JPS63251762A - Drive for gas refrigerator - Google Patents

Drive for gas refrigerator

Info

Publication number
JPS63251762A
JPS63251762A JP8510987A JP8510987A JPS63251762A JP S63251762 A JPS63251762 A JP S63251762A JP 8510987 A JP8510987 A JP 8510987A JP 8510987 A JP8510987 A JP 8510987A JP S63251762 A JPS63251762 A JP S63251762A
Authority
JP
Japan
Prior art keywords
gas refrigerator
power amplifier
gas
refrigerator
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8510987A
Other languages
Japanese (ja)
Inventor
岩本 邦雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8510987A priority Critical patent/JPS63251762A/en
Publication of JPS63251762A publication Critical patent/JPS63251762A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/001Gas cycle refrigeration machines with a linear configuration or a linear motor

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はガス冷凍機の匍IFIするために使用し、低
消費電力化を達成できる駆動装置である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is a drive device that is used for IFI of a gas refrigerator and can achieve low power consumption.

〔従来の技術〕[Conventional technology]

まず、従来のガス冷凍機の駆動装置について説明する。 First, a conventional gas refrigerator drive device will be explained.

第5図は従来のガス冷凍機の駆動装置を示す図で、 1
1)は正弦f&を発生するAC発振器、12)はアナロ
グ型のパワーアンプ、(3)は熱力学サイクルに基づく
動作をし、低昌を作るガス冷凍機、 +41/ri永久
磁石を持つ磁気回路、(5)の磁気回路14)に交差す
るように巻想したコイル、161はAC発振器1)によ
り励振されるコイルに同期して動(ピストン、 f71
f−1ピストンにより圧縮された媒体の熱を除去する熱
交換器を含む冷却器、18ンは膨張時、媒体から熱をう
ばう熱交神器を含む蓄熱器である。
Figure 5 is a diagram showing the drive device of a conventional gas refrigerator.
1) is an AC oscillator that generates sine f&, 12) is an analog power amplifier, (3) is a gas refrigerator that operates based on a thermodynamic cycle and creates a low temperature, and a magnetic circuit with a +41/ri permanent magnet. , (5) A coil wound to cross the magnetic circuit 14), 161 is a piston (f71) that moves in synchronization with the coil excited by the AC oscillator 1).
The f-1 cooler includes a heat exchanger that removes heat from the medium compressed by the piston, and the 18-inch condenser is a heat storage device that includes a heat exchanger that removes heat from the medium during expansion.

上記従来のガス冷凍機の駆動装置は正弦波のAC発振器
+1)によりコイル(5)が励振される。
In the conventional gas refrigerator driving device described above, the coil (5) is excited by a sinusoidal AC oscillator (+1).

コイル(5)は磁気回路14)と研気結合しているため
This is because the coil (5) is coupled with the magnetic circuit 14).

AC発撮器【1)に同期して、a気回路(4)の磁束の
方向と直交する方向に力を受け、動作する。
It operates in synchronization with the AC oscillator [1], receiving a force in a direction perpendicular to the direction of the magnetic flux of the a-air circuit (4).

すなわち、ピストン(6)はコイ/l/ +5) K直
結しているためコイルの動作に従い、往復運動をするこ
とができる。
That is, since the piston (6) is directly connected to the coil/l/+5)K, it can reciprocate according to the operation of the coil.

コイル15)が動作する周波数はガス冷凍機(3)のコ
イル、ピストン重量、媒体の圧力バネ力の固有振動数と
ほぼ等しいように設定しである。
The frequency at which the coil 15) operates is set to be approximately equal to the natural frequency of the coil of the gas refrigerator (3), the weight of the piston, and the pressure spring force of the medium.

このようにしてピストン+61は動作し、これに基づき
ピストン内;61の媒体が圧縮、膨張が繰返される。
In this manner, the piston 61 operates, and based on this, the medium inside the piston 61 is repeatedly compressed and expanded.

