JPS63250015A - Wire rod for superconductive magnet - Google Patents

Wire rod for superconductive magnet

Info

Publication number
JPS63250015A
JPS63250015A JP62083338A JP8333887A JPS63250015A JP S63250015 A JPS63250015 A JP S63250015A JP 62083338 A JP62083338 A JP 62083338A JP 8333887 A JP8333887 A JP 8333887A JP S63250015 A JPS63250015 A JP S63250015A
Authority
JP
Japan
Prior art keywords
wire
superconducting
superconducting magnet
wire rod
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62083338A
Other languages
Japanese (ja)
Inventor
Masayuki Nagata
永田 正之
Minoru Yokota
稔 横田
Shigeki Isoshima
茂樹 礒嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62083338A priority Critical patent/JPS63250015A/en
Publication of JPS63250015A publication Critical patent/JPS63250015A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To improve the cooling performance of a wire rod for superconductive magnet for generating the high magnetic field by applying an insulating material with the withstand voltage of 500V or less to the wire rod for superconductive magnet using a specific ceramic oxide superconductive material as a component element. CONSTITUTION:A ceramic oxide superconductive material containing the IIa group element and IIIa group element in the periodic table, copper, and oxygen is used. An insulating material with the withstand voltage of 500V or less is formed on a superconductive magnet wire rod with such constitution for use as the superconductive magnet wire rod for generating the high magnetic field in particular. When the superconductive material with such a high critical temperature is used, the requirement for the high withstand voltage is eliminated, and the cooling performance can be improved. In addition, the current density is increased, and a coil is made small-sized.

Description

【発明の詳細な説明】 この発明は、セラミックス系の酸化物超電導材料を用い
た超電導マグネット用線材に関するもので、特に、高磁
界発生用の超電導マグネット用線月(こおける絶縁材の
改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to wire materials for superconducting magnets using ceramic-based oxide superconducting materials, and in particular to wire materials for superconducting magnets for generating high magnetic fields. It is.

従来、超電導マグネット用線材としては、銅安定化Nb
Tiまたは銅安定化Nb、Snなどが知られている。
Conventionally, copper-stabilized Nb was used as wire material for superconducting magnets.
Ti or copper stabilized Nb, Sn, etc. are known.

超電導マグネット用線材としては、電流を担うための超
電導材料、超電導材料の安定化のための安定化材、電磁
力に耐えるための補強材、コイルのターン間や層間の短
絡を防止するための絶縁材、等が通常具備されている。
Wire materials for superconducting magnets include superconducting materials to carry current, stabilizing materials to stabilize superconducting materials, reinforcing materials to withstand electromagnetic force, and insulation to prevent short circuits between coil turns and layers. materials, etc. are usually provided.

ところで、最近、超電導材料として、上述したN b 
T is N b 3 S nなどの金属系のものに加
えて、セラミックス系のものが脚光を浴びつつある。
By the way, recently, the above-mentioned N b
In addition to metal-based materials such as T is N b 3 S n, ceramic-based materials are increasingly attracting attention.

このようなセラミックス系超電導材料としては、層状ペ
ロブスカイト型(K2 N i F4型)の結晶構造を
有するものが知られており、たとえば、(La、5r)
2 Cub、または(La、Ba)2CuO4のような
セラミックス系の酸化物超電導材料については、超電導
現象を示す臨界温度として30に以」二を記録している
As such ceramic-based superconducting materials, those having a layered perovskite type (K2N i F4 type) crystal structure are known; for example, (La, 5r)
For ceramic-based oxide superconducting materials such as 2 Cub or (La, Ba) 2 CuO 4 , more than 30 critical temperatures have been recorded for exhibiting superconducting phenomena.

また、たとえばY−Ba−Cu−0系の超電導材料に代
表される、周期律表na族元素、■a族元素、銅および
酸素を含むセラミックス系の酸化物超電導材料にあって
は、その結晶構造等は明確でないものの、90に以上の
臨界温度を示すことが実証されている。
In addition, in the case of ceramic-based oxide superconducting materials containing elements of group na of the periodic table, group II a of the periodic table, copper, and oxygen, such as Y-Ba-Cu-0-based superconducting materials, the crystals of Although its structure is not clear, it has been demonstrated that it exhibits a critical temperature of 90°C or higher.

なお、前述した安定化材としては、できるだけ純度の高
い銅、アルミニウムなどの電気抵抗の低い金属が用いら
れる。
Note that as the above-mentioned stabilizing material, metals with low electrical resistance such as copper and aluminum with the highest possible purity are used.

また、補強材としては、通常、非磁性鋼やステンレスス
チール(SUS)などが用いられる。
Further, as the reinforcing material, non-magnetic steel, stainless steel (SUS), etc. are usually used.

さらに、絶縁材としては、たとえば、肉厚20μm以上
のカプトン(商品名)などのポリアミドイミドテープ、
肉厚20μm以上のホルマール(PVF)などのエナメ
ルが用いられている。
Furthermore, as an insulating material, for example, a polyamide-imide tape such as Kapton (trade name) with a wall thickness of 20 μm or more,
Enamel such as formal (PVF) with a wall thickness of 20 μm or more is used.

従来の典型的な超電導マグネット用線材は、金属系の超
電導材料を用いていた。しかしながら、このような超電
導材料は、臨界温度が低いため、使用状態においては、
冷却手段として液体ヘリウムを用いざるを得ず、しかも
、液体ヘリウムやガスヘリウムの耐圧が低いため、超電
導マグネット用線材には、500vを超える極めて高い
耐圧をもつ絶縁材が必要であった。
Conventional typical wire rods for superconducting magnets have used metallic superconducting materials. However, since such superconducting materials have low critical temperatures,
Since liquid helium must be used as a cooling means, and liquid helium and gas helium have low breakdown voltages, superconducting magnet wires require insulating materials with extremely high breakdown voltages exceeding 500V.

また、上述のヘリウムをはじめとして、超電導マグネッ
トの構成要素の比、熱が小さいため、超電導材料が常電
導転移(クエンチ)を起こしたときの常電導部の伝播速
度が速、く、コイノ←内に偶発的に高電圧が発生する原
因となっていた。このクエンチ時に発生する高電圧によ
るマグネットの破壊(アーク発生や絶縁不良)を防ぐた
めにも、上述した高耐圧絶縁が必要であった。
In addition, since the ratio and heat of the components of the superconducting magnet, including the helium mentioned above, are small, the propagation speed of the normal conductive part when the superconducting material undergoes a normal conduction transition (quench) is faster and faster. This caused the accidental generation of high voltage. In order to prevent the magnet from being destroyed (arc generation and insulation failure) due to the high voltage generated during this quenching, the above-mentioned high withstand voltage insulation was necessary.

しかしながら、このような高耐圧絶縁を得るた、1 めの材料は、通常、熱伝導率が悪いため、超電導材料の
冷却を阻害し、逆にクエンチを発生しやすい状態とする
、という背反する問題点を抱えていた。
However, in order to obtain such high voltage insulation, the first material usually has poor thermal conductivity, which hinders the cooling of the superconducting material and conversely creates a state where quenching is likely to occur. I had a point.

そこで、この発明は、超電導マグネット用線材:11 において、上述したような絶縁材に関連する問題点を解
消することを目的とするものでデる。
SUMMARY OF THE INVENTION Therefore, it is an object of the present invention to solve the above-mentioned problems associated with insulating materials in superconducting magnet wire rods.

この発明で献上述の曲題点i′決讐るため丁まず、高い
臨界温度を示す、周期律表IIa族元素、Ha族元素、
銅および酸素を含む番う□ミックス系=  5 − の酸化物超電導材料を一構成要素とするものであり、こ
のような超電導マグネット用線材に、耐圧500v以下
の絶縁材を施したことを特徴とするものである。
In order to solve the above-mentioned theme point i' in this invention, firstly, elements of Group IIa of the periodic table, elements of Ha group, which exhibit high critical temperatures,
One of its constituent elements is an oxide superconducting material containing a mixture of copper and oxygen, and is characterized by applying an insulating material with a withstand voltage of 500 V or less to such a wire for superconducting magnets. It is something to do.

なお、上記酸化物超電導材料の組成に含まれる周期律表
IIa族元素としては、Be、 Mg、  Ca。
Incidentally, the Group IIa elements of the periodic table included in the composition of the oxide superconducting material include Be, Mg, and Ca.

Sr、Ba、Raが挙げられる。また、Ha族元素とし
ては、Sc、Y、La、Ce、Pr、Nd。
Examples include Sr, Ba, and Ra. Furthermore, examples of Ha group elements include Sc, Y, La, Ce, Pr, and Nd.

Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、T
m、Yb、Lu、Ac、Th、Pa、U。
Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, T
m, Yb, Lu, Ac, Th, Pa, U.

Np、Pu、Am、Cm、Bk、Cf、Es、Fm、M
d、No、Lrが挙げられる。なお、これら列挙した元
素のうち、IIa族元素としては、Baを含むことが好
ましく、Ha族元素としては、Sc、Y、L’aのいず
れかまたはそれらの□混合を含むことが好ましい。
Np, Pu, Am, Cm, Bk, Cf, Es, Fm, M
Examples include d, No, and Lr. Among these listed elements, the IIa group element preferably includes Ba, and the Ha group element preferably includes any one of Sc, Y, L'a, or a mixture thereof.

また、実際の超電導マグネット用線材を構成するときに
は、従来のものと同様、安定化材や補強材が付加される
ことがある。
Further, when constructing an actual wire for a superconducting magnet, a stabilizing material or a reinforcing material may be added as in the conventional wire rod.

こ訴発明による作用を具体例に従って説明する=  6
 − と次のとおりである。
The action of the claimed invention will be explained according to specific examples = 6
− and as follows.

周期律表IIa族元素、ma族元素、銅および酸素を含
む超電導材料の臨界温度は非常に高く、たとえば、Y−
Ba−Cu−0系では、90にの臨界温度が得られてい
る。
The critical temperature of superconducting materials containing Group IIa elements of the periodic table, Group Ma elements, copper and oxygen is very high, for example, Y-
In the Ba-Cu-0 system, a critical temperature of 90°C has been obtained.

この材料を使った超電導マグネット用線材を、たとえば
77に1すなわち液体窒素の大気圧下での沸点に対応す
る温度下で使うとすると、マグネットのクエンチ時のコ
イルの両端電圧の最大値VI11は、常電導の伝播速度
Vと次の関係にある。
If a superconducting magnet wire made of this material is used at a temperature of 1 in 77, which corresponds to the boiling point of liquid nitrogen under atmospheric pressure, the maximum value VI11 of the voltage across the coil when the magnet is quenched is: It has the following relationship with the propagation velocity V of normal conduction.

m14aF ここで、Jはコイル電流密度、γは線材の比重、Cは比
熱、Loはリープマン定数、Toは運転温度(今の場合
77K)である。
m14aF Here, J is the coil current density, γ is the specific gravity of the wire, C is the specific heat, Lo is the Liebmann constant, and To is the operating temperature (77 K in this case).

今、温度マージン(TCJ、B  To )をIKとす
ると、伝播速度Vは、 J  [A / m m 2 コ X  8  X  
1 0−’° m/seeとなり、Toを4.2K(液
体ヘリウムの大気圧下での沸点)のときに比べ、500
分の1に遅くなる。すなわち、コイルの両端電圧は、(
a丁分の1)”(22分の1)に小さくなる。
Now, if the temperature margin (TCJ, B To ) is IK, the propagation velocity V is J [A / mm 2 × 8
1 0-'° m/see, and compared with To at 4.2K (the boiling point of liquid helium under atmospheric pressure), it is 500
It will be 1/2 the time. In other words, the voltage across the coil is (
It becomes smaller to 1/22nd)" (1/22).

一方、冷媒としての窒素は、液体状態であってもガス状
態であっても、絶縁耐圧がヘリウムに比べて高く、超電
導マグネット用線材の絶縁被覆に要求される耐圧として
は、500vを超える値にまで確保する必要がない。
On the other hand, nitrogen as a refrigerant has a higher dielectric strength voltage than helium, whether in liquid or gas state, and the dielectric strength required for the insulation coating of superconducting magnet wire exceeds 500V. There is no need to secure it.

また、冷媒として液体ヘリウムを用いるとしても、コイ
ル両端における最大電圧が低いので、500vを超える
耐圧を必要としない。
Further, even if liquid helium is used as the refrigerant, the maximum voltage at both ends of the coil is low, so a withstand voltage exceeding 500V is not required.

このように、この発明では、臨界温度の高い超電導材料
を用いているので、ヘリウムより絶縁耐圧の高いネオン
や窒素等の液体またはガスを用いることができるように
なり、したがって、500Vを超える高い耐圧をもつ絶
縁材が不要となる。
In this way, since the present invention uses a superconducting material with a high critical temperature, it is possible to use a liquid or gas such as neon or nitrogen, which has a higher dielectric strength than helium, and therefore can achieve a high dielectric strength exceeding 500V. This eliminates the need for insulating materials with

また、上述したように、臨界温度の高い超電導材料を用
い、そのため運転温度を高くできるので、常電導の伝播
速度を遅くすることができ、それによってコイルの発生
電圧を低くすることができる。
Further, as described above, since a superconducting material with a high critical temperature is used, and therefore the operating temperature can be increased, the propagation speed of normal conduction can be slowed down, and thereby the voltage generated in the coil can be lowered.

このことからも、絶縁材に対して高い耐圧が要求されな
い。
For this reason as well, high withstand voltage is not required for the insulating material.

したがって、従来、絶縁材としては耐圧的に信頼性の低
い、酸化銅、非常に薄い肉厚10μm以下のエナメル、
ガラス繊維を含有するもの、Al2O、コーティング、
等を用いることができる。
Therefore, conventional insulating materials include copper oxide, which has low reliability in terms of pressure resistance, and enamel, which has a very thin wall thickness of 10 μm or less.
Those containing glass fibers, Al2O, coatings,
etc. can be used.

そして、上述した材料は、絶縁材としては耐圧が低いが
、薄くすることが可能である。そのため、冷却性能が高
くなるのみならず、寸法的にも小さくできるので、コイ
ルとしてのバッキングファクタが向上し、電流密度が高
くなり、得られたコイルがコンパクトになるという効果
も奏される。特に、冷却性能の向上は、コイルの安定性
に大きく寄与し、クエンチが発生しにくくなり、マグネ
ットを用いたシステム等の信頼性が大幅に向上するもの
である。
The above-mentioned materials have low breakdown voltage as insulating materials, but can be made thin. Therefore, not only the cooling performance is improved, but also the size can be reduced, so that the bucking factor as a coil is improved, the current density is increased, and the obtained coil is made compact. In particular, improved cooling performance greatly contributes to the stability of the coil, making it difficult for quench to occur, and greatly improving the reliability of systems using magnets.

Claims (8)

【特許請求の範囲】[Claims] (1)周期律表IIa族元素、IIIa族元素、銅および酸
素を含むセラミックス系の酸化物超電導材料を一構成要
素とする超電導マグネット用線材に、耐圧500V以下
の絶縁材を施したことを特徴とする、超電導マグネット
用線材。
(1) A wire rod for a superconducting magnet, which is made of a ceramic-based oxide superconducting material containing group IIa elements, group IIIa elements, copper, and oxygen of the periodic table, is coated with an insulating material with a withstand voltage of 500 V or less. A wire rod for superconducting magnets.
(2)前記絶縁材が、酸化銅からなることを特徴とする
、特許請求の範囲第1項記載の超電導マグネット用線材
(2) The wire for a superconducting magnet according to claim 1, wherein the insulating material is made of copper oxide.
(3)前記絶縁材が、肉厚10μm以下のエナメルから
なることを特徴とする、特許請求の範囲第1項記載の超
電導マグネット用線材。
(3) The wire for a superconducting magnet according to claim 1, wherein the insulating material is made of enamel with a wall thickness of 10 μm or less.
(4)前記絶縁材が、ガラス繊維を含むことを特徴とす
る、特許請求の範囲第1項記載の超電導マグネット用線
材。
(4) The wire for a superconducting magnet according to claim 1, wherein the insulating material includes glass fiber.
(5)前記絶縁材が、Al_2O_3からなることを特
徴とする、特許請求の範囲第1項記載の超電導マグネッ
ト用線材。
(5) The wire for a superconducting magnet according to claim 1, wherein the insulating material is made of Al_2O_3.
(6)当該線材の構成要素として、安定化材をさらに含
むことを特徴とする、特許請求の範囲第1項ないし第5
項のいずれかに記載の超電導マグネット用線材。
(6) Claims 1 to 5 further include a stabilizing material as a component of the wire.
The wire material for a superconducting magnet according to any one of the above items.
(7)当該線材の構成要素として、補強材をさらに含む
ことを特徴とする、特許請求の範囲第1項ないし第6項
のいずれかに記載の超電導マグネット用線材。
(7) The wire for a superconducting magnet according to any one of claims 1 to 6, further comprising a reinforcing material as a component of the wire.
(8)前記周期律表IIa族元素がバリウムであり、前記
IIIa族元素がスカンジウム、イットリウム、ランタン
のいずれかまたはそれらの2種以上の混合であることを
特徴とする、特許請求の範囲第1項ないし第7項のいず
れかに記載の超電導マグネット用線材。
(8) The group IIa element of the periodic table is barium, and the
The wire material for a superconducting magnet according to any one of claims 1 to 7, wherein the Group IIIa element is scandium, yttrium, or lanthanum, or a mixture of two or more thereof.
JP62083338A 1987-04-04 1987-04-04 Wire rod for superconductive magnet Pending JPS63250015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62083338A JPS63250015A (en) 1987-04-04 1987-04-04 Wire rod for superconductive magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62083338A JPS63250015A (en) 1987-04-04 1987-04-04 Wire rod for superconductive magnet

Publications (1)

Publication Number Publication Date
JPS63250015A true JPS63250015A (en) 1988-10-17

Family

ID=13799648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62083338A Pending JPS63250015A (en) 1987-04-04 1987-04-04 Wire rod for superconductive magnet

Country Status (1)

Country Link
JP (1) JPS63250015A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63284720A (en) * 1987-05-14 1988-11-22 Fujikura Ltd Superconducting wire
JP2017533579A (en) * 2014-09-01 2017-11-09 ルバタ エスポー オサケ ユキチュアLuvata Espoo Oy Metal assembly including superconductor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62259307A (en) * 1986-05-02 1987-11-11 株式会社日立製作所 Superconductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62259307A (en) * 1986-05-02 1987-11-11 株式会社日立製作所 Superconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63284720A (en) * 1987-05-14 1988-11-22 Fujikura Ltd Superconducting wire
JP2017533579A (en) * 2014-09-01 2017-11-09 ルバタ エスポー オサケ ユキチュアLuvata Espoo Oy Metal assembly including superconductor

Similar Documents

Publication Publication Date Title
US3185900A (en) High field superconducting devices
JP2584476B2 (en) Composite wire for electrical and optical transmission
JP2974108B2 (en) Composite of high temperature superconducting bulk and coil magnet
Kesgin et al. Performance of 2G-HTS REBCO undulator coils impregnated epoxies mixed with different fillers
US5394130A (en) Persistent superconducting switch for conduction-cooled superconducting magnet
JPS63250015A (en) Wire rod for superconductive magnet
Lubell State-of-the-art of superconducting magnets
US5212013A (en) Inorganic wire insulation for super-conducting wire
JPS63222068A (en) Device and system based on novel superconductive material
JP3120110B2 (en) Oxide superconducting tape material and manufacturing method thereof
JP2502098B2 (en) Superconducting magnetic shield
JPS63249306A (en) Superconducting magnet
Furuyama et al. Performance of Nb 3 Sn tape magnet cooled by indirect conduction method
US3396355A (en) Cooled hydrogen or neon used as transformer dielectric
JP2651018B2 (en) High magnetic field magnet
JP2519773B2 (en) Superconducting material
JP2788240B2 (en) Current limiting device
Kwasnitza et al. Metallic materials for superconductor stabilization with very high specific heat and good thermal conductivity
JP2668532B2 (en) Preparation method of superconducting thin film
JP2567447B2 (en) Superconducting material
JPS6313208A (en) Superconductor
JP2020055711A (en) Oxide superconducting bulk conductor
JPS63260817A (en) Superconductor
JPS63304600A (en) Wiggler using oxide superconductive coil
Koyama et al. Dynamic stabilization of Nb3Sn tape superconductors