JPS6325169B2 - - Google Patents

Info

Publication number
JPS6325169B2
JPS6325169B2 JP57008457A JP845782A JPS6325169B2 JP S6325169 B2 JPS6325169 B2 JP S6325169B2 JP 57008457 A JP57008457 A JP 57008457A JP 845782 A JP845782 A JP 845782A JP S6325169 B2 JPS6325169 B2 JP S6325169B2
Authority
JP
Japan
Prior art keywords
piston
intake port
passage
intake
dead center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57008457A
Other languages
Japanese (ja)
Other versions
JPS58126424A (en
Inventor
Sadaaki Naesaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata Engineering Co Ltd
Original Assignee
Niigata Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Engineering Co Ltd filed Critical Niigata Engineering Co Ltd
Priority to JP57008457A priority Critical patent/JPS58126424A/en
Publication of JPS58126424A publication Critical patent/JPS58126424A/en
Publication of JPS6325169B2 publication Critical patent/JPS6325169B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/02Other fluid-dynamic features of induction systems for improving quantity of charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/18Other cylinders
    • F02F1/22Other cylinders characterised by having ports in cylinder wall for scavenging or charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】 この発明は燃料噴射弁を備えたデイーゼル機関
等の4サイクル内燃機関に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a four-stroke internal combustion engine, such as a diesel engine, equipped with a fuel injection valve.

一般に、4サイクル機関の出力性能を支配する
要因としては種々あるが、その中でも吸・排気過
程は重要な因子の一つである。
Generally, there are various factors that govern the output performance of a four-stroke engine, and among them, the intake and exhaust processes are one of the important factors.

ところが、従来のキノコ弁方式の4サイクル内
燃機関にあつては、たとえ吸気弁および排気弁を
各2ケ宛設けた4弁方式にしても、回転速度が上
昇すると性能上充分な空気をシリンダ内に送り込
むことが困難であり、このため機関性能が低下す
るとともに、排気温度の上昇あるいは燃焼室まわ
りの熱負荷の増大をきたし、ひいては機関の最高
出力が低くおさえられるという問題がある。特
に、最近では機関の高出力化、高回転化が図られ
るに伴ない、このような傾向が顕著になつてき
た。
However, in conventional mushroom valve type four-cycle internal combustion engines, even if the four-valve type is used, with two intake valves and two exhaust valves each, as the rotational speed increases, it is difficult to get enough air into the cylinders for performance reasons. Therefore, there is a problem in that the engine performance deteriorates, the exhaust temperature rises, or the heat load around the combustion chamber increases, and the maximum output of the engine is kept low. In particular, this trend has become more noticeable recently as engines have become more powerful and rotated at higher speeds.

この発明は、シリンダー内にピストンが摺動自
在に設けられ、シリンダーヘツドに吸気ポートと
排気ポート及び燃料噴射弁が設けられている4サ
イクル内燃機関において、上記ピストンの下死点
部分における上記シリンダーに、第2吸気ポート
を設け、該第2吸気ポートの通路の中途部に、二
つの開口部の半回転位置を互いに異ならせた連通
孔を備え、かつ4サイクル内燃機関の1作動で1
方向に1回転し、ピストンの吸気行程の下死点部
分において第2吸気ポートの開閉にほぼ同期して
上記通路を開閉し、またピストンの爆発行程の下
死点近くにおいて第2吸気ポートが少し開きピス
トンが下死点に至つたときに上記通路を開くとと
もに、第2吸気ポートの閉塞にほぼ同期して上記
通路を閉じる回転管制弁を設けた構成としたもの
で、シリンダーの燃焼室内に充分な空気を送り込
み、また効率的な掃気を行なうことによつて出力
の増大と燃焼室まわりの熱負荷の軽減を図り得る
4サイクル内燃機関を提供することを目的とす
る。
This invention relates to a four-stroke internal combustion engine in which a piston is slidably provided in a cylinder, and an intake port, an exhaust port, and a fuel injection valve are provided in a cylinder head, and the piston is provided in the cylinder at the bottom dead center of the piston. , a second intake port is provided, and a communication hole is provided in the middle of the passage of the second intake port, the two openings having different half-rotation positions, and one operation of the four-cycle internal combustion engine
The passage opens and closes approximately in synchronization with the opening and closing of the second intake port at the bottom dead center portion of the piston's intake stroke, and the second intake port opens and closes slightly near the bottom dead center of the piston's explosion stroke. The structure includes a rotary control valve that opens the passage when the opening piston reaches the bottom dead center and closes the passage almost in synchronization with the closing of the second intake port, so that there is enough air inside the combustion chamber of the cylinder. It is an object of the present invention to provide a four-cycle internal combustion engine that can increase output and reduce heat load around a combustion chamber by feeding fresh air and performing efficient scavenging.