媒体が圧縮される時は圧縮熱を発生するため熱交換器を
含めた冷却器(7)で冷し2逆に膨張時には媒体が冷却
すべき物体から熱を吸収する熱交換を含む蓄熱器18)
で気体が流れるようにしたもので。
When the medium is compressed, it is cooled by a cooler (7) including a heat exchanger to generate compression heat.On the other hand, when the medium expands, it is cooled by a heat storage device 18 including a heat exchanger that absorbs heat from the object to be cooled. )
This allows gas to flow.

熱力学サイクル動作に基づき、低湛を蓄積できる。Based on thermodynamic cycle operation, low water can be accumulated.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来のガス冷凍機の駆動装置は常に、ガス
冷凍機の固有振動特性の領域で動作させているため、固
有振動特性で、消費電力が大きく左右さね、安定な動作
を保証できなかった。
Conventional gas refrigerator drive devices such as those mentioned above are always operated in the region of the natural vibration characteristics of the gas refrigerator, so the natural vibration characteristics greatly affect power consumption and cannot guarantee stable operation. There wasn't.

より低消費電力化を望む場合、ガス冷凍機の固有撮動特
性で制限をうけ難しかった。
If we wanted to achieve even lower power consumption, it would be difficult to do so because of the inherent imaging characteristics of gas refrigerators.

上記ガス冷凍機はコイル、ピストン重量及び媒体圧力バ
ネ力により決定される固有振動数で動作するが、固有振
動点の振幅値により、スムーズに動作できるかどうかの
判定にもなり、その結果消費電力の増減にも太き(ひび
いてきた。
The above gas refrigerator operates at a natural frequency determined by the coil, piston weight, and medium pressure spring force, but the amplitude value of the natural vibration point can also be used to determine whether it can operate smoothly, resulting in power consumption. The increase and decrease in

又ガス冷凍機をドライブするパワーアンプはアナログ型
のリニアアンプが通常使用されるため。
Also, analog linear amplifiers are usually used as power amplifiers to drive gas refrigerators.

ガス冷凍機の固有振動特性が悪いと、冷却動作を維持す
るために、パワーアンプのドライブ能力を増す必要があ
り、その結果パワーアンプに負担がかかり発熱作用をす
る。
If the natural vibration characteristics of a gas refrigerator are poor, it is necessary to increase the drive capacity of the power amplifier in order to maintain cooling operation, which places a burden on the power amplifier and generates heat.

パワーアンプの性能は当然悪(なるし、消費電力力も増
加する。
Naturally, the performance of the power amplifier will be poor (and the power consumption will also increase).

この発明はかかる問題点を解決するためになされたもの
で、パワーアンプの出力に電流共振回路を用い、ガス冷
凍機の共振特性と合わせることにより、電源の供給電力
を最小に押えることを目的としている。
This invention was made to solve this problem, and aims to minimize the amount of power supplied by the power supply by using a current resonance circuit for the output of the power amplifier and combining it with the resonance characteristics of the gas refrigerator. There is.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係わるガス冷凍機の駆動回路はパワーアンプ
出力に電流共振特性を持たせることにより、ガス冷凍機
の固有撮動数とかさね、ガス冷凍機の動作を効率良くす
ることが可能になる。
By giving the power amplifier output a current resonance characteristic, the gas refrigerator drive circuit according to the present invention makes it possible to improve the efficiency of the operation of the gas refrigerator, as well as the specific number of motions of the gas refrigerator.

従来の方法によればガス冷凍機の固有振動数のみで、動
作させていたため、消費電力の低下が難しかった。
According to the conventional method, the gas refrigerator was operated only at its natural frequency, making it difficult to reduce power consumption.

又ガス冷凍機をドライブするパワーアンプを従来のリニ
アアンプからオン、オフfalI Nのディジタルに替
えることにより、制御する波形も正弦波から矩形波にな
り、波形歪による動作不良の問題もなくなり、制御も楽
になる。
In addition, by changing the power amplifier that drives the gas refrigerator from a conventional linear amplifier to a digital one that controls ON and OFF, the waveform to be controlled changes from a sine wave to a rectangular wave, eliminating the problem of malfunctions due to waveform distortion and improving control. It also becomes easier.

