JPS63250018A - Superconductive wire rod and its manufacture - Google Patents

Superconductive wire rod and its manufacture

Info

Publication number
JPS63250018A
JPS63250018A JP62085153A JP8515387A JPS63250018A JP S63250018 A JPS63250018 A JP S63250018A JP 62085153 A JP62085153 A JP 62085153A JP 8515387 A JP8515387 A JP 8515387A JP S63250018 A JPS63250018 A JP S63250018A
Authority
JP
Japan
Prior art keywords
fiber
film
superconducting
glass
oxide superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62085153A
Other languages
Japanese (ja)
Inventor
Takao Shioda
塩田 孝夫
Hiromi Hidaka
日高 啓視
Koichi Takahashi
浩一 高橋
Masahiro Sato
正博 佐藤
Takeru Fukuda
福田 長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP62085153A priority Critical patent/JPS63250018A/en
Priority to US07/178,264 priority patent/US5093311A/en
Publication of JPS63250018A publication Critical patent/JPS63250018A/en
Priority to US07/740,947 priority patent/US5196399A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain flexibility by spinning a fiber from a glass base material, and providing a film spattered with an oxide superconductive material and an enclosed layer on the fiber in turn. CONSTITUTION:A thin film 12 of an oxide superconductive material and an enclosed film 13 made of SiO2, for example, are formed on a glass fiber 11 to form a superconductive wire rod. A glass base material is pushed into a spinning furnace 2 at a fixed speed and controlled with a diameter measuring device 61 so that a fiber with a fixed diameter is spun. Three anodes 31 are arranged so as to envelop the vertically suspended fiber 11 in cylindrical and coaxial spattering devices 3, 4. The powder with the constitution of Ba0.6Y0.4 CuO4 is sintered on the target 32 of the device 3, and the powder of SiO2 is sintered on the target 32 of the device 4. Silicon resin is immediately coated on the SiO2 film formed by the device 4. A fine superconductive wire rod with the sufficient flexibility can be obtained accordingly.

Description

【発明の詳細な説明】[Detailed description of the invention]

一1= 11 =

【産業上の利用分野】[Industrial application field]

この発明は、超伝導マグネットコイル、超伝導パワー伝
送、超伝導通信などに用いられる超伝導線材及びその製
造方法に関する。
The present invention relates to a superconducting wire used in superconducting magnet coils, superconducting power transmission, superconducting communications, etc., and a method for manufacturing the same.

【従来の技術】[Conventional technology]

従来の超伝導線材は超伝導材料を単に丸棒状にしたもの
であり、超伝導材料のアモルファス金属を溶融状態で押
し出し成型し、急冷し、酸素雰囲気で焼きいれ酸化して
作るようにしている。
Conventional superconducting wires are simply round bars made of superconducting material, and are made by extruding superconducting amorphous metal in a molten state, rapidly cooling it, and oxidizing it by annealing it in an oxygen atmosphere.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

しかしながら、従来の超伝導線材では、適当な可撓性が
得られないため、実際に適用しようとすると困難があっ
た。 また、従来の製造方法では、細いものを作るのが困難で
あったり、可視性の高いものを製造することが困難であ
った。 この発明は、細くて可撓性のある超伝導線材を提供する
とともに、そのような超伝導線材を容易に製造すること
ができる製造方法を提供することを目的とする。
However, since conventional superconducting wires do not have adequate flexibility, it is difficult to actually apply them. Furthermore, with conventional manufacturing methods, it is difficult to manufacture thin products or products with high visibility. An object of the present invention is to provide a thin and flexible superconducting wire, and also to provide a manufacturing method that can easily manufacture such a superconducting wire.

【問題点を解決するための手段】[Means to solve the problem]

この発明による超伝導線材は、ガラス材料よりなるファ
イバと、該ファイバ上に形成された酸化物超伝導材料の
膜と、該膜の上に形成された密閉層とからなることを特
徴とする。 また、この発明による超伝導線材の製造方法は、ガラス
母材よりファイバを紡糸する工程と、酸化物超伝導材料
をスパッタリングして上記ファイバ上に酸化物超伝導材
料の膜を形成する工程と、該酸化物超伝導材料の膜の上
に密閉層を形成する工程とからなる。
The superconducting wire according to the present invention is characterized by comprising a fiber made of a glass material, a film of an oxide superconducting material formed on the fiber, and a sealing layer formed on the film. Further, the method for manufacturing a superconducting wire according to the present invention includes a step of spinning a fiber from a glass base material, a step of sputtering an oxide superconducting material to form a film of the oxide superconducting material on the fiber, forming a sealing layer over the film of oxide superconducting material.