以下、この発明の一実施例について添附した第
1図ないし第4図を参照して説明する。
Hereinafter, one embodiment of the present invention will be described with reference to the attached FIGS. 1 to 4.

第1図中符号1はシリンダーブロツクである。
このシリンダーブロツク1のシリンダー2には、
シリンダーライナ3を介してピストン4が摺動自
在に設けられている。このピストン4には連接棒
5がその一端部を回転自在に設けられており、連
接棒5の他端部はクランク軸6に相対回転自在に
設けられている。また、シリンダーブロツク1の
上端部には、吸気ポート7および排気ポート8を
有するシリンダーヘツド9が固定されており、こ
れら吸・排気ポート7,8には図示しないカムシ
ヤフトおよびバネ10,11によつて吸・排気ポ
ート7,8を開閉する吸気弁12および排気弁1
3がそれぞれ設けられている。なお、吸・排気ポ
ート7,8は配管14,15を介して吸気管1
6,排気管17にそれぞれ連絡されるとともに、
シリンダーヘツド9には周知の燃料噴射弁(図示
せず)が設けられている。
Reference numeral 1 in FIG. 1 is a cylinder block.
In cylinder 2 of this cylinder block 1,
A piston 4 is slidably provided through a cylinder liner 3. A connecting rod 5 is rotatably provided at one end of the piston 4, and the other end of the connecting rod 5 is rotatably provided relative to the crankshaft 6. Further, a cylinder head 9 having an intake port 7 and an exhaust port 8 is fixed to the upper end of the cylinder block 1, and these intake and exhaust ports 7 and 8 are connected by a camshaft and springs 10 and 11 (not shown). Intake valve 12 and exhaust valve 1 that open and close intake and exhaust ports 7 and 8
3 are provided respectively. Note that the intake/exhaust ports 7, 8 are connected to the intake pipe 1 via piping 14, 15.
6, are connected to the exhaust pipe 17, and
The cylinder head 9 is provided with a well-known fuel injection valve (not shown).