電圧はオンオフ制御だが、共振回路に流れる電流は正弦
波に近い波形を示すため、オンオフ制御パワーアンプは
消費電力が非常に小さく、電磁干渉に対しても有利な特
性を示すようなガス冷凍機の駆動装置を提供できる。
Although the voltage is on/off controlled, the current flowing through the resonant circuit has a waveform close to a sine wave, so the on/off control power amplifier consumes very little power and is suitable for gas refrigerators, which have advantageous characteristics against electromagnetic interference. A driving device can be provided.

〔作用〕[Effect]

この発明において共振回路を用いることは、従来のガス
冷凍機自身の固有振動数だけで動作させていたものに比
べ駆動電力は1/2〜17.にもなる。
The use of a resonant circuit in this invention means that the driving power is 1/2 to 17 times lower than that of a conventional gas refrigerator that operates only using its own natural frequency. It also becomes.

このような共振回路を使用しなくても、同一な機能を持
つ方法もある。
There is also a method that provides the same functionality without using such a resonant circuit.

例えば従来のガス冷凍機にフィードバンク系を用いて、
閉ループを構成する方法があった。
For example, using a feedbank system in a conventional gas refrigerator,
There was a way to create a closed loop.

この方法はループのダンピング係数をO,l近辺にとり
、非常に動作しやすい状態を作っておき。
In this method, the damping coefficient of the loop is set around O, l to create a state that is very easy to operate.

外部から信号を加えてやることによりたやすく動作する
方法である。
This method works easily by applying an external signal.

この方法は部品数が増え、ループが複雑になるためにコ
スト的な面で1問題があった。
This method has one problem in terms of cost because the number of parts increases and the loop becomes complicated.

この発明は共振回路を持つことにより、閉ループと同等
の性能を保持することが可能になり、かつ部品点数を削
減でき、コスト的にも安くできる利点がある。
By having a resonant circuit, this invention has the advantage of being able to maintain performance equivalent to that of a closed loop, reducing the number of parts, and reducing costs.

〔実施例〕〔Example〕

第1図はこの特許の一実施例を示し、(3)は第5図と
同じである。(91はゼロを基準にプラス、マイナス振
幅の矩形波発振器、αCは発振器(9)に従いオンオフ
できるディジタルパワーアンプ、andパワーアンプI
IQ出力を電流共振できる回路である。
FIG. 1 shows an embodiment of this patent, and (3) is the same as FIG. 5. (91 is a square wave oscillator with positive and negative amplitudes based on zero, αC is a digital power amplifier that can be turned on and off according to the oscillator (9), and power amplifier I
This is a circuit that can generate current resonance for IQ output.

第2図はガス冷凍機の固有振動特性と共振回路の共振特
性を表わした図で、たて軸に振幅、横軸に周波数を表わ
す。
FIG. 2 is a diagram showing the natural vibration characteristics of a gas refrigerator and the resonance characteristics of a resonant circuit, with the vertical axis representing amplitude and the horizontal axis representing frequency.

この発明は矩形波発振器(9)により出力した信号をパ
ワーアンプOCに加え、パワーアンブリ1を矩形波発振
器(9)信号に従いオンオフし、共振回路Uυに加える
In this invention, a signal output from a square wave oscillator (9) is applied to the power amplifier OC, and the power amplifier 1 is turned on and off according to the signal from the square wave oscillator (9), and is applied to the resonant circuit Uυ.

共振回路1Bはガス冷凍機の固有振動数とほぼ等しい共
振点を持ち、パワーアンプuIlがオンの時。
The resonance circuit 1B has a resonance point almost equal to the natural frequency of the gas refrigerator, and when the power amplifier uIl is on.

