JPS63250407A - Method for removing binder from injection-molded metal body - Google Patents

Method for removing binder from injection-molded metal body

Info

Publication number
JPS63250407A
JPS63250407A JP8556387A JP8556387A JPS63250407A JP S63250407 A JPS63250407 A JP S63250407A JP 8556387 A JP8556387 A JP 8556387A JP 8556387 A JP8556387 A JP 8556387A JP S63250407 A JPS63250407 A JP S63250407A
Authority
JP
Japan
Prior art keywords
binder
thermoplastic resin
injection
temperature
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8556387A
Other languages
Japanese (ja)
Inventor
Yoshihiko Seyama
瀬山 喜彦
Tsutomu Iikawa
勤 飯川
Kawara Yamagishi
山岸 瓦
Eiji Horikoshi
堀越 英二
Munetaka Takeuchi
竹内 宗孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP8556387A priority Critical patent/JPS63250407A/en
Publication of JPS63250407A publication Critical patent/JPS63250407A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To remove a binder from molded bodies with high temp. controllability without cracking the molded bodies or degenerating the metal of the bodies by embedding the molded bodies obtd. by injection-molding metal powder kneaded with thermoplastic resin in AlN granules and by raising the temp. CONSTITUTION:Powder of a metal such as an Fe-Si alloy is mixed with thermoplastic resin and injection-molded. The molded bodies 3 are embedded in AlN granules 4 of about 5-20 mm average diameter as a filler in a vessel 5 made of Mo or the like. The vessel 5 is positioned in an electric furnace or the like and the temp. is slowly raised under a flow of nitrogen or the like to decompose and remove the thermoplastic resin as a binder. Thus, the binder can be removed without cracking, swelling or collapsing the molded bodies or causing the degeneration of the alloy by gas generated by the decomposition of the binder.

Description

【発明の詳細な説明】 〔概要〕 金属粉末と熱可塑性樹脂との混合物を射出成形して得た
成形体を表面に亀裂を生じさせないで脱バインダする方
法として、成形体を窒化アルミニウム粉体中に埋没した
状態で徐々に昇温して熱可塑性樹脂を分解除去する方法
[Detailed Description of the Invention] [Summary] As a method for removing the binder from a molded body obtained by injection molding a mixture of metal powder and thermoplastic resin without causing cracks on the surface, the molded body is placed in aluminum nitride powder. A method of decomposing and removing thermoplastic resin by gradually raising the temperature while it is buried in the plastic.

〔産業上の利用分野〕[Industrial application field]

本発明は射出成形金属体の脱バインダ方法に関する。 The present invention relates to a method for removing binder from an injection molded metal body.

金属材料を必要とする形状に成形する方法として旋盤な
どを用いて切削加工するのが通常であるが、材質が硬く
、また脆くて旋盤加工が困難な場合がある。
The usual way to shape a metal material into a desired shape is to cut it using a lathe or the like, but the material is hard and brittle, making lathe processing difficult in some cases.

例えば鉄・硅素(Fe−Si)合金などの軟磁性材料を
用いて形成されるマグネット・ベースやモータのヨーク
などがこれであって、材質が硬くて脆いために製造歩留
まりが低いと云う問題がある。
For example, magnet bases and motor yokes are made of soft magnetic materials such as iron-silicon (Fe-Si) alloys, and the problem is that the manufacturing yield is low because the materials are hard and brittle. be.

一方、金属成形体を得る方法として、金属粉末を熱可塑
性樹脂と混合した後、これを射出成形して必要とする形
状に成形し、次にこれを炉中に置き、徐々に温度上昇さ
せて熱可塑性樹脂を分解させ、脱バインダ処理を行った
後に焼結するライチック・プロセス(旧tec−pro
cess)があり、この方法は量産に適しており、また
製造歩留まりが高いと云う特徴をもっている。
On the other hand, a method for obtaining a metal molded body is to mix metal powder with a thermoplastic resin, then injection mold it into the desired shape, then place it in a furnace and gradually raise the temperature. Lytic process (formerly tec-pro) involves decomposing thermoplastic resin, debinding it, and then sintering it.
This method is suitable for mass production and has a high manufacturing yield.