また、シリンダーライナ3には下死点に位置す
るピストン4の図中上方の一端に接するようにし
て開口する第2吸気ポート18が設けられてい
る。この第2吸気ポート18は、シリンダーブロ
ツク1に設けられた通路19および配管20を介
して吸気管16に連絡されている。従つて、ピス
トン4が下死点近傍に位置する際には、第2吸気
ポート18が開かれて吸気管16からシリンダ2
の燃焼室S内に空気が送られ、他方ピストン4が
下死点近傍以外に位置する際には、第2吸気ポー
ト18はピストン4によつて閉じられるのであ
る。さらに、この第2吸気ポート18の開閉をよ
り適切な時期に行なわせるため、通路19の中途
部にはカムシヤフトによつてそれと同期して4サ
イクル内燃機関の1作動で第2,3図中A方向に
1回転させられる回転管制弁21が設けられてい
る。すなわち、回転管制弁21には、外周の一側
の開口部から他側の開口部に延び、かつ二つの開
口部の半回転位置を互いに異ならせた、ほぼ
「く」の字状の通路(連通孔)21aが設けられ
ており、これに対応して通路19が配設されてい
る。しかも、通路19のうち第2吸気ポート18
に接続された通路19aは通路21aと同径にな
され、他方配管20に接続された通路19bは通
路21aより大径になされている。そして、第2
図cからdに至る吸気行程においては、第2吸気
ポート18が開かれるのと同時に、通路19と通
路21aとが接続され、ピストン4が下死点に至
ると、第2吸気ポート18が全開になされるとと
もに、第3図において実線で示すように通路19
aと通路21aとが一致するようになされてい
る。つまり、第4図に示すように吸気行程におい
ては第2吸気ポート18の開面積と回転管制弁2
1の開面積とが一致するようになされているので
ある。他方、第2図aからbに至る爆発行程にお
いては、ピストン4の下動によつて第2吸気ポー
ト18が開かれ始めても、通路21aが略「く」
の字状になされているため通路19aと通路21
aとは接続されておらず、第3図において2点鎖
線で示すようにピストン4が下死点に至つた際に
通路19aと通路21aとが接続され始める。こ
のとき、通路19bが通路21aより大径になさ
れているから、通路19bと通路21aとは既に
接続されている。そして、ピストン4が上動して
第2吸気ポート18が徐々に閉じられるに従つ
て、通路19aと通路21aとの接続面積が増大
して第2吸気ポート18の開面積と回転管制弁2
1の開面積とが一致する。その後、通路19bと
通路21aとの接続面積の減少によつて回転管制
弁21の開面積が減少し、これによつて第4図に
示すように第2吸気ポート18と回転管制弁21
とが同時に閉じられる。
Further, the cylinder liner 3 is provided with a second intake port 18 that opens so as to be in contact with one end of the upper part of the piston 4 in the figure, which is located at the bottom dead center. This second intake port 18 is connected to the intake pipe 16 via a passage 19 provided in the cylinder block 1 and a pipe 20. Therefore, when the piston 4 is located near the bottom dead center, the second intake port 18 is opened and the air is drawn from the intake pipe 16 to the cylinder 2.
When air is sent into the combustion chamber S and the piston 4 is positioned other than near the bottom dead center, the second intake port 18 is closed by the piston 4. Furthermore, in order to open and close the second intake port 18 at more appropriate times, a camshaft is provided in the middle of the passage 19, and in synchronization with this, the second intake port 18 is opened and closed at a more appropriate time. A rotary control valve 21 that can be rotated once in the direction is provided. That is, the rotary control valve 21 has a substantially dogleg-shaped passage extending from an opening on one side of the outer periphery to an opening on the other side, and the two openings have different half-turn positions. A communication hole 21a is provided, and a passage 19 is provided corresponding to the communication hole 21a. Moreover, the second intake port 18 of the passage 19
The passage 19a connected to the piping 20 has the same diameter as the passage 21a, and the passage 19b connected to the piping 20 has a larger diameter than the passage 21a. And the second
In the intake stroke from FIG. and the passage 19 as shown in solid line in FIG.
a and the passage 21a are made to coincide with each other. In other words, as shown in FIG. 4, during the intake stroke, the open area of the second intake port 18 and the rotary control valve 2
This is done so that the open area of 1 is the same as that of 1. On the other hand, during the explosion stroke from a to b in FIG.
The passage 19a and the passage 21 are
The passage 19a and the passage 21a begin to be connected when the piston 4 reaches the bottom dead center as shown by the two-dot chain line in FIG. At this time, since the passage 19b has a larger diameter than the passage 21a, the passage 19b and the passage 21a are already connected. Then, as the piston 4 moves upward and the second intake port 18 is gradually closed, the connection area between the passage 19a and the passage 21a increases, and the open area of the second intake port 18 and the rotary control valve 2 increase.
The open area of 1 matches. After that, the open area of the rotary control valve 21 decreases due to the decrease in the connecting area between the passage 19b and the passage 21a, and as a result, the second intake port 18 and the rotary control valve 21 are connected to each other as shown in FIG.
are closed at the same time.