α流共振を起す。すなわち出力電圧は矩形波であるが、
流れる電流が共振電流波形の振幅特性を示す。
Causes alpha flow resonance. In other words, the output voltage is a square wave, but
The flowing current exhibits the amplitude characteristics of the resonant current waveform.

この共振回路Crt冷凍機(3)のコイル(5)と共振
が可能な部品から構成される。
This resonant circuit is composed of parts that can resonate with the coil (5) of the Crt refrigerator (3).

共振回路allによって発生した共振特性とガス冷凍機
(31?かさね合せることにより最大の力をだし得るこ
とを示す図?第2図に示す。
Figure 2 shows that the maximum force can be produced by combining the resonance characteristics generated by the resonance circuit all and the gas refrigerator (31).

第3図に従来のパワーアンプ出力波形を示し。Figure 3 shows the conventional power amplifier output waveform.

第4図は実施例のパワーアンプ出力波形を示す。FIG. 4 shows the power amplifier output waveform of the embodiment.

第3図は正弦波振幅駆動による電圧と電流波形を示して
いるが、パワーアンプとしてはリニアなものが通常使用
されるため、ガス冷凍機に供給される電力以外は全てパ
ワーアンプで消費される。
Figure 3 shows the voltage and current waveforms driven by sine wave amplitude drive, but since a linear power amplifier is usually used, all the power other than that supplied to the gas refrigerator is consumed by the power amplifier. .

そのためガス冷凍機の性能により、パワーアンプの消費
電力が異なる。
Therefore, the power consumption of the power amplifier varies depending on the performance of the gas refrigerator.

特にガス冷凍機の性能変動、湿度等の環境条件の影響は
じか(でひびき、パワーアンプの低消費電力化を難しく
している。
In particular, fluctuations in the performance of gas refrigerators and the effects of environmental conditions such as humidity are making it difficult to reduce the power consumption of power amplifiers.

反面1図4の実施例のパワーアンプは矩形波による制御
であり、パワーアンプ回路設計は第3図のIJ ニアパ
ワーアンプに比べ、比較的簡単になる。
On the other hand, the power amplifier of the embodiment shown in FIG. 1 is controlled by a rectangular wave, and the power amplifier circuit design is relatively simpler than that of the IJ near power amplifier shown in FIG.

電流波形は共振特性を持つため、電流最大値はおおよそ
電源電圧を内部抵抗で除した値になる。
Since the current waveform has resonance characteristics, the maximum current value is approximately the value obtained by dividing the power supply voltage by the internal resistance.

又第3図のリニアパワーアンプの電流最大@は電源電圧
をインダクタンスプラス内部抵抗で除した値になる。
Also, the maximum current @ of the linear power amplifier shown in Fig. 3 is the value obtained by dividing the power supply voltage by the inductance plus the internal resistance.

当然第4図のパワーアンプの方が大きな電流を流すこと
ができる。
Naturally, the power amplifier shown in Figure 4 can flow a larger current.

すなわち、ガス冷凍機のコイルに働(力?[次式で与え
られる。
In other words, the force (force?) acting on the coil of the gas refrigerator is given by the following formula.

F=B  L  よ り:磁束密度 L:コイル幅 工:コイルに流れる電流 同一型状の冷凍機で第3図のIJ ニアパワーアンプを
使用した時と第4図のディジタルパワーアンプを使用し
た時(電流共W)とでは当然後者のディジタルパワーア
ンプの方がはるかに大きな力を出力でき、有利になる。
From F = B L: Magnetic flux density L: Coil width: Current flowing through the coil When using the IJ near power amplifier shown in Figure 3 and the digital power amplifier shown in Figure 4 in a refrigerator of the same type ( Naturally, the latter digital power amplifier can output a much larger power and has an advantage when it comes to the current (W).

力Ftri冷凍機の負荷条件にもよるが2〜富0倍は変
ってくる。
Depending on the load conditions of the power Ftri refrigerator, it will vary from 2 to 0 times.