〔従来の技術〕[Conventional technology]

ライチック・プロセスの問題点は脱バインダを行う際に
射出成形金属体(以下略して成形体)に微5少な亀裂(
以下クラック)、膨れ、崩れなどが生じ易いことで、こ
の工程で生じた欠陥は高温焼結工程でも修復されない。
The problem with the lytic process is that when the binder is removed, the injection molded metal body (hereinafter simply referred to as the molded body) may have minute cracks (5).
Defects generated in this process cannot be repaired even in the high-temperature sintering process because cracks, blisters, and collapses are likely to occur.

そのため、か\る欠陥を生じることなく脱バインダを行
うことが必要である。
Therefore, it is necessary to remove the binder without causing such defects.

この方法として、成形体をそのままの状態で炉の中に配
置するか、或いは銅(Cu)のような金属粉や酸化硅素
(5in2)粉やアルミナ(八l!203)粉のような
セラミック粉末中に埋没させた状態で炉中に配置し、徐
々に昇温して熱可塑性樹脂の分解除去する方法がとられ
ている。
This method can be carried out by placing the compact as it is in a furnace, or by placing a metal powder such as copper (Cu) or a ceramic powder such as silicon oxide (5in2) powder or alumina (8l!203) powder. The method used is to place the thermoplastic resin in a furnace and gradually raise the temperature to decompose and remove the thermoplastic resin.

こ\で、熱可塑性樹脂としてはポリスチレン。Here, the thermoplastic resin is polystyrene.

ポリエチレン、また両者の混合物などが用いられており
、熱分解温度の近くまで昇温した後は数置/時間の速度
で徐々に加温して分解を進行させることにより脱バイン
ダが行われている。
Polyethylene or a mixture of the two are used, and after the temperature is raised to near the thermal decomposition temperature, the binder is removed by gradually heating at a rate of several seconds per hour to advance the decomposition. .

然し、成形体を露出させた状態で昇温する場合は1〜2
℃7時の低速度で温度上昇させることが必要で、これよ
り速くすると成形体の表面と内部との間にかなりの温度
勾配が生ずるのは避けがたく、そのためにクランク、膨
れ、崩れなどの欠陥を生ずると云う問題がある。
However, if the temperature is raised with the molded body exposed, 1 to 2
It is necessary to raise the temperature at a slow rate of 7°C; if it is faster than this, it is inevitable that a considerable temperature gradient will occur between the surface and the inside of the molded product, which will cause problems such as cranking, blistering, and collapse. There is a problem that defects occur.

また、金属粉や酸化物粉中に埋没させて昇温させる場合
は温度勾配の発生は緩和されるため昇温速度は上げられ
るもの\、通気性が悪いためにバインダが抜けにく\、
また分解したガスとの反応が起こり易いと云う問題があ
る。
In addition, when heating by immersing the binder in metal powder or oxide powder, the temperature gradient is alleviated and the heating rate can be increased, but the binder is difficult to remove due to poor air permeability.
Another problem is that reactions with decomposed gas tend to occur.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上記したように硬度が高くて脆い金属からなる成形体
を得るにはライチック・プロセスは優れた方法であるが
、脱バインダ過程において欠陥が生じたり、分解ガスと
の反応物が生じ易いことが問題である。
As mentioned above, the lytic process is an excellent method for obtaining compacts made of hard and brittle metal, but it is prone to defects and reaction products with decomposed gas during the binder removal process. That's a problem.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題は金属粉末と熱可塑性樹脂との混合物を射出
成形して得た成形体を脱バインダする際に成形体を窒化
アルミニウム扮体中に埋没した状態で炉中に設置し、炉
温を上昇させて熱可塑性樹脂を分解除去する射出成形金
属体の脱バインダ方法により解決することができる。
The above problem arises when removing the binder from a molded body obtained by injection molding a mixture of metal powder and thermoplastic resin. This problem can be solved by a method of debinding an injection molded metal body by raising the thermoplastic resin to decompose and remove it.