次に、このように構成された4サイクル内燃機
関の作用について説明する。第2図aに示すよう
に、燃焼室S内において燃料が図示されない燃料
噴射弁から燃焼室S内に噴射されて爆発が行なわ
れると、クランク軸6を図中B方向に回転させつ
つピストン4が下動する。そして、爆発行程終了
直前に排気弁13が開かれると、ピストン4が下
死点近くに至つたとき、または下死点をややすぎ
たときに排気パルスの反動で燃焼室S内の圧力が
零又は負圧になる。この時、つまりピストン4が
下死点に至つた時、回転管制弁21が開状態にな
されるから、第2吸気ポート18から空気が流入
して排気温度を下げるとともに、掃気を効率的に
行うことにより排気を助長する。その後、ピスト
ン4が上昇するに従つて燃焼室S内の圧力が高く
なるが、その時には第2吸気ポート18がピスト
ン4によつて塞がれており、従つて排気ガスが逆
流することはない、さらに、第2図cに示すよう
に、排気および吸気のオーバーラツプが従来通り
行なわれる。しかしこの場合、既に空気の流入が
行なわれているから、オーバーラツプを小さくす
ることができる。次に、吸気が行なわれるのであ
るが、第2図dに示すように、ピストン4が下死
点近くに位置しているときに第2吸気ポート18
から空気が流入し、これによつて吸気ポート7か
らでは入りきらない空気を充分に補なうことがで
きる。この結果、ピストン4の下死点以後におけ
る吸気弁7の開時間を従来のもの(第4図中2点
鎖線で示す部分)より短くすることができる。こ
れは始動時の有効圧縮比を上げることができ、寒
冷始動上有利となる。
Next, the operation of the four-stroke internal combustion engine configured as described above will be explained. As shown in FIG. 2a, when fuel is injected into the combustion chamber S from a fuel injection valve (not shown) and an explosion occurs, the piston 4 rotates while rotating the crankshaft 6 in the direction B in the figure. moves downward. When the exhaust valve 13 is opened just before the end of the explosion stroke, the pressure in the combustion chamber S drops to zero due to the reaction of the exhaust pulse when the piston 4 reaches near the bottom dead center or slightly past the bottom dead center. Or it becomes negative pressure. At this time, that is, when the piston 4 reaches the bottom dead center, the rotary control valve 21 is opened, so air flows in from the second intake port 18 to lower the exhaust temperature and perform scavenging efficiently. This promotes exhaustion. Thereafter, as the piston 4 rises, the pressure within the combustion chamber S increases, but at that time the second intake port 18 is blocked by the piston 4, so exhaust gas does not flow back. Furthermore, as shown in FIG. 2c, the exhaust and intake overlaps occur in a conventional manner. However, in this case, since air has already been introduced, the overlap can be reduced. Next, intake is performed, and as shown in FIG. 2d, when the piston 4 is located near the bottom dead center, the second intake port 18
Air flows in from the intake port 7, thereby making it possible to sufficiently compensate for the air that cannot enter through the intake port 7. As a result, the opening time of the intake valve 7 after the bottom dead center of the piston 4 can be made shorter than in the conventional case (the portion shown by the two-dot chain line in FIG. 4). This can increase the effective compression ratio at startup, which is advantageous for cold startup.

なお、第2吸気ポート18から燃焼室S内へよ
り多くの空気を流入させるために、配管20ある
いは吸気管16に圧縮機を設けてもよい。また、
上記実施例においては吸気ポート7と排気ポート
8とを同数としているが、これに限られることな
く、排気ポートの数を吸気ポートの数より大き
く、例えば排気ポートを3ケとし、吸気ポートを
1ケとしてもよい。この場合、第5図に示すよう
に、排気ポートが増えた分排気弁開面積が大きく
なるから、排気抵抗を少なくすることができ、し
かも吸気は第2吸気ポートから充分に行なわれ、
従つてより一層機関の性能向上を図ることができ
る。
Note that a compressor may be provided in the piping 20 or the intake pipe 16 in order to allow more air to flow into the combustion chamber S from the second intake port 18. Also,
In the above embodiment, the number of intake ports 7 and the number of exhaust ports 8 are the same, but the number of exhaust ports is not limited to this, and the number of exhaust ports is greater than the number of intake ports, for example, the number of exhaust ports is three, and the number of intake ports is one. It may be used as ke. In this case, as shown in Fig. 5, the opening area of the exhaust valve becomes larger due to the increase in the number of exhaust ports, so the exhaust resistance can be reduced, and moreover, intake is sufficiently carried out from the second intake port.
Therefore, the performance of the engine can be further improved.