又ガス冷凍機はもともと固有振動数で発振しやすいよう
にピストン内の媒体圧力、コイル質量等を調整している
ため、第4図に示すようにディジタルパワーアンプの電
流共振で大きなカケ得、加えて上記ガス冷凍機の固有摂
動数が加算されると。
In addition, since gas refrigerators originally adjust the medium pressure inside the piston, coil mass, etc. to make it easier to oscillate at the natural frequency, as shown in Figure 4, the current resonance of the digital power amplifier causes large chips and When the characteristic perturbation number of the gas refrigerator is added.

低α力でガス冷凍機全駆動することが可能になる。It becomes possible to fully drive the gas refrigerator with low α force.

第4図のディジタルパワーアンプは矩形波による1b制
御によるため、パワーアンプはオン、オフでトランジス
タ0Nli圧と負荷に供給する電流を掛けても数Wのオ
ーダであり0発熱作用は見られな(なる。
The digital power amplifier shown in Figure 4 uses 1b control using a square wave, so even if the power amplifier is turned on and off and multiplied by the transistor 0Nli voltage and the current supplied to the load, it is on the order of several W, and no heat generation effect is observed ( Become.

又、このディジタルパワーアンプ出力は電流共振するた
め、電流干渉?最小に押えることができる。
Also, since this digital power amplifier output has current resonance, is there current interference? can be kept to a minimum.

すなわち電磁干渉Fi板波形立上り/立下りにより決ま
るが、このディジタルパワーアンプHill圧の立上り
/立下シ時に電流は立上もておらず、そのエネルギーは
非常に小さく、干渉するエネルギーが小さいため、大電
力の冷凍機についても有効な方法と考えられる。
In other words, the electromagnetic interference is determined by the rise/fall of the Fi plate waveform, but the current does not rise at the rise/fall of the digital power amplifier Hill voltage, and its energy is very small, so the interfering energy is small. This method is also considered to be effective for high-power refrigerators.

なお、上記実施例の電流共振回路は電気的に共振が可能
なコンデンフ、抵抗、インダクタンス。
Note that the current resonant circuit of the above embodiment uses condensation, resistance, and inductance that can electrically resonate.

発振器、アクティブ素子等の複合部品1回路と機械的素
子、相料、バネ等を用いても良い。
A single circuit of composite components such as an oscillator and active elements, and mechanical elements, components, springs, etc. may be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したよ゛うに、この発明はガス冷凍機の固有振
動数と電流共振回路を用いて、低消費電力で高効率の冷
却能力を持つガス冷凍機を作ることができる。
As explained above, the present invention makes it possible to create a gas refrigerator with low power consumption and high cooling capacity by using the gas refrigerator's natural frequency and current resonance circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す概略図、第2図t/
′i実施例のガス冷凍機と共振回路の周波数特性を示す
図、第3図は従来のパワーアンプ出力電圧、を流特性を
示す図、第4図は実施例のパワーアンプ出力電圧、電流
特性、?示す図、第5図は従来のガス冷凍機の駆動装置
の概略図である。 図においてIll fjAC発振器、(2)は+7 ニ
アパワーアンプ、(3)はガス冷凍機、(4)は研気回
路、(5)はコイル、!6)はピストン、(7)は冷却
器、181は蓄熱器。 (9)は矩形波発撮器、卯はディジタルパワーアンプ。 aυは共振回路である。 なお9図中同一あるいは相当部分には同一符号を付して
示しである。
FIG. 1 is a schematic diagram showing an embodiment of the present invention, and FIG.
Figure 3 shows the frequency characteristics of the gas refrigerator and resonant circuit of the embodiment. Figure 3 shows the output voltage and current characteristics of the conventional power amplifier. Figure 4 shows the output voltage and current characteristics of the power amplifier of the embodiment. ,? The figure shown in FIG. 5 is a schematic diagram of a conventional drive device for a gas refrigerator. In the figure, Ill fj AC oscillator, (2) is +7 near power amplifier, (3) is gas refrigerator, (4) is sharpening circuit, (5) is coil,! 6) is a piston, (7) is a cooler, and 181 is a heat storage device. (9) is a square wave generator, and the rabbit is a digital power amplifier. aυ is a resonant circuit. Note that the same or corresponding parts in FIG. 9 are designated by the same reference numerals.