【作  用】[For production]

細いガラスファイバの上に酸化物超伝導膜を形成しさら
にその上に密閉層を形成して超伝導線材としているので
、全体として細く、必要な可撓性を得ることが容易であ
るとともに、密閉層により酸化物超伝導膜の活性状態を
維持することができる。 スパッタリングにより酸化物超伝導膜を形成しているの
で、細いガラスファイバ上に酸化物超伏導膜を均一に薄
く形成することか簡単にできる。
An oxide superconducting film is formed on a thin glass fiber, and a sealing layer is formed on top of it to create a superconducting wire, so it is thin as a whole, making it easy to obtain the necessary flexibility, and making it easy to seal. The layer can maintain the active state of the oxide superconducting film. Since the oxide superconducting film is formed by sputtering, it is easy to uniformly and thinly form the oxide superconducting film on a thin glass fiber.

【実 施 例】【Example】

この発明の一実施例にかかる超伝導線材は第1図に示す
ような断面構造を有する。すなわち、ガラスファイバ1
1の表面に酸化物超伝導薄膜12が形成されさらにその
上に密閉層13が形成されてなる。この実施例では、ガ
ラスファイバ11は石英ガラスを直径12 ’yyhに
紡糸したものであり、酸化物超伝導薄膜12はB ao
、6Yo、4c u 04の酸化物超伝導材料を用い、
厚さ0.3p、mとしている。 密閉層]3は厚さ0.05.gr/LのS i 02膜
である。 なお、ガラスファイバ11としては、他に、多成分ガラ
ス等の光学ガラスやセラミックなどを材料とすることが
できる。また、酸化物超伝導材料としてはBaYCuO
,系、La5rCuOx系などを用いることができる。 密閉層13は、シリカの他に光学ガラスや石英ガラスな
どのガラス類、あるいはIn、A  、Cu、Ni、A
uなどの金属で形成することができる。さらに密閉層1
3の上にシリコーンや有機物などの保護層を適宜設はる
ことかできる。 このような構造の超伝導線材は、るつぼ線引法やロット
線引法等によりガラスファイバを紡糸するとともに、そ
れに引き続いて、連続的に酸化物超伝導膜12と密閉層
13とを形成することにより作ることができる。酸化物
超伝導薄膜12は、酸化物超伝導材料自体の連続的なス
パッタリング、蒸着、CVD (化学気相堆積)、アル
キル化合物の分解等により形成でき、゛あるいは超伝導
材料をこれらの方法により付着した後酸化して作ること
ができるほか、ゾルゲル法などによってもよい。 密閉層13は、ガラス材料を付着す、る場合にはスパッ
タ法やゾルゲル法などによればよく、金属材料を付着す
る場合はスパッタ法、溶融メッキ法、CVD法などによ
る。 このうち、スパッタリングによって酸化物超伝導薄膜を
形成する方法は、細いガラスファイバの上に薄い、均一
な膜を容易に形成できる点で有利である。つぎに、この
スパッタリングによる製造方法の一実施例について説明
する。 第2図に示すように、紡糸炉2と直流スパッタ装置3.
4と引っ張りローラ5とが垂直方向に1直線に並べられ
ており、紡糸炉2において紡糸されたガラスファイバが
引っ張りローラ5により引っ張られて巻き取られる過程
で、紡糸に連続して、スパッタ装置3.4によりファイ
バの表面への超伝導薄膜及びそ、の上への密閉層の形成
が行われる。 すなわち、紡糸炉2は加熱炉により溶融されたガラスを
線引きして紡糸するものである。加熱炉には押し込みレ
バー21によりガラス母材が所定の速度で押し込まれる
。直径測定器61によりファイバの直径を測定してガラ
ス母材の押し込み速度を変えるなどの制御を行って一定
の直径のファイバが紡糸されるようにする。ここでは、
ガラス母材として直径20mmの石英棒を用い、紡糸炉
2から線引きされるファイバを2 m 7分の速度でロ
ーラ5により引っ張り、直径125%m:f= 2pm
のファイバを紡糸した。 スパッタ装置3.4の両端には、低圧ポンプ、ロータリ
ーポンプ、メカニカルブースターポンプに連結された差
動排気装置63.64が設けられていて、真空のスパッ
タ装置3.4内と大気との圧力差か次第に形成されるよ
う、低圧ポンプ側からロータリーポンプ及びメカニカル
ブ′−スターポンプ側に向けて吸引力が増すようにされ
ている。 クリーナ65は、アルコンガスプラズマを発生させてプ
ラズマイオンでファイバ表面を叩いて表面の汚れを落と
すために挿入されている。 直流スパッタ装置3.4は円筒同軸型スパッタ装置を用
いている。この円筒同軸型スパッタ装置3(構造的には
スパッタ装置4も同じ)では、第3図に示すように中央
に垂直に中量されたガラスファイバ11を囲むように3
本のアノード31が配置され、その周囲に円筒状のター
ゲット(陰極)32が設けられている。このターゲラ1
−32は、その寸法が内径40mm、外径50mm、長
さ600mm、有効長500mmであり、スパッタ装置
3の場合、B ao6Yo4c u 04の構成の酸化
物粉末をシンターしたものである。スパッタ装置4では
ターゲット32の材料は5i02としである。いずれも
炉内は、イオンガスとしてアルゴンガスを用い、これを
1O−3Torrの圧力とした。この炉内は小量の酸素
を含む雰囲気としである。このようにして、上記のよう
に2m/分の速度で連続的に紡糸されてくるファイバ表
面に、まず、スパッタ装置3で酸化物超伝導薄膜を連続
的に形成し、引き続いてその上にスパッタ装置4によっ
て5jO2膜を形成した。 これらの膜厚は、前者が0.3Pfi、後者が屹05μ
電である。さらに、そのS i 02膜上に直ちにシリ
コーン樹脂を塗布した。 こうして、屈曲可能な超伝導線材を製造した。 この超伝導線材では、酸化物超伝導薄膜12の上に5j
02の密閉層13が形成されているため、密閉構造とな
っており、酸化物超伝導薄膜12の変性、すなわちスパ
ッタ後の活性な状態からの酸化を、防止できる。この線
材を85°Kに冷却したところ超伝導現象がみられた。 つぎに製造方法に関する第2に実施例について説明する
。この実施例では、第2図と同じようにして、まず、直
径8ザ電のガラスファイバを紡糸し、それに引き続いて
高周波スパッタ装置によりBao6Yo。4Cu04組
成の厚さ0.3ハの酸化物超伝導薄膜を形成し、つぎに
上記第1の実施例とは異なり金属ディップ装置を用いて
150℃の温度でインジウムをコーティングすることに
より、厚さ20PLの密閉層を作った。この実施例で得
た超伝導線材の場合も、85°にで超伝導状態を示した
A superconducting wire according to an embodiment of the present invention has a cross-sectional structure as shown in FIG. That is, glass fiber 1
An oxide superconducting thin film 12 is formed on the surface of 1, and a sealing layer 13 is further formed thereon. In this embodiment, the glass fiber 11 is made by spinning quartz glass to a diameter of 12'yyh, and the oxide superconducting thin film 12 is made of Bao
, 6Yo, 4c u 04 using oxide superconducting materials,
The thickness is 0.3p, m. Sealing layer] 3 has a thickness of 0.05. It is a gr/L S i 02 film. The glass fiber 11 may also be made of optical glass such as multi-component glass, ceramic, or the like. In addition, as an oxide superconducting material, BaYCuO
, La5rCuOx system, etc. can be used. In addition to silica, the sealing layer 13 is made of glass such as optical glass or quartz glass, or In, A2, Cu, Ni, or A2.
It can be made of metal such as u. Furthermore, sealing layer 1
A protective layer such as silicone or an organic substance may be appropriately provided on the layer 3. A superconducting wire having such a structure is obtained by spinning glass fibers by a crucible drawing method, a lot drawing method, etc., and subsequently forming an oxide superconducting film 12 and a sealing layer 13 continuously. It can be made by The oxide superconducting thin film 12 can be formed by continuous sputtering, vapor deposition, CVD (chemical vapor deposition), decomposition of an alkyl compound, etc. of the oxide superconducting material itself, or by depositing the superconducting material by these methods. It can be made by oxidation after the reaction, or it can also be made by a sol-gel method. The sealing layer 13 may be formed by a sputtering method, a sol-gel method, or the like when a glass material is attached, or by a sputtering method, a hot-dip plating method, a CVD method, or the like when a metal material is attached. Among these methods, the method of forming an oxide superconducting thin film by sputtering is advantageous in that a thin, uniform film can be easily formed on a thin glass fiber. Next, an embodiment of this manufacturing method using sputtering will be described. As shown in FIG. 2, a spinning furnace 2 and a DC sputtering device 3.
4 and a tension roller 5 are arranged in a straight line in the vertical direction, and in the process in which the glass fiber spun in the spinning furnace 2 is pulled and wound by the tension roller 5, the sputtering device 3 .4 forms a superconducting thin film on the surface of the fiber and a sealing layer thereon. That is, the spinning furnace 2 draws and spins glass melted in a heating furnace. A glass base material is pushed into the heating furnace at a predetermined speed by a pushing lever 21. The diameter of the fiber is measured by a diameter measuring device 61, and control such as changing the pushing speed of the glass base material is performed so that a fiber of a constant diameter is spun. here,
A quartz rod with a diameter of 20 mm is used as a glass base material, and the fiber drawn from the spinning furnace 2 is pulled by a roller 5 at a speed of 2 m 7 min, with a diameter of 125% m: f = 2 pm.
The fiber was spun. At both ends of the sputtering device 3.4, differential pumping devices 63,64 connected to a low-pressure pump, a rotary pump, and a mechanical booster pump are provided to reduce the pressure difference between the vacuum inside the sputtering device 3.4 and the atmosphere. The suction force increases from the low-pressure pump side toward the rotary pump and mechanical booster pump side so that the pumps are gradually formed. The cleaner 65 is inserted to generate arcon gas plasma and hit the fiber surface with plasma ions to remove dirt on the surface. The DC sputtering device 3.4 uses a cylindrical coaxial type sputtering device. In this cylindrical coaxial type sputtering apparatus 3 (structurally, the sputtering apparatus 4 is also the same), as shown in FIG.
A book anode 31 is arranged, and a cylindrical target (cathode) 32 is provided around it. This targetera 1
-32 has dimensions of an inner diameter of 40 mm, an outer diameter of 50 mm, a length of 600 mm, and an effective length of 500 mm, and in the case of sputtering device 3, the oxide powder having the configuration of Bao6Yo4cu04 was sintered. In the sputtering apparatus 4, the material of the target 32 is 5i02. In each case, argon gas was used as the ion gas in the furnace, and the pressure was set at 10-3 Torr. The atmosphere inside this furnace contained a small amount of oxygen. In this way, an oxide superconducting thin film is first continuously formed in the sputtering device 3 on the surface of the fiber that is continuously spun at a speed of 2 m/min as described above, and then sputtered on top of the oxide superconducting thin film. A 5jO2 film was formed using apparatus 4. The thickness of these films is 0.3Pfi for the former and 05μ for the latter.
It is electric. Furthermore, a silicone resin was immediately applied onto the S i 02 film. In this way, a bendable superconducting wire was manufactured. In this superconducting wire, 5j
Since the sealing layer 13 of No. 02 is formed, it has a sealed structure and can prevent denaturation of the oxide superconducting thin film 12, that is, oxidation from the active state after sputtering. When this wire was cooled to 85°K, superconductivity was observed. Next, a second example regarding the manufacturing method will be described. In this example, in the same manner as in FIG. 2, a glass fiber with a diameter of 8 strands was first spun, and then Bao6Yo was spun using a high frequency sputtering device. By forming an oxide superconducting thin film with a thickness of 0.3mm and having a composition of 4Cu04, and then coating it with indium at a temperature of 150°C using a metal dip apparatus, unlike the first embodiment, the thickness was increased. A sealed layer of 20 PL was made. The superconducting wire obtained in this example also exhibited superconductivity at an angle of 85°.

【発明の効果】【Effect of the invention】

この発明による超伝導線材は、細くて十分な可撓性を持
たせることが容易なため、超伝導マグネッ1−コイル、
超伝導パワー伝送、超伝導通信などの種々の分野に適用
することが容易である。さらに酸化物超伝導膜は密閉層
により密閉されているので、その変性が防止でき、活性
状態を保つことができる。 また、この発明の超伝導線材の製造方法によれば、細い
ガラスファイバの上に、薄い酸化物超伝導膜を均一に形
成することが簡単にできる。
The superconducting wire according to the present invention is thin and easy to provide sufficient flexibility, so it can be used for superconducting magnets, coils,
It is easy to apply to various fields such as superconducting power transmission and superconducting communication. Furthermore, since the oxide superconducting membrane is sealed by the sealing layer, its denaturation can be prevented and the active state can be maintained. Further, according to the method for manufacturing a superconducting wire of the present invention, a thin oxide superconducting film can be easily and uniformly formed on a thin glass fiber.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例にかかる線材の断面図、第
2図は製造装置の一例を示す模式図、第3図はスパッタ
装置の断面を示す模式図である。 11・・・ガラスファイバ、12・・・酸化物超伝導薄
膜、13・・・密閉層、2・・・紡糸炉、21・・・押
し込みレバー、3.4・・・スパッタ装置、31・・・
アノード、32・・・ターゲット、5・・・引っ張りロ
ーラ、61.62・・・直径測定器、63.64・・・
差動排気装置、65・・・クリーナ。
FIG. 1 is a cross-sectional view of a wire rod according to an embodiment of the present invention, FIG. 2 is a schematic diagram showing an example of a manufacturing apparatus, and FIG. 3 is a schematic diagram showing a cross-section of a sputtering apparatus. DESCRIPTION OF SYMBOLS 11... Glass fiber, 12... Oxide superconducting thin film, 13... Sealing layer, 2... Spinning furnace, 21... Pushing lever, 3.4... Sputtering device, 31...・
Anode, 32... Target, 5... Pulling roller, 61.62... Diameter measuring device, 63.64...
Differential exhaust system, 65...Cleaner.

Claims (5)

【特許請求の範囲】[Claims] (1)ガラス材料よりなるファイバと、該ファイバ上に
形成された酸化物超伝導材料の膜と、該膜の上に形成さ
れた密閉層とからなる超伝導線材。
(1) A superconducting wire consisting of a fiber made of a glass material, a film of an oxide superconducting material formed on the fiber, and a sealing layer formed on the film.
(2)上記密閉層は金属層であることを特徴とする特許
請求の範囲第1項記載の超伝導線材。
(2) The superconducting wire according to claim 1, wherein the sealing layer is a metal layer.
(3)上記密閉層はガラス層であることを特徴とする特
許請求の範囲第1項記載の超伝導線材。
(3) The superconducting wire according to claim 1, wherein the sealing layer is a glass layer.
(4)ガラス母材よりファイバを紡糸する工程と、酸化
物超伝導材料をスパッタリングして上記ファイバ上に酸
化物超伝導材料の膜を形成する工程と、該酸化物超伝導
材料の膜の上に密閉層を形成する工程とからなる超伝導
線材の製造方法。
(4) A step of spinning a fiber from a glass base material, a step of sputtering an oxide superconducting material to form a film of the oxide superconducting material on the fiber, and a step of forming a film of the oxide superconducting material on the fiber. A method for manufacturing a superconducting wire comprising the step of forming a sealing layer on the
(5)上記のスパッタリング工程は円筒同軸型スパッタ
装置を用いて行われることを特徴とする特許請求の範囲
第4項記載の超伝導線材の製造方法。
(5) The method for manufacturing a superconducting wire according to claim 4, wherein the sputtering step is performed using a cylindrical coaxial sputtering device.
JP62085153A 1987-04-06 1987-04-06 Superconductive wire rod and its manufacture Pending JPS63250018A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62085153A JPS63250018A (en) 1987-04-06 1987-04-06 Superconductive wire rod and its manufacture
US07/178,264 US5093311A (en) 1987-04-06 1988-04-06 Oxide superconductor cable and method of producing the same
US07/740,947 US5196399A (en) 1987-04-06 1991-08-06 Apparatus for producing oxide superconductor cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62085153A JPS63250018A (en) 1987-04-06 1987-04-06 Superconductive wire rod and its manufacture