以上説明したように、この発明の4サイクル内
燃機関は、シリンダー内にピストンが摺動自在に
設けられ、シリンダーヘツドに吸気ポートと排気
ポート及び燃料噴射弁が設けられている4サイク
ル内燃機関において、上記ピストンの下死点部分
における上記シリンダーに、第2吸気ポートが設
けられ、該第2吸気ポートの通路の中途部に、二
つの開口部の半回転位置を互いに異ならせた連通
孔を備え、かつ4サイクル内燃機関の1作動で1
方向に1回転し、ピストンの吸気行程の下死点部
分において第2吸気ポートの開閉にほぼ同期して
上記通路を開閉し、またピストンの爆発行程の下
死点近くにおいて第2吸気ポートが少し開きピス
トンが下死点に至つたときに上記通路を開くとと
もに、第2吸気ポートの閉塞にほぼ同期して上記
通路を閉じる回転管制弁が設けられた構成とされ
ているから、空気の吸入が充分に行なわれ、かつ
第2吸気ポートから流入する空気によつて排気ガ
スの温度を低下することができるとともに、第2
吸気ポートからの燃焼ガスの噴出が防止される関
係から爆発エネルギーを損失することもなく、そ
の上排気ガスの掃気効率を向上させることがで
き、これによつて4サイクル内燃機関の出力の増
大および燃焼室まわりの熱負荷の軽減を図ること
ができ、ひいては最高出力の向上を図ることがで
きる。また、吸気が充分に行なわれる結果、ピス
トンの下死点以後における吸気弁の開時間を短く
することができ、従つてピストンによる空気の圧
縮が早い時期から行なわれ、正味の圧縮行程容積
を大きくすることができる。さらに、第2吸気ポ
ートから流入する空気によつて掃気効率が高めら
れるから、オーバーラツプを小さくしてピストン
の吸・排気弁からの逃げを小さくすることがで
き、これによつて燃焼室の形状を良好なものとす
ることができる等の効果を有する。
As explained above, the four-stroke internal combustion engine of the present invention is a four-stroke internal combustion engine in which a piston is slidably provided in a cylinder, and an intake port, an exhaust port, and a fuel injection valve are provided in the cylinder head. A second intake port is provided in the cylinder at the bottom dead center portion of the piston, and a communication hole is provided in the middle of the passage of the second intake port, the two openings having different half-rotation positions, and 1 per operation of a 4-stroke internal combustion engine.
The passage opens and closes approximately in synchronization with the opening and closing of the second intake port at the bottom dead center portion of the piston's intake stroke, and the second intake port opens and closes slightly near the bottom dead center of the piston's explosion stroke. Since the structure includes a rotary control valve that opens the passage when the opening piston reaches the bottom dead center and closes the passage in approximately synchronization with the closing of the second intake port, air intake is prevented. The temperature of the exhaust gas can be lowered by the air flowing in from the second intake port.
Since combustion gas is prevented from blowing out from the intake port, there is no loss of explosion energy, and the scavenging efficiency of exhaust gas can be improved, thereby increasing the output of the four-stroke internal combustion engine. The heat load around the combustion chamber can be reduced, and the maximum output can be improved. In addition, as a result of sufficient intake air, the opening time of the intake valve after the bottom dead center of the piston can be shortened, and the piston can compress air from an early stage, increasing the net compression stroke volume. can do. Furthermore, since the scavenging efficiency is increased by the air flowing in from the second intake port, the overlap can be reduced and the escape of the piston from the intake and exhaust valves can be reduced, thereby reducing the shape of the combustion chamber. It has the effect of making it better.

【図面の簡単な説明】[Brief explanation of the drawing]

添附した第1図から第4図はこの発明の一実施
例を示し、第1図はその縦断正面図、第2図は各
行程における第2吸気ポートと回転管制弁との関
係を示し、aは爆発行程図、bは排気行程図、c
は吸・排気オーバーラツプ行程図、dは吸入行程
図、第3図は第1図の円部の拡大図、第4図は
吸気弁、排気弁、第2吸気ポートおよび回転管制
弁のそれぞれの開面積を示す図、第5図はこの発
明の他の実施例の第4図と同様の図である。 2…シリンダー、4…ピストン、7…吸気ポー
ト、8…排気ポート、9…シリンダーヘツド、1
2…吸気弁、13…排気弁、18…第2吸気ポー
ト、19…通路、21…回転管制弁、21a…通
路(連通孔)。
The attached FIGS. 1 to 4 show one embodiment of the present invention, with FIG. 1 being a longitudinal sectional front view thereof, and FIG. 2 showing the relationship between the second intake port and the rotary control valve in each stroke, and a is the explosion stroke diagram, b is the exhaust stroke diagram, c
is an intake/exhaust overlap stroke diagram, d is an intake stroke diagram, Figure 3 is an enlarged view of the circular part in Figure 1, and Figure 4 is an opening diagram of the intake valve, exhaust valve, second intake port, and rotary control valve. A diagram showing the area, FIG. 5, is a diagram similar to FIG. 4 of another embodiment of the present invention. 2...Cylinder, 4...Piston, 7...Intake port, 8...Exhaust port, 9...Cylinder head, 1
2... Intake valve, 13... Exhaust valve, 18... Second intake port, 19... Passage, 21... Rotary control valve, 21a... Passage (communication hole).

