve casing 82 that contacts the side surface of the valve body 90 while the valve body 90 is seated on the bottom portion 104. An O-ring 96 is interposed between the side surface of the valve body 90 and the portion that abuts against the circumferential wall of the valve casing 82.

ホルダー84の出口部にねじ部を形成し、減圧弁のパイ
ロットボディに結合する。弁ケーシング82の入口部に
ねじを形成し、二次側からの圧力導入管と接続する。参
照番号98,100,106はシール部材である。
A threaded portion is formed at the outlet portion of the holder 84 and is coupled to the pilot body of the pressure reducing valve. A thread is formed at the inlet of the valve casing 82 and connected to a pressure introduction pipe from the secondary side. Reference numbers 98, 100, and 106 are seal members.

ホルダー84の外周壁には目盛102が記されており、
これを基準に弁ケーシング82と相対的に回転させるこ
とにより、ばね92が弁体90を押し付ける力が変化す
る。
A scale 102 is marked on the outer peripheral wall of the holder 84.
By rotating it relative to the valve casing 82 based on this, the force with which the spring 92 presses the valve body 90 changes.

通常の緩かな二次側の圧力変動時の流体は、前後の管径
より絞ったオリフィス88でも十分に通過するが、二次
側配管のウォーターハンマによる急激な圧力変動による
圧力上昇があれば、流体はオリフィス88を通過しきれ
ずに弁体をばね92に打勝って出口側へ変位させる。結
果弁体90の側面が噴出口94を開口せしめて高圧流体
を大気へ排除する。従って瞬間的な高圧流体はダイヤフ
ラム下面室へは流れず、ダイヤフラム及びパイロット弁
は安定した通常の動作をすることができる。
Fluid normally passes through the orifice 88, which is narrower than the diameter of the front and rear pipes, when the pressure fluctuates slowly on the secondary side, but if there is a pressure rise due to sudden pressure fluctuations due to the water hammer in the secondary piping, The fluid cannot completely pass through the orifice 88 and overcomes the spring 92 to displace the valve body toward the outlet side. As a result, the side surface of the valve body 90 opens the spout 94 to expel the high pressure fluid to the atmosphere. Therefore, instantaneous high-pressure fluid does not flow into the chamber below the diaphragm, and the diaphragm and pilot valve can perform stable and normal operations.

上記目盛102は二次側設定圧力値の大小により弁体9
0を付勢するばね92の弾性力を調整する場合に用いる
。二次側圧力が低圧の場合には弁体90が弱い圧力でも
開弁するようにばね92を伸長状態にし、高圧の場合に
はすぐに開弁じないように圧縮状態に設定して使う。例
えば二次側圧力が5Kg/crAであれば、これに0.
5に’j/ctd(任意)加算して設定しておけば、二
次側圧力が5゜5に9/cm以上になった時にその圧力
増加分が大気へ逃げる。
The scale 102 is set on the valve body 9 depending on the magnitude of the secondary set pressure value.
This is used when adjusting the elastic force of the spring 92 that biases the spring 92. When the secondary side pressure is low, the spring 92 is set in an expanded state so that the valve body 90 opens even at a weak pressure, and when the pressure is high, the spring 92 is set in a compressed state so that the valve does not open immediately. For example, if the secondary pressure is 5Kg/crA, then 0.
If the setting is made by adding 'j/ctd (optional) to 5, when the secondary pressure exceeds 5°5/ctd (optional), the increased pressure will escape to the atmosphere.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の具体的実施例の衝撃弁を減圧弁に取付
けた状態の断面図、第2図は従来の減圧弁の断面図であ
る。
FIG. 1 is a sectional view of an impact valve according to a specific embodiment of the present invention attached to a pressure reducing valve, and FIG. 2 is a sectional view of a conventional pressure reducing valve.