Publications (1)

Publication Number Publication Date
JPS63250018A true JPS63250018A (en) 1988-10-17

Family

ID=13850721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62085153A Pending JPS63250018A (en) 1987-04-06 1987-04-06 Superconductive wire rod and its manufacture

Country Status (1)

Country Link
JP (1) JPS63250018A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143108A (en) * 1987-11-30 1989-06-05 Showa Electric Wire & Cable Co Ltd Manufacture of ceramics superconductive wire
JPH01144518A (en) * 1987-08-20 1989-06-06 Sumitomo Electric Ind Ltd Long-sized superconductor and manufacture thereof
CN102024525A (en) * 2010-11-16 2011-04-20 宁波振亚电工机械厂 Film sintering machine
CN115196889A (en) * 2022-08-01 2022-10-18 中国科学院合肥物质科学研究院 Method for modifying surface and enhancing insulation of glass fiber subjected to heat treatment of superconducting magnet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01144518A (en) * 1987-08-20 1989-06-06 Sumitomo Electric Ind Ltd Long-sized superconductor and manufacture thereof
JPH01143108A (en) * 1987-11-30 1989-06-05 Showa Electric Wire & Cable Co Ltd Manufacture of ceramics superconductive wire
CN102024525A (en) * 2010-11-16 2011-04-20 宁波振亚电工机械厂 Film sintering machine
CN115196889A (en) * 2022-08-01 2022-10-18 中国科学院合肥物质科学研究院 Method for modifying surface and enhancing insulation of glass fiber subjected to heat treatment of superconducting magnet
CN115196889B (en) * 2022-08-01 2024-01-30 中国科学院合肥物质科学研究院 Glass fiber surface modification and insulation enhancement method used after superconducting magnet heat treatment

Similar Documents

Publication Publication Date Title
US4842704A (en) Magnetron deposition of ceramic oxide-superconductor thin films
EP0286289B1 (en) A method of preparing a superconducting oxide and superconducting oxide metal composites
US5093311A (en) Oxide superconductor cable and method of producing the same
JP2013539157A (en) Method and apparatus for forming a superconducting layer on a substrate
JP2557486B2 (en) Method for producing long length of superconducting ceramics and long length of superconducting ceramics
KR20080045080A (en) Method for producing a superconducting electrical conductor
JPS63250018A (en) Superconductive wire rod and its manufacture
US5196399A (en) Apparatus for producing oxide superconductor cable
JPS63250017A (en) Superconductive wire rod and its manufacture
KR940011128B1 (en) Method and apparatus for continuous sputter coating of fibers
JPS60222807A (en) Covering of optical fiber
US5811376A (en) Method for making superconducting fibers
JPS63250026A (en) Manufacture of superconductive wire rod
US3332800A (en) Method for producing a superconductor comprising a niobium-tin alloy coating
JP3276277B2 (en) Liquid material supply device for CVD
JP2767298B2 (en) LAMINATED THIN FILM AND PROCESS FOR PRODUCING THE SAME
US4008102A (en) Method of the manufacture of a superconductor with a layer of the A-15 phase of the system Nb-Al-Si
JPH0221513A (en) Oxide superconductive wire and manufacture thereof
JP2012049086A (en) Oxide superconductive thin film wire rod, metal substrate for oxide superconductive thin film wire rod, and method of manufacturing the same
JP2539032B2 (en) Continuous raw material supply device for oxide superconductor manufacturing apparatus and continuous raw material supply method
JP2585366B2 (en) Oxide superconducting wire
JPH0315119A (en) Manufacture of oxide superconductor wire
JP4043732B2 (en) Heater and oxide superconductor thin film manufacturing equipment
JP2527790B2 (en) Equipment for manufacturing long oxide superconducting materials
JP3542378B2 (en) Manufacturing method of oxide superconducting wire