Claims (1)

【特許請求の範囲】[Claims] 1 シリンダー内にピストンが摺動自在に設けら
れ、シリンダーヘツドに吸気ポートと排気ポート
及び燃料噴射弁が設けられている4サイクル内燃
機関において、上記ピストンの下死点部分におけ
る上記シリンダーに、第2吸気ポートが設けら
れ、該第2吸気ポートの通路の中途部に、二つの
開口部の半回転位置を互いに異ならせた連通孔を
備え、かつ4サイクル内燃機関の1作動で1方向
に1回転し、ピストンの吸気行程の下死点部分に
おいて第2吸気ポートの開閉にほぼ同期して上記
通路を開閉し、またピストンの爆発行程の下死点
近くにおいて第2吸気ポートが少し開きピストン
が下死点に至つたときに上記通路を開くととも
に、第2吸気ポートの閉塞にほぼ同期して上記通
路を閉じる回転管制弁が設けられたことを特徴と
する4サイクル内燃機関。
1. In a four-stroke internal combustion engine in which a piston is slidably provided in a cylinder and an intake port, an exhaust port, and a fuel injection valve are provided in the cylinder head, a second piston is provided in the cylinder at the bottom dead center portion of the piston. An intake port is provided, and a communication hole is provided in the middle of the passage of the second intake port, the two openings having different half-rotation positions, and one rotation in one direction in one operation of the four-cycle internal combustion engine. During the bottom dead center portion of the piston's intake stroke, the passage is opened and closed almost in synchronization with the opening and closing of the second intake port, and near the bottom dead center of the piston's explosion stroke, the second intake port slightly opens and the piston moves downward. A four-stroke internal combustion engine characterized in that a rotary control valve is provided that opens the passage when the engine reaches a dead center and closes the passage in substantially synchronization with the closing of the second intake port.
JP57008457A 1982-01-22 1982-01-22 4-cycle internal-combustion engine Granted JPS58126424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57008457A JPS58126424A (en) 1982-01-22 1982-01-22 4-cycle internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57008457A JPS58126424A (en) 1982-01-22 1982-01-22 4-cycle internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS58126424A JPS58126424A (en) 1983-07-27
JPS6325169B2 true JPS6325169B2 (en) 1988-05-24

Family

ID=11693651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57008457A Granted JPS58126424A (en) 1982-01-22 1982-01-22 4-cycle internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS58126424A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991003629A1 (en) * 1989-09-01 1991-03-21 KELTIE, David, Arthur Improvements in or relating to i.c. engines

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681220A (en) * 1979-12-04 1981-07-03 Norimasa Shoda Turbulent vortex generator for internal combustion engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51139802U (en) * 1975-05-01 1976-11-11

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681220A (en) * 1979-12-04 1981-07-03 Norimasa Shoda Turbulent vortex generator for internal combustion engine

Also Published As

Publication number Publication date
JPS58126424A (en) 1983-07-27

Similar Documents

Publication Publication Date Title
JP3333298B2 (en) In-cylinder fuel injection type multi-cylinder engine
US4515127A (en) Four-cycle engine
US4487171A (en) Internal combustion engine having diverter valve and separate passage for purging engine
JP4322204B2 (en) Method for controlling a supercharged internal combustion engine comprising at least two cylinders and an engine using such a method
US6009861A (en) Method of improving the combustion characteristics in an internal combustion engine
US3534716A (en) Method of supplying an excess amount of air or fuel-air mixture to a internal combustion engine and an apparatus therefor
EP0344780B1 (en) Intake control device for engine
JPS6325169B2 (en)
JPS6088810A (en) Internal-combustion engine
JP3948081B2 (en) Spark ignition internal combustion engine
GB2203192A (en) I.C. engine inlet and exhaust valving
JPS6030430Y2 (en) Internal combustion engine starting accelerator
JP2582924B2 (en) Two-stroke internal combustion engine
JPS60147534A (en) Suction device for internal-combustion engine
JPS60122227A (en) Intake device of internal-combustion engine
JPS59158328A (en) Internal-combustion engine
JPH0568608B2 (en)
JP2865672B2 (en) Mixture compression type two-stroke internal combustion engine
JPS59173511A (en) Valve mechanism of internal-combustion engine
JPH04365930A (en) Two cycle uniflow scavenging engine having two-step scavenging port
JPS62218617A (en) Intake and exhaust device for internal combustion engine
JPH04175406A (en) 2-cycle internal combustion engine
JPH0436024A (en) Intake and exhaust system of internal combustion engine
JPS5825848B2 (en) Supercharging device for multi-cylinder engines
JPS6235014A (en) Cooling device of piston pin