〔作用〕[Effect]

脱バインダ・プロセスでの問題点は、 ■ 周囲温度が熱可塑性樹脂の分解温度に達すると急激
なガス分解が起こり膨れや崩れを生じること。
The problems with the binder removal process are: ■ When the ambient temperature reaches the decomposition temperature of the thermoplastic resin, rapid gas decomposition occurs, causing swelling and collapse.

■ 成形体の内外で温度勾配を生じ、温度差による熱膨
張の違いによりクラックが生じること。
■ A temperature gradient occurs inside and outside the molded object, and cracks occur due to differences in thermal expansion due to the temperature difference.

■ 金属粉やセラミック粉からなる充填材の中に埋没し
た状態で加熱すると、どうしても通気性が損なわれる結
果、分解ガス雰囲気中で加熱されることになり、その化
合物ができ易い点である。
(2) When heated while buried in a filler made of metal powder or ceramic powder, air permeability is inevitably impaired, resulting in heating in an atmosphere of decomposed gas, which tends to form compounds.

そこで、本発明は充填材として ■ 通気性が優れていること。Therefore, the present invention has been proposed as a filler. ■ Excellent breathability.

■ 熱伝導率が高いこと。■High thermal conductivity.

■ 樹脂の分解温度では反応が起こりにくいこと。■ Reactions are difficult to occur at the decomposition temperature of the resin.

■ 人手し易いこと。■Easy to handle.

などを必要条件として充填材料を選定し、平均粒径が5
〜2(1*mの窒化アルミニウム(AlN)粉末を選ん
だ。
The filling material is selected based on the necessary conditions such as, and the average particle size is 5.
~2(1*m) aluminum nitride (AlN) powder was chosen.

ここで、AffiNは熱伝導度が良く、また熱的および
化学的に安定な材料として知られている。
Here, AffiN is known to have good thermal conductivity and is a thermally and chemically stable material.

表は熱伝導度が良いとして知られている材料と性能を比
較したものである。
The table compares the performance with materials known to have good thermal conductivity.

表 なお、分解温度の欄においてA I MO3とSiCは
融点を示している。
In the table, the melting points of A I MO3 and SiC are shown in the column of decomposition temperature.

これらの材料は何れも安定な材料であり500℃程度ま
での温度で行われるバインダ除去処理では化学的にも反
応しないが、熱伝導率の面から云うとAINが最も優れ
ている。
All of these materials are stable materials and do not react chemically during binder removal treatment performed at temperatures up to about 500° C., but AIN is the best in terms of thermal conductivity.

そこで、本発明はAIN粉末を充填材として使用するも
ので、熱伝導がよいために昇温と降温を制御性よく行う
ことができる。
Therefore, the present invention uses AIN powder as a filler, and because of its good thermal conductivity, it is possible to increase and decrease the temperature with good controllability.

次ぎに、充填材を使用する場合の問題は通気が悪いため
にバインダの分解ガスが抜けにく\分解ガス雰囲気中で
加熱が行われることである。
Next, the problem when using a filler is that the decomposed gas of the binder is difficult to escape due to poor ventilation, and heating is performed in a decomposed gas atmosphere.

このためには粒度の調整が必要となる。For this purpose, it is necessary to adjust the particle size.

すなわち、粒度が細かい場合は熱の伝導性はよく温度制
御は容易となるがガス抜きが不十分となる。
That is, when the particle size is fine, thermal conductivity is good and temperature control is easy, but degassing becomes insufficient.

一方、粒度が大きいとガス抜きは充分に行われるものの
、熱の伝導性は不十分となる。
On the other hand, if the particle size is large, degassing will be sufficient, but thermal conductivity will be insufficient.

