JPS6325044B2 - - Google Patents

Info

Publication number
JPS6325044B2
JPS6325044B2 JP13178381A JP13178381A JPS6325044B2 JP S6325044 B2 JPS6325044 B2 JP S6325044B2 JP 13178381 A JP13178381 A JP 13178381A JP 13178381 A JP13178381 A JP 13178381A JP S6325044 B2 JPS6325044 B2 JP S6325044B2
Authority
JP
Japan
Prior art keywords
gas
fluidized bed
furnace
reduction furnace
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13178381A
Other languages
Japanese (ja)
Other versions
JPS5834114A (en
Inventor
Masayasu Arikawa
Kenji Mori
Kiichi Narita
Dentaro Kaneko
Nobuo Kamimura
Kazuhiro Myazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP13178381A priority Critical patent/JPS5834114A/en
Publication of JPS5834114A publication Critical patent/JPS5834114A/en
Publication of JPS6325044B2 publication Critical patent/JPS6325044B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0033In fluidised bed furnaces or apparatus containing a dispersion of the material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 本発明は鉄鉱石粒子を流動状態に保持しつつ高
温還元ガスと接触させてこれを還元し還元鉄を製
造する流動層式直接製鉄法の改良に係るものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a fluidized bed direct iron manufacturing method in which iron ore particles are kept in a fluidized state and brought into contact with a high temperature reducing gas to reduce the particles to produce reduced iron.

近年、高炉によらない製鉄技術としての直接製
鉄法の発展と需要の増大には著しいものがある
が、中でもシヤフト炉法、固定層法あるいは流動
層法等の所謂ガス還元剤を用いる方法の発展には
目ざましいものがある。
In recent years, there has been a remarkable development and increase in demand for direct steelmaking as a steelmaking technology that does not rely on blast furnaces, but in particular, the development of methods that use so-called gas reducing agents, such as the shaft furnace method, fixed bed method, and fluidized bed method. There is something remarkable about it.

これらのガス還元法においては、一般に天然ガ
ス(CH4)を還元ガス源として用い、該天然ガス
とH2O,CO2等の酸化性ガスとを高温で触媒存在
下に接触させることによつて得られるCO+H2
スを還元剤として、鉄鉱石(酸化鉄)の還元を行
なう方法であつて、還元ガスと酸化鉄との気固相
反応によつて鉄鉱石の含有する殆んどの酸素を除
去し、還元鉄を固体状態で還元炉から取り出す方
法である。これらの方法において、還元ガス源は
今のところ、天然ガスに限られているため、これ
らの製鉄プラントは天然ガスの豊富な地方に限ら
れており、種々の巾広い炭化水素を還元ガス源と
するプロセスの出現が望まれている。
These gas reduction methods generally use natural gas (CH 4 ) as a reducing gas source and bring the natural gas into contact with an oxidizing gas such as H 2 O or CO 2 at high temperature in the presence of a catalyst. This is a method of reducing iron ore (iron oxide) using the CO + H 2 gas obtained as a reducing agent, and most of the oxygen contained in the iron ore is removed through a gas-solid phase reaction between the reducing gas and iron oxide. In this method, reduced iron is removed from the reduction furnace in a solid state. In these methods, the reducing gas source is currently limited to natural gas, so these steel plants are limited to regions with abundant natural gas, and a wide variety of hydrocarbons can be used as the reducing gas source. It is hoped that a process will emerge.

また設備的にも、天然ガスを改質してCO+H2
ガスを得るための還元ガス製造設備として、高価
なリフオーマーチユーブと、該チユーブ内に充填
するNi系触媒とを多量に必要とするため、プラ
ント建設費の相当な部分をこれら還元ガス製造設
備に充当しなければならず、しかもこの設備は処
理ガス量が増加すれば、それに比例してリフオー
マーチユーブ及び触媒量も増加するため、スケー
ルメリツトが小さく、これを大規模にするメリツ
トが期待できなかつた。
In addition, in terms of equipment, natural gas is reformed to produce CO + H 2
As reducing gas production equipment to obtain gas requires large amounts of expensive reformer tubes and Ni-based catalysts filled in the tubes, a considerable portion of the plant construction cost is spent on these reducing gas production equipment. Furthermore, as the amount of gas to be processed increases in this equipment, the amount of reheating tubes and catalysts will also increase proportionally, so the economies of scale are small, and the benefits of making it large-scale are expected. I couldn't do it.

更に、還元ガスと鉄鉱石との反応は還元ガス温
度が高い程その反応速度を速くすることができ、
生産性を高めると共にエネルギ効率も高めること
ができるが、急速な還元と高温による還元鉄表面
の活性化によつて、流動層の場合には還元鉄粒子
同志が固着し、また固定層あるいはシヤフト炉法
においてはペレツト状あるいは塊状の還元鉄同志
が炉内で固着してしまうため、安定な作業を行な
うことができなくなる欠点がある。このため、従
来のこれらガス還元法においては、生産性及びエ
ネルギ効率を多少犠性にしてでも安定操業の可能
な範囲にまで温度を下げて運転することを余儀な
くされており、高炉法が1500℃以上であるのに対
し、ガス還元法では900℃前後という相当低い温
度となつている。
Furthermore, the higher the temperature of the reducing gas, the faster the reaction rate between the reducing gas and iron ore.
It is possible to increase productivity and energy efficiency, but due to rapid reduction and activation of the reduced iron surface due to high temperatures, reduced iron particles stick together in the case of a fluidized bed, and in a fixed bed or shaft furnace. This method has the disadvantage that reduced iron particles in the form of pellets or lumps stick together in the furnace, making it impossible to perform stable work. For this reason, in the conventional gas reduction methods, it is necessary to lower the temperature to a range where stable operation is possible, even if it means sacrificing productivity and energy efficiency. In contrast, the gas reduction method achieves a considerably lower temperature of around 900°C.

本発明は、かかる現状に鑑み、従来のガス還元
法の有する問題点を解消し、且つ簡単なプロセス
によつて還元鉄を製造する方法を提供するもの
で、その目的とするところは、第1に還元ガス源
として天然ガス(CH4)に限らず、巾広く炭化水
素を利用できるプロセスを提供する点にあり、第
2に高価なリフオーマーチユーブによる還元ガス
製造設備を用いることなく安価且つ簡単に還元ガ
スの製造を行なうことのできるプロセスを提供す
ることにあり、更に第3には高温還元を行なつて
も還元鉄粒子の相互固着を生じることがなく、従
つてエネルギ効率の高いプロセスを提供する点に
ある。
In view of the current situation, the present invention aims to solve the problems of the conventional gas reduction method and provide a method for producing reduced iron through a simple process. Our goal is to provide a process that can use not only natural gas (CH 4 ) but also a wide range of hydrocarbons as a reducing gas source. The purpose is to provide a process that can easily produce reducing gas, and thirdly, even if high temperature reduction is performed, reduced iron particles do not stick to each other, and therefore it is a highly energy efficient process. The point is to provide the following.

そこで、炭化水素を予じめ還元ガスに改質する
ことなく鉄鉱石粒子と直接接触させ、鉄鉱石の還
元あるいは還元ガスの製造を行なうことができれ
ば、還元鉄製造プロセスは極めて単純化し、同時
にエネルギ効率も大巾に向上させることができる
ことから、本発明者等は上記観点に立脚して次の
如き実験を行なつた。
Therefore, if it were possible to reduce iron ore or produce reducing gas by bringing hydrocarbons into direct contact with iron ore particles without reforming them into reducing gas in advance, the reduced iron production process would be extremely simple, and at the same time energy efficient. Since the efficiency can also be greatly improved, the present inventors conducted the following experiments based on the above viewpoint.

〔実験 1〕 鉄鉱石粒子(Fe2O3)を還元炉内に装入し、こ
れに860℃でCO:36%、H2:55%、CO2:5%、
CH4:4%からなる混合ガスを供給した場合(ケ
ースA)と、950℃でCH4:40%、H2:20%、
N2:40%の混合ガスを供給した場合(ケースB)
とにおける還元時間と還元率の変化を測定したと
ころ、第1図の如き結果を得た。第1図から明ら
かな様に、通常のCO,H2を主成分とする還元ガ
スを用いたケースAの場合には、時間と共に鉄鉱
石の還元が進行するが、CH4を40%含有したケー
スBの場合には、70〜80%程度までは還元が進行
するが、その後は時間と共に低下している。なお
第1図の縦軸は、還元による重量減少率を示した
ものであるから、ケースBにおいては、70〜80%
程度まで還元が進行した後は、逆に重量が増加し
ていることを示している。そこでケースBの鉄鉱
石を還元炉から取り出して調べたところ参考写真
として提供する顕微鏡写真(150倍)に示すよよ
うに、一部還元された鉄鉱石粒子の表面に炭素が
付着していることが確認された。
[Experiment 1] Iron ore particles (Fe 2 O 3 ) were charged into a reduction furnace, and at 860°C, CO: 36%, H 2 : 55%, CO 2 : 5%,
When a mixed gas consisting of CH 4 : 4% is supplied (case A), CH 4 : 40%, H 2 : 20% at 950°C,
N2 : When 40% mixed gas is supplied (Case B)
When the changes in reduction time and reduction rate were measured, the results shown in FIG. 1 were obtained. As is clear from Figure 1, in case A, which uses a normal reducing gas mainly composed of CO and H 2 , the reduction of iron ore progresses over time, but when the iron ore contains 40% CH 4 In case B, the reduction progresses to about 70-80%, but then decreases over time. Note that the vertical axis in Figure 1 shows the weight reduction rate due to reduction, so in case B, it is 70 to 80%.
This shows that after the reduction has progressed to a certain extent, the weight increases. The iron ore in Case B was taken out of the reduction furnace and examined, and as shown in the micrograph (150x magnification) provided as a reference photo, carbon was attached to the surface of the partially reduced iron ore particles. was confirmed.

この実験から、炭化水素を予じめ還元ガスに改
質することなく、直接、鉄鉱石粒子と接触させる
と、鉄鉱石は一部還元され、同時に炭化水素も
CH4→C+2H2の如く分解されて、生成した炭素
が鉄鉱石粒子を被覆する様に付着することが分か
る。
This experiment shows that when hydrocarbons are brought into direct contact with iron ore particles without first being reformed into reducing gas, the iron ore is partially reduced and at the same time the hydrocarbons are also reduced.
It can be seen that the carbon is decomposed as CH 4 →C+2H 2 and the generated carbon adheres to coat the iron ore particles.

〔実験 2〕 各種酸化状態の酸化鉄及び還元鉄を、950℃に
て、CH4:25%、H2O:25%、N2:50%からな
る混合ガスとSV:500/hrで接触させてCH4
CO及びH2への改質度を調べたところ、第2図の
如き結果を得た。なお第2図の寿縦はCH4のCO,
H2への転換率を示している。同図から明らかな
様にFe2O3,Fe3O4,FeOはいづれもCH4の分解
に対する触媒能に乏しいが、還元鉄は著しく高い
触媒能を有している。
[Experiment 2] Iron oxide and reduced iron in various oxidation states were contacted at 950°C with a mixed gas consisting of CH 4 : 25%, H 2 O: 25%, N 2 : 50% at SV: 500/hr. Let ch 4
When the degree of modification to CO and H 2 was investigated, the results shown in Figure 2 were obtained. In addition, the longevity vertical in Figure 2 is CH 4 CO,
The conversion rate to H2 is shown. As is clear from the figure, Fe 2 O 3 , Fe 3 O 4 , and FeO all have poor catalytic ability for the decomposition of CH 4 , but reduced iron has extremely high catalytic ability.

この実験から、従来の様に高価なNi触媒を使
用することなく、還元工程で生成した還元鉄を触
媒として、炭化水素を還元ガスに改質できること
が分かる。
This experiment shows that hydrocarbons can be reformed into reduced gas using the reduced iron produced in the reduction process as a catalyst, without using the conventionally expensive Ni catalyst.

以上の実験事実に基づき、本発明は前述の目的
達成のための合理的な還元鉄製造プロセスを提供
するもので、その特徴とするところは、次の工程
の結合にある。
Based on the above experimental facts, the present invention provides a rational reduced iron production process for achieving the above-mentioned objectives, and its feature lies in the combination of the following steps.

○イ 鉄鉱石粒子を鉱石加熱器であらかじめ加熱し
て流動層予備還元炉に供給し、この鉄鉱石粒子
を流動状態に保持した流動層予備還元炉に炭化
水素を供給し、該炭化水素の一部を分解ガス化
すると共に鉄鉱石粒子を部分還元し、同時に該
分解によつて副生する炭素を該鉄鉱石粒子に付
着する工程。
○B Iron ore particles are heated in advance with an ore heater and supplied to a fluidized bed pre-reduction furnace, and hydrocarbons are supplied to the fluidized bed pre-reduction furnace which maintains the iron ore particles in a fluidized state, and one of the hydrocarbons is A step of decomposing and gasifying the iron ore particles, partially reducing the iron ore particles, and simultaneously attaching carbon by-produced by the decomposition to the iron ore particles.

○ロ 前記炭素付着鉄鉱石粒子、分解ガス及び後述
する流動層還元炉からの還元鉄の一部を流動層
ガス改質炉に供給し、該鉄鉱石粒子及び還元鉄
を流動状態に保持しつつ該分解ガスをCOとH2
を主成分とする還元ガスに改質する工程。
○B The carbon-adhered iron ore particles, cracked gas, and a portion of the reduced iron from the fluidized bed reduction furnace described later are supplied to a fluidized bed gas reforming furnace, while the iron ore particles and reduced iron are maintained in a fluidized state. The cracked gas is converted into CO and H2
The process of reforming into a reducing gas whose main component is

○ハ 前記○ロの流動層ガス改質炉から排出される鉄
鉱石粒子及び一部酸化された還元鉄を流動層還
元炉に供給し、これらを流動状態に保持しつつ
前記○ロで生成した還元ガスと接触させて還元鉄
を製造する工程。
○C The iron ore particles and partially oxidized reduced iron discharged from the fluidized bed gas reforming furnace of ○B above are supplied to the fluidized bed reduction furnace, and while these are maintained in a fluidized state, the iron ore particles and the partially oxidized reduced iron are produced in ○B above. A process to produce reduced iron by contacting it with reducing gas.

○ニ 前記○ハの流動層還元炉から排出されるガスを
前記○イの流動層予備還元炉2に供給する工程。
○D A step of supplying the gas discharged from the fluidized bed reduction furnace of ○C to the fluidized bed preliminary reduction furnace 2 of ○B.

以下に本発明の工程を第3図に示すフローシー
トに基づいて説明すると、図中1は流動層形式の
鉱石加熱器であり、ライン8より、平均粒径10〜
200μの鉄鉱石粒子が該加熱器1に供給され、
1000℃あるいはそれ以上に加熱されてライン9よ
り流動層形式の予備還元炉2に供給される。この
還元炉は700〜1000℃で運転されており、ここで
はライン13より予熱器5で分解しない程度の
400〜500℃に予熱された炭化水素、例えば天然ガ
スあるいは炭化水素油と、後述するライン12か
ら加熱器21を経て1000℃付近に加熱されて供給
されるCO2,H2O等の酸化性ガスを含む循環ガス
が、加熱されて流動状態に保持された鉄鉱石粒子
と接触し、次の如き反応によつて炭化水素の一部
は還元ガスとなる。
Below, the process of the present invention will be explained based on the flow sheet shown in Fig. 3. In the figure, 1 is a fluidized bed type ore heater, and from line 8, an ore heater with an average particle size of 10 to
200μ iron ore particles are fed to the heater 1;
It is heated to 1000° C. or higher and is supplied to a fluidized bed type pre-reduction furnace 2 through a line 9. This reduction furnace is operated at a temperature of 700 to 1000℃, and here, a preheater 5 is connected to line 13 to prevent decomposition.
Hydrocarbons preheated to 400 to 500°C, such as natural gas or hydrocarbon oil, and oxidizing substances such as CO 2 and H 2 O, which are heated to around 1000°C and supplied from line 12, which will be described later, via heater 21. The circulating gas containing the gas comes into contact with iron ore particles that are heated and maintained in a fluidized state, and a portion of the hydrocarbons becomes a reducing gas through the following reaction.

CH4+H2O→CO+3H2 CH4+CO2→2CO+2H2 …… 同時にこれらの還元ガスによつて鉄鉱石は次の
反応によつて予備還元される。
CH 4 +H 2 O→CO+3H 2 CH 4 +CO 2 →2CO+2H 2 ... At the same time, iron ore is pre-reduced by these reducing gases through the following reaction.

Fe2O3+H2→2FeO+H2O Fe2O3+CO→2FeO+CO2 …… 更に炭化水素の一部は次の如き反応によつて炭
素を副生し、副生炭素は前述の通り鉄鉱石粒子の
表面に付着することになる。
Fe 2 O 3 +H 2 →2FeO+H 2 O Fe 2 O 3 +CO → 2FeO+CO 2 ... Furthermore, some of the hydrocarbons produce carbon as a by-product through the following reaction, and as mentioned above, the by-product carbon becomes iron ore particles. will adhere to the surface.

CH4→C+H2 2Fe2O3+CH4→ 4FeO+2H2O+C …… これらの〜式の反応はいづれも吸熱反応で
あるから、該予備還元炉2に熱エネルギーを補給
してやる必要があるので、前記ライン12からの
ガスは、炉内温度以上に充分に加熱して供給する
と共に、予備還元炉2で生成した炭素付着鉄鉱石
粒子の大部分をライン10より前記鉱石加熱炉1
に戻し、ライン17より供給される空気によつて
前記付着炭素の一部を燃焼させ、鉱石加熱の熱源
とする。その他、鉄鉱石粒子をライン8より高温
スチームと共に供給し、熱源の補充を行なうこと
もできる。
CH 4 → C + H 2 2Fe 2 O 3 + CH 4 → 4FeO + 2H 2 O + C ... Since all of these reactions in formula ~ are endothermic reactions, it is necessary to supply thermal energy to the preliminary reduction furnace 2, so the line The gas from 12 is sufficiently heated above the furnace temperature and supplied, and most of the carbon-attached iron ore particles produced in the pre-reduction furnace 2 are passed through the line 10 to the ore heating furnace 1.
The deposited carbon is partially combusted by the air supplied from the line 17 and used as a heat source for heating the ore. Alternatively, iron ore particles can be supplied along with high temperature steam from line 8 to replenish the heat source.

次に予備還元炉2で生成した炭素付着鉄鉱石粒
子は、ライン11より流動層形式のガス改質部3
に供給され、後述する流動層還元炉4で生成し、
ライン14を通して戻される還元鉄と共に流動状
態に保持される。一方予備還元炉2より排出され
る炭化水素ガスを多量に含む分解ガスはライン7
を経て浄化装置18に入り、予備還元炉2内で生
成したH2S,COS等の硫化物及びCO2,H2Oの
内、炭化水素ガスの改質に余剰な成分を除去した
後、ライン20を通り、予熱器6で炭化水素が分
解しない程度の400〜500℃に加熱されてガス改質
炉3に供給される。ここでは前述した通り、炭化
水素ガスの還元ガスへの改質触媒能の高い還元鉄
及び10%前後の転化能を有する酸化鉄が流動状態
に保持されているため、前記式の反応によつて
炭化水素の殆んどがH2,COへと転換され、H2
COを主成分とする還元ガスとなつてライン16
より加熱器22で充分に加熱されて流動層還元炉
4に供給される。
Next, the carbon-adhered iron ore particles generated in the preliminary reduction furnace 2 are transferred to a fluidized bed type gas reforming section 3 through a line 11.
and produced in the fluidized bed reduction furnace 4 described later,
It is kept in a fluid state with the reduced iron returned through line 14. On the other hand, the cracked gas containing a large amount of hydrocarbon gas discharged from the preliminary reduction furnace 2 is transferred to the line 7.
After passing through the purifier 18 and removing components surplus to reforming the hydrocarbon gas among sulfides such as H 2 S and COS and CO 2 and H 2 O generated in the preliminary reduction furnace 2, It passes through a line 20 and is heated in a preheater 6 to a temperature of 400 to 500° C., which is enough to prevent hydrocarbons from being decomposed, and then supplied to the gas reforming furnace 3. As mentioned above, reduced iron, which has a high ability to catalyze the reforming of hydrocarbon gas into reducing gas, and iron oxide, which has a conversion ability of around 10%, are kept in a fluid state, so the reaction of the above formula is carried out. Most of the hydrocarbons are converted to H 2 and CO, and H 2 +
Line 16 becomes a reducing gas whose main component is CO.
Then, it is sufficiently heated by the heater 22 and supplied to the fluidized bed reduction furnace 4.

なお、ライン20よりガス改質炉4に供給され
るガス中には、炭化水素ガスの他酸化性ガス
(CO2+H2O)とCO,H2とを含有しており、酸
化性ガスは炭化水素の改質のために不可欠な成分
であるが、この量が多いと、次の反応により還元
鉄が一部酸化されることになる。
In addition, the gas supplied to the gas reforming furnace 4 from the line 20 contains oxidizing gas (CO 2 + H 2 O) and CO, H 2 in addition to hydrocarbon gas, and the oxidizing gas is It is an essential component for hydrocarbon reforming, but if its amount is large, reduced iron will be partially oxidized by the following reaction.

Fe+H2O→FeO+H2 Fe+CO2→FeO+CO …… この反応は式の還元ガス生成反応が吸熱反応
であるのに対し発熱反応であるから、ガス改質炉
内反応の熱補給の役目をなすと共に、還元ガス生
成のための補助反応の役目をする。
Fe+H 2 O→FeO+H 2 Fe+CO 2 →FeO+CO... This reaction is an exothermic reaction, whereas the reducing gas production reaction in the equation is an endothermic reaction, so it plays the role of replenishing heat for the reaction in the gas reforming furnace, and It serves as an auxiliary reaction for producing reducing gas.

式の反応により生成した酸化鉄を含むガス改
質炉3内の還元鉄及びライン11から供給されて
きた炭素付着鉄鉱石粒子は、ライン15を通つて
流動層還元炉4に供給される。ここでは、これら
鉄鉱石粒子が流動状態に保持されて、前述のライ
ン16から供給される高温還元ガスと接触して、
次式の反応により還元鉄となる。
The reduced iron in the gas reforming furnace 3 containing iron oxide produced by the reaction of the formula and the carbon-attached iron ore particles supplied from the line 11 are supplied to the fluidized bed reduction furnace 4 through the line 15. Here, these iron ore particles are kept in a fluid state and come into contact with the hot reducing gas supplied from the aforementioned line 16.
It becomes reduced iron by the reaction of the following formula.

FeO+H2→Fe+H2O FeO+CO→Fe+CO2 …… 従来の流動層還元炉の場合には、上記反応によ
り生成した還元鉄粒子がシンタリング現象を起こ
すため、炉内温度を余り高くすることができず、
1000℃を越える高温還元は不可能であつたが、本
発明においては、鉄鉱石粒子は炭素で被覆されて
いるため、かかるシンタリング現象を起こすこと
はないので、1000℃以上の温度での高温還元が可
能となる。従つて前後工程の操作温度を考慮して
700〜1200℃の広い範囲で還元温度を選択するこ
とができる。
FeO+H 2 →Fe+H 2 O FeO+CO→Fe+CO 2 ... In the case of a conventional fluidized bed reduction furnace, the reduced iron particles generated by the above reaction cause a sintering phenomenon, so the temperature inside the furnace cannot be made too high. ,
High-temperature reduction exceeding 1000°C has been impossible, but in the present invention, since the iron ore particles are coated with carbon, such sintering phenomenon does not occur. Refund is possible. Therefore, considering the operating temperature of the previous and previous processes,
The reduction temperature can be selected within a wide range of 700-1200°C.

還元炉4で生成した還元鉄の一部はライン14
より前述のガス改質炉3に供給されると共に、一
部はライン19より製品還元鉄として取り出され
る。
A part of the reduced iron produced in the reduction furnace 4 is transferred to the line 14.
The iron is supplied to the gas reforming furnace 3 described above, and a portion is taken out from the line 19 as a reduced iron product.

以上に、第3図に示した本発明の代表的なプロ
セスについて説明したが、本例において、予備還
元炉2、還元炉4、ガス改質炉3内での主反応は
全て吸熱反応であるから、これらの熱量は主とし
て鉱石加熱器1、加熱器21,22で賄う必要が
あり、特に還元炉4での還元温度をガス改質炉3
の反応温度より高くするときは、ライン15を経
てガス改質炉3から供給される炭素付着鉄鉱石粒
子及び一部酸化された還元鉄は還元炉4の温度よ
り低いから、加熱器22で還元炉4に供給する還
元ガスを充分に加熱してその熱補償を行なう必要
がある。またガス改質炉3に充分な熱量を供給す
るには、図中点線で示したライン23により、鉱
石加熱器1内で、ガス改質炉3の操業温度あるい
はそれ以上に加熱した炭素付着鉄鉱石粒子をガス
改質炉3に供給することが好ましい。なお、この
場合には、予備還元炉2で生成した炭素付着鉄鉱
石粒子は全て鉱石加熱炉1に戻され、ライン8か
らは、ライン23より送られる炭素付着鉄鉱石粒
子量に相当する量の新たな鉄鉱石粒子が供給され
るが、この新たな供給量は、加熱炉1内に滞留し
ている多量の炭素付着鉄鉱石粒子量に比べると僅
かであるから、ライン23から改質炉3に供給さ
れる鉄鉱石中の炭素で被覆されていない粒子の量
は無視し得る程度となるので、本発明において、
かかる方式をとることに問題はないばかりか、ガ
ス改質炉3への主熱供給源としての重要な意味を
もつている。
The typical process of the present invention shown in FIG. 3 has been described above, but in this example, the main reactions in the preliminary reduction furnace 2, reduction furnace 4, and gas reforming furnace 3 are all endothermic reactions. Therefore, these amounts of heat need to be mainly provided by the ore heater 1 and the heaters 21 and 22. In particular, the reduction temperature in the reduction furnace 4 must be covered by the gas reforming furnace 3.
When raising the reaction temperature to a temperature higher than the reaction temperature of It is necessary to sufficiently heat the reducing gas supplied to the furnace 4 to compensate for its heat. In addition, in order to supply a sufficient amount of heat to the gas reforming furnace 3, carbon-coated iron ore heated to the operating temperature of the gas reforming furnace 3 or higher in the ore heater 1 is Preferably, stone particles are fed to the gas reforming furnace 3. In this case, all of the carbon-coated iron ore particles generated in the preliminary reduction furnace 2 are returned to the ore heating furnace 1, and from line 8, an amount equivalent to the amount of carbon-coated iron ore particles sent from line 23 is returned. New iron ore particles are supplied, but since this new supply amount is small compared to the large amount of carbon-adhered iron ore particles retained in the heating furnace 1, it is In the present invention, since the amount of particles not coated with carbon in the iron ore supplied to the iron ore is negligible,
Not only is there no problem with adopting such a method, but it also has an important meaning as a main heat supply source to the gas reforming furnace 3.

またガス改質炉3への熱補給を行なうため、ガ
ス浄化装置18では、H2S,COS等の硫化物及び
余剰のCO2を除去すると共に、H2Oは完全に除去
し、ガス改質炉3内での前記式の反応に必要な
H2Oは、ライン24より1000℃程度に加熱され
たスチームとして供給することにより、熱補給を
伴わせ行なう様にすることも可能である。
In addition, in order to replenish heat to the gas reforming furnace 3, the gas purification device 18 removes sulfides such as H 2 S and COS and excess CO 2 , and also completely removes H 2 O. Required for the reaction of the above formula in the quality furnace 3
H 2 O can also be supplied from the line 24 as steam heated to about 1000° C. to provide heat supplementation.

一方、予備還元炉2へ供給する炭化水素として
は、一般に用いられている天然ガスの他、通常の
炭化水素油及び原油の蒸留残渣油、石炭液化油等
の重質油でもよく、これら油類の場合には、予備
還元炉2内で殆んどC1〜C4成分へと熱分解され
ると共に、鉄鉱石粒子表面に付着する炭素量も天
然ガスの場合に比して多量となるため、鉱石加熱
器1内での付着炭素燃焼量を多くして、外部供給
熱源を減少させると共に、より高温での操業を可
能とする。
On the other hand, the hydrocarbons to be supplied to the preliminary reduction furnace 2 may be ordinary hydrocarbon oils, distillation residue oils of crude oil, heavy oils such as coal liquefied oils, etc., in addition to commonly used natural gas. In the case of , most of the iron ore is thermally decomposed into C 1 to C 4 components in the pre-reduction furnace 2, and the amount of carbon attached to the surface of the iron ore particles is also larger than in the case of natural gas. , the amount of adhering carbon burned within the ore heater 1 is increased, reducing the external heat source and enabling operation at higher temperatures.

また、ガス浄化装置18は、予備還元炉2とガ
ス改質炉3との間に必ずしも設置しなければなら
ないものではなく、予備還元炉2、ガス改質炉3
及び還元炉4間を連結するガス循環ライン7,2
0,16,12のいづれかに設けておけばよいも
のであることは言うまでもない。
Furthermore, the gas purification device 18 does not necessarily have to be installed between the pre-reduction furnace 2 and the gas reforming furnace 3;
and gas circulation lines 7, 2 connecting the reduction furnace 4.
Needless to say, it is sufficient to provide it at any one of 0, 16, and 12.

なお、還元炉4にガス改質炉3から供給される
鉄鉱石粒子の該還元炉内滞留時間は一定ではない
ので、FeOとしてライン15から供給される鉄鉱
石粒子の一部はそのままライン19から製品とし
て取り出されるので製品の品質を高めるには還元
炉を2基直列に配置することが好ましい。この場
合には還元炉4を第1還元炉とし、図中点線で示
した様に、該第1還元炉4から排出される一部
FeOを含む還元鉄は、ライン19′を通つて流動
層形式の第2還元炉27に供給され、ここでライ
ン16′より加熱器22′で加熱されて供給される
高温還元ガスと接触して還元され、ライン25よ
り高純度還元鉄として製出される。一方還元ガス
は、第2還元炉27を経て、ライン26より第1
還元炉4に供給され、更にライン12を経て予備
還元炉2に供給されることになる。
Note that since the residence time of the iron ore particles supplied from the gas reforming furnace 3 to the reduction furnace 4 in the reduction furnace is not constant, a part of the iron ore particles supplied from the line 15 as FeO is directly transferred from the line 19. Since it is taken out as a product, it is preferable to arrange two reduction furnaces in series in order to improve the quality of the product. In this case, the reduction furnace 4 is used as the first reduction furnace, and as shown by the dotted line in the figure, the part discharged from the first reduction furnace 4 is
The reduced iron containing FeO is supplied through line 19' to a fluidized bed type second reduction furnace 27, where it comes into contact with high-temperature reducing gas supplied from line 16' and heated by heater 22'. It is reduced and produced through line 25 as high-purity reduced iron. On the other hand, the reducing gas passes through the second reducing furnace 27 and from the line 26 to the first
It is supplied to the reduction furnace 4 and further supplied to the preliminary reduction furnace 2 via the line 12.

以上本発明方法について詳述して来たが、前記
イ〜ニの工程に従つて実際に還元鉄を製造したと
ころ、さきに述べた実験1、実験2の結果が確認
されかつ以下に述べる種々の効果を奏することが
認められた。
The method of the present invention has been described in detail above, but when reduced iron was actually produced according to the steps A to D above, the results of Experiments 1 and 2 described earlier were confirmed, and various results described below were confirmed. It was recognized that this effect was achieved.

以上詳述した通り本発明方法は、流動層形式の
還元炉及びガス改質炉を直列に配置して鉄鉱石粒
子及び炭化水素を順次流通させることにより、鉄
鉱石の還元と還元ガスの製造を行なえる様にした
ものであり、次の如き顕著な効果が期待される。
As detailed above, the method of the present invention reduces iron ore and produces reducing gas by arranging a fluidized bed type reducing furnace and a gas reforming furnace in series and sequentially circulating iron ore particles and hydrocarbons. The following remarkable effects are expected.

(1) 流動層形式の予備還元炉2で、鉄鉱石粒子と
炭化水素とを直接に接触させて、鉄鉱石粒子を
部分還元すると共に、炭化水素を一部分解させ
て炭素を副生させ、副生炭素を鉄鉱石粒子表面
に付着させ、この炭素付着鉄鉱石粒子を流動層
還元炉4に送給する様にしているから、流動層
還元炉において還元鉄同志がシンタリングによ
り凝集することがないので、高温還元が可能と
なり、従つて反応速度も速くなり、熱効率、生
産性共に向上し、しかも還元炉を小型化できる
効果がある。
(1) In the fluidized bed pre-reduction furnace 2, iron ore particles are brought into direct contact with hydrocarbons to partially reduce the iron ore particles, and at the same time partially decompose the hydrocarbons to produce carbon as a by-product. Since raw carbon is attached to the surface of iron ore particles and the carbon-adhered iron ore particles are sent to the fluidized bed reduction furnace 4, reduced iron does not aggregate due to sintering in the fluidized bed reduction furnace. Therefore, high-temperature reduction becomes possible, the reaction rate becomes faster, both thermal efficiency and productivity are improved, and the reduction furnace can be made smaller.

(2) 流動層ガス改質炉3では、還元工程で生成し
た還元鉄を触媒として、炭化水素ガスへの改質
反応を行なう様にしているから、従来の如き、
高価なリフオーマーチユーブ及びNi触媒が不
要となり、プラントコストが大巾に低減される
と共に、操業中のNi触媒取替作業も不要とな
り、メンテナンスも容易となる。
(2) In the fluidized bed gas reforming furnace 3, the reforming reaction to hydrocarbon gas is carried out using reduced iron produced in the reduction process as a catalyst, so
This eliminates the need for expensive reflow march tubes and Ni catalysts, greatly reducing plant costs, and also eliminates the need to replace Ni catalysts during operation, making maintenance easier.

また装置を大型化する場合にも、従来のリフ
オーマーチユーブ方式では、ガス処理量に比例
してチユーブ本数が増加するため、スケールメ
リツトは期待し難いが、本発明の流動層ガス改
質炉ではスケールメリツトが期待できるため、
還元鉄プラントの大型化が可能となる。
In addition, when increasing the size of the equipment, it is difficult to expect economies of scale in the conventional re-former tube method because the number of tubes increases in proportion to the amount of gas processed, but the fluidized bed gas reformer of the present invention Since economies of scale can be expected,
It becomes possible to increase the size of reduced iron plants.

(3) 流動層ガス改質炉に供給する炭化水素ガス
は、予備還元炉で分解ガス化した生成ガスを送
ることができるから、還元ガス源として、従来
は天然ガスしか利用し得なかつたものが、副生
炭素発生量の多い重質油をも利用することがで
きるため、還元ガス源選択幅が広がり、プラン
ト設計の自由度が極めて大となり、天然ガス産
出地以外にも還元鉄プラントの建設を可能にす
るのみならず、副生炭素も前述の通り有効に利
用することができる。
(3) The hydrocarbon gas supplied to the fluidized bed gas reforming furnace can be sent to the product gas that has been decomposed and gasified in the pre-reduction furnace, so it is now possible to use natural gas as a source of reducing gas, whereas in the past only natural gas could be used. However, heavy oil, which generates a large amount of by-product carbon, can also be used, which widens the range of reducing gas source selections and greatly increases the degree of freedom in plant design. Not only does this make construction possible, but by-product carbon can also be used effectively as mentioned above.

(4) 流動層ガス改質炉3内に、触媒作用の大きい
還元鉄のみならず、予備還元された状態の鉄鉱
石粒子をも供給する様にしているため、ガス改
質炉内の熱容量が大となり、炭化水素の改質反
応(吸熱反応)への熱供給が容易となると共
に、鉄鉱石粒子はこの熱供給源としてその供給
温度及び量を変えることにより、熱供給量を自
由に調整できることになる。
(4) Since not only reduced iron having a strong catalytic effect but also pre-reduced iron ore particles are supplied into the fluidized bed gas reforming furnace 3, the heat capacity inside the gas reforming furnace is reduced. This makes it easier to supply heat to the hydrocarbon reforming reaction (endothermic reaction), and iron ore particles can be used as a heat supply source to freely adjust the amount of heat supplied by changing the supply temperature and amount. become.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、還元ガスとメタンによる鉄鉱石の還
元能を示すグラフ、第2図は各種酸化鉄による炭
化水素の還元ガスへの転換触媒能を示すグラフ、
第3図は本発明方法の一例を示すフローシートで
ある。 1……鉱石加熱器、2……流動層予備還元炉、
3……流動層ガス改質炉、4,27……流動層還
元炉、5,6……予熱器、18……ガス浄化装
置、21,22……加熱器。
Figure 1 is a graph showing the ability to reduce iron ore by reducing gas and methane, Figure 2 is a graph showing the catalytic ability of various iron oxides to convert hydrocarbons into reducing gas,
FIG. 3 is a flow sheet showing an example of the method of the present invention. 1...Ore heater, 2...Fluidized bed preliminary reduction furnace,
3... Fluidized bed gas reforming furnace, 4, 27... Fluidized bed reduction furnace, 5, 6... Preheater, 18... Gas purification device, 21, 22... Heater.

Claims (1)

【特許請求の範囲】 1 鉄鉱石粒子を流動状態に保持しつつ高温還元
ガスと接触させてこれを還元し、還元鉄を製造す
る方法であつて、次の(イ)〜(ニ)の工程を奏すること
を特徴とする還元鉄の製造方法。 (イ) 鉄鉱石粒子を鉱石加熱器1であらかじめ加熱
して流動層予備還元炉2に供給すると共に、こ
の鉄鉱石粒子を流動状態に保持した流動層予備
還元炉2に炭化水素を供給し、該炭化水素の一
部を分解ガス化すると共に鉄鉱石粒子を部分還
元し、同時に該分解によつて副生する炭素を該
鉄鉱石粒子に付着する工程。 (ロ) 前記炭素付着鉄鉱石粒子、分解ガス及び後述
する流動層還元炉4からの還元鉄の一部を流動
層ガス改質炉3に供給し、該鉄鉱石粒子及び還
元鉄を流動状態に保持しつつ該分解ガスをCO
とH2を主成分とする還元ガスに改質する工程。 (ハ) 前記(ロ)の流動層ガス改質炉3から排出される
鉄鉱石粒子及び一部酸化された還元鉄を流動層
還元炉に供給し、これらを流動状態に保持しつ
つ前記(ロ)で生成した還元ガスと接触させて還元
鉄を製造する工程。 (ニ) 前記(ハ)の流動層還元炉から排出されるガスを
前記(イ)の流動層予備還元炉2に供給する工程。 2 (イ)の工程において流動層予備還元炉に供給す
る炭化水素が天然ガスである特許請求の範囲第1
項に記載の還元鉄の製造方法。 3 (イ)の工程において流動層予備還元炉に供給す
る炭化水素が重質油である特許請求の範囲第1項
に記載の還元鉄の製造方法。 4 (イ)の工程において流動層予備還元炉2から取
り出された炭素付着鉄鉱石粒子の一部を鉱石加熱
器に帰還させて再加熱する特許請求の範囲第1項
乃至第3項のいづれかに記載の還元鉄の製造方
法。 5 鉱石加熱器に空気を供給し、鉄鉱石粒子に付
着した炭素の一部を燃焼させて加熱に利用する特
許請求の範囲第4項に記載の還元鉄の製造方法。 6 鉱石加熱器が鉄鉱石粒子を流動状態に保持し
つつ加熱する流動層加熱器である特許請求の範囲
第4項又は第5項に記載の還元鉄の製造方法。 7 (イ)の工程における流動層予備還元炉からの排
出ガスを流動層ガス改質炉に供給するに当り、該
排出ガスをガス浄化装置18を通して余剰不要成
分を除去した後、該ガス改質炉に供給する特許請
求の範囲第1項乃至第6項のいづれかに記載の還
元鉄の製造方法。 8 (ロ)の工程において、流動層予備還元炉2から
排出される炭素付着鉄鉱石粒子を流動層ガス改質
炉3に供給する特許請求の範囲第1項乃至第7項
のいづれかに記載の還元鉄の製造方法。 9 (ロ)の工程において、鉱石加熱器1にて加熱さ
れた炭素付着鉄鉱石粒子を流動層ガス改質炉3に
供給する特許請求の範囲第4項乃至第7項のいづ
れかに記載の還元鉄の製造方法。 10 流動層還元炉が第1還元炉4と第2還元炉
27とからなり、流動層ガス改質炉3から排出さ
れる炭素付着鉄鉱石粒子及び一部酸化された還元
鉄を第1還元炉4に供給し、第1還元炉4から排
出される還元鉄を第2還元炉に供給して仕上還元
に付すと共に、前記ガス改質炉3からの還元ガス
を第2還元炉27に供給した後第1還元炉4に供
給するようにした特許請求の範囲第1項乃至第9
項のいづれかに記載の還元鉄の製造方法。 11 流動層予備還元炉内温度が700〜1000℃、
流動層還元炉内温度が700〜1200℃、流動層ガス
改質炉内温度が800〜1000℃である特許請求の範
囲第1項乃至第10項のいづれかに記載の還元鉄
の製造方法。
[Claims] 1. A method for producing reduced iron by reducing iron ore particles by contacting them with a high-temperature reducing gas while maintaining them in a fluidized state, the method comprising the following steps (a) to (d): A method for producing reduced iron characterized by: (b) Iron ore particles are heated in advance with an ore heater 1 and supplied to a fluidized bed pre-reduction furnace 2, and hydrocarbons are supplied to the fluidized bed pre-reduction furnace 2 which maintains the iron ore particles in a fluidized state; A step of decomposing and gasifying a portion of the hydrocarbons, partially reducing the iron ore particles, and simultaneously attaching carbon by-produced by the decomposition to the iron ore particles. (b) The carbon-adhered iron ore particles, cracked gas, and a portion of the reduced iron from the fluidized bed reduction furnace 4 to be described later are supplied to the fluidized bed gas reformer 3, and the iron ore particles and reduced iron are brought into a fluidized state. While retaining the decomposition gas, CO
The process of reforming the gas into a reducing gas whose main components are H2 and H2 . (c) The iron ore particles and partially oxidized reduced iron discharged from the fluidized bed gas reforming furnace 3 of (b) above are supplied to the fluidized bed reduction furnace, and while maintaining them in a fluidized state, the iron ore particles and the partially oxidized reduced iron are ) The process of producing reduced iron by contacting it with the reducing gas produced in (d) A step of supplying the gas discharged from the fluidized bed reduction furnace of (c) to the fluidized bed pre-reduction furnace 2 of (a). 2. Claim 1 in which the hydrocarbon supplied to the fluidized bed pre-reduction furnace in the step (a) is natural gas.
The method for producing reduced iron as described in section. 3. The method for producing reduced iron according to claim 1, wherein the hydrocarbon supplied to the fluidized bed preliminary reduction furnace in step (a) is heavy oil. 4. Any one of claims 1 to 3 in which a part of the carbon-attached iron ore particles taken out from the fluidized bed pre-reduction furnace 2 in the step (a) is returned to the ore heater and reheated. The method for producing reduced iron described. 5. The method for producing reduced iron according to claim 4, wherein air is supplied to the ore heater, and a part of the carbon attached to the iron ore particles is combusted and utilized for heating. 6. The method for producing reduced iron according to claim 4 or 5, wherein the ore heater is a fluidized bed heater that heats the iron ore particles while maintaining them in a fluidized state. 7. When supplying the exhaust gas from the fluidized bed preliminary reduction furnace to the fluidized bed gas reforming furnace in step (a), the exhaust gas is passed through the gas purification device 18 to remove excess unnecessary components, and then the gas is reformed. A method for producing reduced iron according to any one of claims 1 to 6, which is supplied to a furnace. 8. In the step (b), the carbon-attached iron ore particles discharged from the fluidized bed pre-reduction furnace 2 are supplied to the fluidized bed gas reforming furnace 3 according to any one of claims 1 to 7. Method for producing reduced iron. 9. In the step (b), the reduction according to any one of claims 4 to 7, in which the carbon-attached iron ore particles heated in the ore heater 1 are supplied to the fluidized bed gas reforming furnace 3. Method of manufacturing iron. 10 The fluidized bed reduction furnace consists of a first reduction furnace 4 and a second reduction furnace 27, and carbon-adhered iron ore particles and partially oxidized reduced iron discharged from the fluidized bed gas reformer 3 are transferred to the first reduction furnace. The reduced iron discharged from the first reducing furnace 4 was supplied to the second reducing furnace for final reduction, and the reducing gas from the gas reforming furnace 3 was supplied to the second reducing furnace 27. Claims 1 to 9 are arranged to supply the first reduction furnace 4 after the first reduction furnace.
A method for producing reduced iron according to any one of the paragraphs. 11 The temperature inside the fluidized bed pre-reduction furnace is 700-1000℃,
The method for producing reduced iron according to any one of claims 1 to 10, wherein the temperature inside the fluidized bed reduction furnace is 700 to 1200°C, and the temperature inside the fluidized bed gas reforming furnace is 800 to 1000°C.
JP13178381A 1981-08-21 1981-08-21 Manufacture of reduced iron Granted JPS5834114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13178381A JPS5834114A (en) 1981-08-21 1981-08-21 Manufacture of reduced iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13178381A JPS5834114A (en) 1981-08-21 1981-08-21 Manufacture of reduced iron

Publications (2)

Publication Number Publication Date
JPS5834114A JPS5834114A (en) 1983-02-28
JPS6325044B2 true JPS6325044B2 (en) 1988-05-24

Family

ID=15066038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13178381A Granted JPS5834114A (en) 1981-08-21 1981-08-21 Manufacture of reduced iron

Country Status (1)

Country Link
JP (1) JPS5834114A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629095B2 (en) * 1983-11-28 1994-04-20 株式会社東芝 Displacement detection method for paper sheets
JPS61282091A (en) * 1985-06-10 1986-12-12 Kanegafuchi Chem Ind Co Ltd Production of cacao butter substitute fat
JPH0689391B2 (en) * 1986-03-31 1994-11-09 株式会社神戸製鋼所 Fluidized bed reduction method for iron ore
JPH075951B2 (en) * 1987-03-02 1995-01-25 株式会社神戸製鋼所 Composite type direct iron making method
AT402937B (en) * 1992-05-22 1997-09-25 Voest Alpine Ind Anlagen METHOD AND SYSTEM FOR DIRECTLY REDUCING PARTICULATE IRON OXIDE MATERIAL
AT409386B (en) * 2000-06-28 2002-07-25 Voest Alpine Ind Anlagen Process and installation for the direct reduction of particulate oxide-containing ores
AT409387B (en) 2000-06-28 2002-07-25 Voest Alpine Ind Anlagen Process and installation for the gas reduction of particulate oxide-containing ores

Also Published As

Publication number Publication date
JPS5834114A (en) 1983-02-28

Similar Documents

Publication Publication Date Title
US4420332A (en) Process for the production of reduced iron and thermal cracking of heavy oils
US5064467A (en) Method and apparatus for the direct reduction of iron
JP5857054B2 (en) Method and apparatus for directly producing reduced iron using a reducing gas containing hydrogen and carbon monoxide as a supply source
US5387274A (en) Process for the production of iron carbide
JP2001509582A (en) Thermal integration method of self-heat exchange reformer and cogeneration power plant
DK153956B (en) PROCEDURE FOR MANUFACTURING STEEL OUT OF IRON OXIDE
AU4792197A (en) Method and apparatus for controlling dri carburization
CN108474048B (en) Method and system for producing high carbon DRI by using syngas
WO2009037587A2 (en) Method and apparatus for the direct reduction of iron ores utilizing gas from a melter-gasifier
KR20110084772A (en) Apparatus for manufacturing molten irons that is capable of reducing carbon dioxide emissions
JPH0454601B2 (en)
US3136624A (en) Method for reducing metal oxides
JPS6325044B2 (en)
US4131452A (en) Method for direct manufacture of crude steel
CN100412173C (en) Process for pretreatment of coke oven gas and partial oxidation preparation of synthetic raw gas
US4606761A (en) Reduction of metal compounds
JP3342670B2 (en) Manufacturing method of iron carbide
US20230038218A1 (en) Facility and method for production of direct reduced iron
US4248627A (en) Process for the manufacture and use of high purity carbonaceous reductant from carbon monoxide-containing gas mixtures
KR20100078327A (en) A apparatus for treatmenting exhaust gas and apparatus for manufacturing molten irons used thereof and method for producing hydrogen using exhaust gas
JPS5819601B2 (en) Method for producing reducing gas
JPH079015B2 (en) Smelting reduction method for iron ore
JPS5834113A (en) Manufacture of reduced iron
EP0054926B1 (en) A process for the production of reduced iron and thermal cracking of heavy oils
US3591364A (en) Reducing gas generation