Claims (1)

【特許請求の範囲】[Claims] スターリングサイクルエンジンの原理を利用したガス冷
凍機の駆動装置において、ガス冷凍機が動作しやすい固
有振動数を持つ周波数近辺に設定した矩形波発振器と、
ガス冷凍機を励振するためAC発振器に従い、オンオフ
制御できるパワーアンプと、前記パワーアンプの出力を
ガス冷凍機が具備する固有振動数とほぼ等しい点で、電
流共振を起こすことができる共振回路と、ピストンに直
結したコイルと磁気回路の結合により、前記AC発振器
の周波数に従い、ピストンを駆動し、熱力学サイクル動
作で低温空間を構成しうる能力を持つガス冷凍機とを具
備したことを特徴とするガス冷凍機の駆動装置。
In a drive device for a gas refrigerator using the principle of a Stirling cycle engine, a square wave oscillator is set to a frequency near a natural frequency at which the gas refrigerator easily operates;
a power amplifier that can be turned on and off according to an AC oscillator to excite the gas refrigerator; a resonant circuit that can cause current resonance at a point where the output of the power amplifier is approximately equal to the natural frequency of the gas refrigerator; The present invention is characterized by comprising a gas refrigerator capable of driving the piston in accordance with the frequency of the AC oscillator by coupling a coil directly connected to the piston and a magnetic circuit to form a low-temperature space through thermodynamic cycle operation. Drive device for gas refrigerator.
JP8510987A 1987-04-07 1987-04-07 Drive for gas refrigerator Pending JPS63251762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8510987A JPS63251762A (en) 1987-04-07 1987-04-07 Drive for gas refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8510987A JPS63251762A (en) 1987-04-07 1987-04-07 Drive for gas refrigerator

Publications (1)

Publication Number Publication Date
JPS63251762A true JPS63251762A (en) 1988-10-19

Family

ID=13849456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8510987A Pending JPS63251762A (en) 1987-04-07 1987-04-07 Drive for gas refrigerator

Country Status (1)

Country Link
JP (1) JPS63251762A (en)

Similar Documents

Publication Publication Date Title
US5146750A (en) Magnetoelectric resonance engine
US5329768A (en) Magnoelectric resonance engine
US6578364B2 (en) Mechanical resonator and method for thermoacoustic systems
US5901556A (en) High-efficiency heat-driven acoustic cooling engine with no moving parts
US4713939A (en) Linear drive motor with symmetric magnetic fields for a cooling system
US20110309618A1 (en) Electromechanical energy harvesting system
Wheatley et al. Natural engines
Liu et al. Design and optimization of an electromagnetic vibration energy harvester using dual Halbach arrays
JP2002266699A (en) Stirling engine
US8733112B2 (en) Stirling cycle cryogenic cooler with dual coil single magnetic circuit motor
JPS63251762A (en) Drive for gas refrigerator
Zhang et al. Study on the performance and control of linear compressor for household refrigerators
JP2004294001A (en) Pulse pipe refrigerator
CN208905202U (en) Multiple engine array system and loudspeaker
CN113137778B (en) Combined cooling heating and power system without moving parts
JPH01114673A (en) Cooling machine
CN220750439U (en) Novel electromagnetic compressor driven thermoacoustic refrigerator
Direk Design of a mini thermo-acoustic refrigerator
Wang et al. Influence of resonance mechanism on the performance of Solar Thermoacoustic Generator
JPS62288456A (en) Magnetic refrigeration method
Hofler High-efficiency heat-driven acoustic cooling engine with no moving parts
Maresca A 400-watt, tri-state switching controller for reciprocating linear motors
CA2561038A1 (en) Resonant linear motor driven cryocooler system
JPH05322337A (en) Wave type freezer device
CN2577339Y (en) Silent power source for computer