第2図はこの理由を説明するもので、八βNのような熱
伝導性の良い粒体1が相互に接触して充填が行われてい
るが、熱が高温部より低温部に伝導するには相互に接触
している粒界2を通って行う必要があり、熱は矢印で示
すように集結と拡散を繰り返しつつ伝導するため、かな
りの拡がり抵抗を必要とし、このため粒度が大きい程、
熱伝導性は不十分となる。
Figure 2 explains the reason for this.The particles 1 with good thermal conductivity, such as 8βN, are in contact with each other and filling is performed, but the heat is conducted from the high-temperature area to the low-temperature area. must be carried out through the grain boundaries 2 that are in contact with each other, and as the heat is conducted through repeated condensation and diffusion as shown by the arrows, a considerable spreading resistance is required.For this reason, the larger the grain size, the more
Thermal conductivity becomes insufficient.

発明者らは通気性を保ち、且つ熱伝導性を有効に利用し
得る条件として実験的に平均粒径が5〜20+i+のA
j?Nを選定したものである。
The inventors experimentally determined that A with an average particle size of 5 to 20+i+ was used as a condition for maintaining air permeability and effectively utilizing thermal conductivity.
j? N is selected.

〔実施例〕〔Example〕

粒度が350メツシュ以上のFe−3i合金粉末を″こ
れと等容積のポリスチレンとポリエチレン混合物に混合
して射出成形を行い、第1図に示すように611X 4
mX50mm(長さ)の直方体状の成形体3を作り、こ
の4個を平均粒径が5m〜20龍のAIN粉4を充填材
としてモリブデン(Mo)製の容器5に埋設した。
Fe-3i alloy powder with a particle size of 350 mesh or more is mixed with an equal volume of polystyrene and polyethylene mixture and injection molded to form a 611×4 piece as shown in Figure 1.
A rectangular parallelepiped molded body 3 of m×50 mm (length) was made, and four of these molded bodies were embedded in a container 5 made of molybdenum (Mo) using AIN powder 4 having an average particle size of 5 m to 20 mm as a filler.

そして、電気炉中に位置決めした後、窒素(N2)を6
001 /hourの流量で流しながら昇温し、200
℃から500℃までを10℃/hourの速度で徐々に
昇温しで脱バインダを行ったがクランク、膨れ。
After positioning in the electric furnace, nitrogen (N2) was added to the
The temperature was raised while flowing at a flow rate of 001/hour, and the temperature was increased to 200
The binder was removed by gradually raising the temperature from ℃ to 500℃ at a rate of 10℃/hour, but the product cracked and blistered.

崩れなどの発生はなく、またバインダの分解ガスによる
Fe−5t合金の変質も認められず、本発明の有利性を
立証することができた。
There was no occurrence of collapse, and no deterioration of the Fe-5t alloy due to binder decomposition gas was observed, proving the advantages of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上記したように本発明の実施により、射出成形体の脱
バインダ処理を温度制御性が良く、またクラックの発生
や変質を伴わずに行うことができ、これによりライチッ
ク・プロセスの問題点を解消することができる。
As described above, by carrying out the present invention, it is possible to perform the binder removal treatment of the injection molded article with good temperature controllability and without causing cracks or deterioration, thereby solving the problems of the lytic process. can do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明する断面図、第2図は熱の
拡がり抵抗を説明するモデル図、である。 図において、 1は粒体、        2は粒界、3は成形体、 
     4はAIN粉、である。
FIG. 1 is a cross-sectional view for explaining the present invention in detail, and FIG. 2 is a model diagram for explaining heat spread resistance. In the figure, 1 is a grain, 2 is a grain boundary, 3 is a compact,
4 is AIN powder.

Claims (2)

【特許請求の範囲】[Claims] (1)金属粉末と熱可塑性樹脂との混合物を射出成形し
て得た成形体を脱バインダする際、該成形体を窒化アル
ミニウム粉体中に埋没した状態で炉中に設置し、該炉温
を上昇させて前記熱可塑性樹脂を分解除去することを特
徴とする射出成形金属体の脱バインダ方法。
(1) When removing the binder from a molded body obtained by injection molding a mixture of metal powder and thermoplastic resin, the molded body is placed in a furnace while being embedded in aluminum nitride powder, and the furnace temperature is 1. A method for removing binder from an injection molded metal body, the method comprising decomposing and removing the thermoplastic resin by increasing the temperature.
(2)前記窒化アルミニウム粉体の平均粒径が5〜20
mmであることを特徴とする特許請求の範囲第1項記載
の射出成形金属体の脱バインダ方法。
(2) The average particle size of the aluminum nitride powder is 5 to 20
The method for removing binder from an injection molded metal body according to claim 1, wherein the binder is removed from an injection molded metal body.
JP8556387A 1987-04-07 1987-04-07 Method for removing binder from injection-molded metal body Pending JPS63250407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8556387A JPS63250407A (en) 1987-04-07 1987-04-07 Method for removing binder from injection-molded metal body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8556387A JPS63250407A (en) 1987-04-07 1987-04-07 Method for removing binder from injection-molded metal body

Publications (1)

Publication Number Publication Date
JPS63250407A true JPS63250407A (en) 1988-10-18

Family

ID=13862280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8556387A Pending JPS63250407A (en) 1987-04-07 1987-04-07 Method for removing binder from injection-molded metal body

Country Status (1)

Country Link
JP (1) JPS63250407A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04141507A (en) * 1990-10-01 1992-05-15 Iwate Pref Gov Method for removing binder from green body and material and constitution for green body
JPH05125405A (en) * 1991-11-05 1993-05-21 Sumitomo Metal Mining Co Ltd Method for removing binder from injection-molded body using alpha-alumina

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04141507A (en) * 1990-10-01 1992-05-15 Iwate Pref Gov Method for removing binder from green body and material and constitution for green body
JPH05125405A (en) * 1991-11-05 1993-05-21 Sumitomo Metal Mining Co Ltd Method for removing binder from injection-molded body using alpha-alumina

Similar Documents

Publication Publication Date Title
US3992497A (en) Pressureless sintering silicon nitride powders
JPH0231649B2 (en)
CN107159887B (en) Forming method of heating material based on microwave absorption
JPH01245941A (en) Thermoplastic compound for manufacturing casting core and manufacture of said core
JP2002155302A (en) Method for forming hollow article
JPS63250407A (en) Method for removing binder from injection-molded metal body
JP2708245B2 (en) Hot isostatic pressing method
JPH0211703A (en) Method for degreasing metal powder injection green compact
JPS63199807A (en) Method for removing binder from injection-molded metallic body
JPS60145966A (en) Method of dewaxing ceramic injection formed body
WO1994020242A1 (en) Process for manufacturing powder injection molded parts
JPS5895640A (en) Manufacture of ceramic product
JP2002292613A (en) Method for manufacturing ceramic molding
JP3161629B2 (en) Two-layer component manufacturing method, molded product for two-layer component, and two-layer component obtained by two-layer component manufacturing method
JPH08183661A (en) Production of silicon carbide sintered compact
JPH04186803A (en) Magnetic powder molded body and degreasing method thereof, and binder for magnetic powder molded body
JPH01131052A (en) Production of sintered material
JPH02107704A (en) Manufacture of injection molding powder sintered body
JPS60230957A (en) Manufacture of permanent magnet
JP2002121602A (en) Powder injection molding of high density metal matrix composite material
JPH0345567A (en) Production of sintered granular material
JPH0823042B2 (en) Metal injection molding method
JPH0151452B2 (en)
JPH0579623B2 (en)
JPS62148376A (en) Method of dewaxing ceramic injection molded body