Claims (1)

【特許請求の範囲】[Claims] 1、ダイヤフラムの上面に圧力設定ばねの弾性力を作用
せしめ、下面に二次側配管圧力を作用せしめ、両力のバ
ランスにより弁口を開閉して流量を制御することにより
、二次側圧力を一定に保つ構造の減圧弁に於て、二次側
圧力をダイヤフラムの下面に導入する通路の途中に、二
次側圧力の急激な変動時に、ケーシング内部に備えられ
たばねの付勢力に打勝って、中央にオリフィスを開けた
弁体が変位し、その二次側圧力増加分をケーシングに開
口された外部に通じる孔から外部へ排除する機器を配置
したことを特徴とする減圧弁の異常振動防止手段。
1. The elastic force of the pressure setting spring is applied to the top surface of the diaphragm, and the secondary piping pressure is applied to the bottom surface, and the balance of both forces opens and closes the valve port to control the flow rate, thereby controlling the secondary pressure. In a pressure reducing valve that is designed to maintain a constant pressure, there is a valve in the middle of the passage that introduces the secondary pressure to the lower surface of the diaphragm, which overcomes the biasing force of the spring provided inside the casing when the secondary pressure fluctuates rapidly. , a method for preventing abnormal vibration of a pressure reducing valve, characterized in that a valve body with an orifice in the center is displaced, and a device is disposed to remove the increased pressure on the secondary side to the outside through a hole opened in the casing that communicates with the outside. means.
JP62087703A 1987-04-08 1987-04-08 Pressure reducing valve Expired - Fee Related JP2565706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62087703A JP2565706B2 (en) 1987-04-08 1987-04-08 Pressure reducing valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62087703A JP2565706B2 (en) 1987-04-08 1987-04-08 Pressure reducing valve

Publications (2)

Publication Number Publication Date
JPS63251816A true JPS63251816A (en) 1988-10-19
JP2565706B2 JP2565706B2 (en) 1996-12-18

Family

ID=13922278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62087703A Expired - Fee Related JP2565706B2 (en) 1987-04-08 1987-04-08 Pressure reducing valve

Country Status (1)

Country Link
JP (1) JP2565706B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102155449B (en) * 2011-03-31 2015-11-25 太原理工大学 Numerically controlled leading type proportional flow valve

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5844607U (en) * 1981-09-11 1983-03-25 名張近鉄ガス株式会社 pressure control device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5844607U (en) * 1981-09-11 1983-03-25 名張近鉄ガス株式会社 pressure control device

Also Published As

Publication number Publication date
JP2565706B2 (en) 1996-12-18

Similar Documents

Publication Publication Date Title
US4188971A (en) Fluid cutout valve
JP3066511B2 (en) On-off valve for fire equipment
JPS63251816A (en) Preventing means for abnormal vibration of pressure reducing valve
EP0266007B1 (en) Piston restraining construction of pressure reducing valve
US4343327A (en) Pressure responsive, manually opening valve
CA1294513C (en) Piston structure of pressure reducing valve
JPH0449695Y2 (en)
JPH0449696Y2 (en)
JPH0738138B2 (en) Pressure reducing valve
JPH0250210A (en) Pressure reducing valve
JPH0664497B2 (en) Main valve structure of pressure reducing valve
JPH01234908A (en) Pressure reducing valve
JPS63174112A (en) Reducing valve
JPH0620167Y2 (en) Relief mechanism of pressure reducing valve
JPH0792706B2 (en) Pressure reducing valve
JP2565725B2 (en) Pressure reducing valve
JP3297819B2 (en) Pressure regulating valve
JPH0449691Y2 (en)
JPH0535888B2 (en)
JPH02184905A (en) Reducing valve
JPS62131311A (en) Pressure reducing valve
JPH02158812A (en) Pressure reducing valve
JPH0436406B2 (en)
JPH01234907A (en) Pressure reducing valve
JPH01129312A (en) Main valve spring structure for pressure reducing valve

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees