JPS63249803A - Optical fiber sheet - Google Patents

Optical fiber sheet

Info

Publication number
JPS63249803A
JPS63249803A JP62083915A JP8391587A JPS63249803A JP S63249803 A JPS63249803 A JP S63249803A JP 62083915 A JP62083915 A JP 62083915A JP 8391587 A JP8391587 A JP 8391587A JP S63249803 A JPS63249803 A JP S63249803A
Authority
JP
Japan
Prior art keywords
optical fiber
fiber
fiber sheet
sectional shape
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62083915A
Other languages
Japanese (ja)
Inventor
Shuichiro Tokuda
徳田 修一郎
Tadahiro Yamamoto
山本 直裕
Kenichi Sakunaga
作永 憲一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP62083915A priority Critical patent/JPS63249803A/en
Publication of JPS63249803A publication Critical patent/JPS63249803A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the handling property, the assembly workability and the information transfer performance by constituting a fiber of a sea part and an island part, and using a multi-optical fiber whose cross sectional shape is roughly rectangular. CONSTITUTION:A plastic multi-optical fiber 1 has a shape whose cross sectional shape is roughly rectangular. Since the cross sectional shape is roughly rectangular, each adjacent multi-optical fiber 1 is arranged without a gap at the time of forming an optical fiber sheet 3, therefore, a fall of the incidence/emission light quantity, etc. and a null in the adjacent part of each fiber, which are apt to be generated in case a circular fiber has been used do not occur. Accordingly, a uniform transmission property is obtained extending over the overall width of the optical fiber sheet. Also, an island part 21 being the minimum transmission unit is small, and even if it is formed extremely smaller than a usual mono-fiber, it is not inferior in comparison as a transmission characteristic of one piece of multi-optical fiber 1. In such a way, a relation of the transmission characteristic and the accuracy, and the handling property can be settled completely.

Description

【発明の詳細な説明】 く産業上の利用公費〉 本発明は多数本のマルチ光ファイバーを引揃えて固着し
たマルチ光ファイバーシートに関し、更に詳細に言えば
該ファイバーが海部と島部とからなり断面形状が略矩形
のマルチ光ファイバーを用いた点に大きな特徴tT4す
るマルチ光ファイバーシートに関するものである。
[Detailed description of the invention] Public funds for industrial use> The present invention relates to a multi-optical fiber sheet in which a large number of multi-optical fibers are aligned and fixed, and more specifically, the fibers have a cross-sectional shape consisting of a sea part and an island part. This invention relates to a multi-optical fiber sheet having a major feature tT4 in that it uses substantially rectangular multi-optic fibers.

く従来の技術〉 光ファイバーを多数本引揃えてシート状に形成・固着し
たものは、光フアイバーシートそのものを線状情報伝達
の媒体として、更に線光ファイバーシートを精度良く積
層することにより面状情報伝達の媒体として広く利用さ
れている。
Conventional technology> A large number of optical fibers arranged in a sheet form and fixed together uses the optical fiber sheet itself as a medium for linear information transmission, and furthermore, by laminating linear optical fiber sheets with high precision, it is possible to transmit planar information. It is widely used as a medium.

従来このような元ファイバーシートとしては光ファイバ
ーとしてモノファイバーを使うことが主であった。
Conventionally, monofibers have been mainly used as optical fibers as such original fiber sheets.

〈発明が解決しようとする問題点〉 従来の光フアイバーシートは元ファイバーが円形のモノ
ファイバーを使うことから、その情報伝達能力に限界が
あり、例えば画像や信号伝送を行なう場合には光情報伝
送の最小単位即ち元ファイバーの太さが小さければ小さ
い程分解能が高く従って画像や信号伝送の精度が良いも
のとなるが、一方便用するファイバーの直径が小さくな
ればなる程その取扱い性、組立加工性などに不利な面が
生じ、逆に取扱い性や加工性を重視するとファイバー直
径が太くするのがよいが、直径が太い光ファイバーより
作っ次尤7アイバーシートは分解能が悪くなるという欠
点を有し、両者は相反する性質を有していた。
<Problems to be solved by the invention> Conventional optical fiber sheets use circular monofibers as original fibers, so there is a limit to their information transmission ability.For example, when transmitting images or signals, optical information transmission is difficult. The smaller the diameter of the original fiber, the higher the resolution and the better the accuracy of image and signal transmission.On the other hand, the smaller the diameter of the fiber used, the easier it is to handle and assemble. On the other hand, if handling and processability are important, it is better to increase the diameter of the fiber. , the two had contradictory properties.

〈問題点を解決する為の手段〉 本発明者らはこれらの点に鑑み、取扱い性・組立加工性
と情報伝達性能の両者を満足しうる高品質の光フアイバ
ーシートを得ることを目的として検討し次結果本考案を
完成したものでちり、その要旨とするところは、光伝送
性を有する多数の島部と該島部を取り囲む海部とからな
る断面形状が略矩形のマルチ光ファイバーが、複数本引
揃えられ、その配列端の少なくとも1端の隣接するファ
イバー同志が接触又は近接状態に平面状に配列し、互に
接着されていることを特徴とする元ファイバーシート、
にある。
<Means for Solving the Problems> In view of these points, the present inventors conducted studies with the aim of obtaining a high-quality optical fiber sheet that satisfies both ease of handling, ease of assembly, and information transmission performance. As a result, the present invention was completed, and its gist is that a multi-optical fiber with a substantially rectangular cross-section consisting of a large number of islands with optical transmission properties and a sea area surrounding the islands is connected to a plurality of multi-optical fibers. A source fiber sheet characterized in that the fibers are arranged in a planar manner so that adjacent fibers at at least one end of the arrangement are in contact with or in close proximity to each other and are bonded to each other;
It is in.

以下、本考案を図面に従って詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は本発明による元ファイバーシートの一例?示す
外観上表わす斜視因であり、(a)は接着剤を片面に使
用した片面接着タイプを、(b)は接着剤を両面に使用
し九両面接着タイプ1iclは接着剤全使用せずに隣接
するマルチファイバーの同志を互に融着させてシート化
した融着タイプである。同図において(1)はマルチ光
ファイバー、(2)は接着剤、(3)は元ファイバーシ
ートである。第2図は本発明に用いるマルチ光ファイバ
ーの一例の断面図である。第2図において(1)はマル
チ光ファイバーであり、取扱性などからグラスチック性
が好ましい。(21)は光伝送を担う画素となる島部、
  (22)は海部である。図に示すようにマルチ光フ
ァイバー(1)は島部(21)の断面形状が#ミぼ円形
であることが元伝送上好ましい。また第2図では島部(
21)が海部(22)中に俵積み配列構造で配列されて
いるが、伝送精度を良くする為には最も密度高く配列で
きるこの配列が好ましい。しかし多少の性能の差はでる
ものの用途によっては別の配列、例えば島部(21)が
左右、上下に正方に配列した四方積み配列でも構わない
Is Figure 1 an example of the original fiber sheet according to the present invention? The causes of strabismus shown in the appearance are as follows: (a) is a single-sided adhesive type that uses adhesive on one side, and (b) is a nine-sided adhesive type that uses adhesive on both sides. This is a fused type that is made by fusing together multi-fibers to form a sheet. In the figure, (1) is a multi-optical fiber, (2) is an adhesive, and (3) is an original fiber sheet. FIG. 2 is a cross-sectional view of an example of a multi-optical fiber used in the present invention. In FIG. 2, (1) is a multi-optical fiber, which is preferably made of glass for ease of handling. (21) is an island that becomes a pixel responsible for optical transmission;
(22) is Kaifu. As shown in the figure, it is preferable for the cross-sectional shape of the island portion (21) of the multi-optical fiber (1) to be circular in shape from the viewpoint of transmission. Also, in Figure 2, the island (
21) are arranged in a stacked bale structure in the sea part (22), and in order to improve transmission accuracy, this arrangement is preferred because it allows for the highest density arrangement. However, depending on the application, there may be some difference in performance, but a different arrangement may be used, for example, a square stacked arrangement in which the island portions (21) are arranged squarely on the left and right, and on the top and bottom.

島部(21)は光伝送を行なわしめる芯とそれを良好に
する為の鞘とからなる芯−鞘構造を形成しており、島部
(21)の大きさ及び1本のマルチ光ファイバー(1)
の中に存在する数については、直径5〜200μ、数は
100〜10000程度が適している。このようなグラ
スチック系マルチ光フアイバーは例えば特願昭60−1
42985号に示された如き複合紡糸法によって作るこ
とができる。本発明で用いるプラスチック系マルチ光フ
アイバー(1)の特徴は、先ず第11c(−(7)断面
形状が略矩形の形状を有していることである。断面形状
が略矩形である為、元ファイバーシート(3)を形成す
る時に隣接するマルチ光ファイバー(1)同志が隙間無
く並ぶ為、円形ファイバーを使った場合に発生し易いフ
ァイバー同志の隣接部での人出射光量などの落ち込み及
び2白が起こらない。従って元ファイバーシート(3)
の全幅にわたって均一な伝送性が得られるという効果が
得られ、特に画像伝送のように面の伝送が必要な場合に
その効力が大きい。
The island part (21) forms a core-sheath structure consisting of a core that performs optical transmission and a sheath to improve it, and the size of the island part (21) and one multi-optical fiber (1 )
As for the number present in the diameter, it is suitable that the diameter is 5 to 200μ and the number is about 100 to 10,000. Such glass-based multi-optical fibers are disclosed in, for example, Japanese Patent Application No. 60-1.
It can be made by a composite spinning method as shown in No. 42985. The characteristic of the plastic multi-optical fiber (1) used in the present invention is that the 11c(-(7)) cross-sectional shape is approximately rectangular.Since the cross-sectional shape is approximately rectangular, the original When forming the fiber sheet (3), since the adjacent multi-optical fibers (1) are lined up without any gaps, the drop in the amount of light emitted from the fibers at the adjacent part of the fibers, etc., which tends to occur when circular fibers are used, and the double white Does not happen. Therefore, the original fiber sheet (3)
The effect is that uniform transmission performance can be obtained over the entire width of the image, and this effect is particularly great when surface transmission is required, such as image transmission.

特徴の第2は最小伝送単位である島部(21)が小さく
、通常のモノファイバーより極端に小−A(Lf41本
のマルチ光ファイバー(1)としての伝送特性としては
見劣シすること無く、従って従来方法の問題である伝送
特性・精度と取扱い性の関係を完全に解決できる点にあ
る。
The second feature is that the island portion (21), which is the minimum transmission unit, is small, which is extremely small compared to ordinary monofibers. Therefore, it is possible to completely solve the problem of the conventional method, which is the relationship between transmission characteristics, accuracy, and ease of handling.

@1図において、(a)および(b)で表わされるマル
チ光ファイバーシート(3)は第2図のマルチ光ファイ
バー(1)を必要本数だけ、隣接するファイバー同志が
接触又は近接状態になるよう引揃えて配列させ、その状
態を保ちながら接着剤を片面又は両面に塗布し、乾燥な
いし硬化させたものである。ここで接着剤(2)は水溶
性、溶剤系をはじめとし、紫外線硬化型、電子線硬化型
などいずれでも構わない。これら接着剤は各種条件、例
えば生産性、接着強度、硬化条件がファイバーに及ぼす
影響などを考慮して選定すれば良い。
@ In Figure 1, the multi-optical fiber sheet (3) shown in (a) and (b) is made by aligning the required number of multi-optical fibers (1) in Figure 2 so that adjacent fibers are in contact or close to each other. The adhesive is applied to one or both sides while maintaining that condition, and then dried or cured. Here, the adhesive (2) may be water-soluble, solvent-based, ultraviolet curing type, electron beam curing type, etc. These adhesives may be selected in consideration of various conditions such as productivity, adhesive strength, and the influence of curing conditions on the fibers.

接着剤(2)の塗布厚さは片面・両面の違い、用途、接
着剤の性状などにより選定決定すればよい。
The coating thickness of the adhesive (2) may be selected and determined depending on whether the adhesive is on one side or both sides, the application, the properties of the adhesive, etc.

第1図(01で表わされる融着タイプは接着剤を全く使
わず、所定本数のマルチ光ファイバー(+)を引揃えつ
つ適当な手段例えば熱風、遠赤外線、近赤外線等のヒー
ターで加熱したまま該ファイバー(1)同志を引揃えて
接触させるとファイバー(1)の隣接部分が互に融着し
接着剤を使わなくても元ファイバーシート(3)を作る
ことができる。この場合(a) 、 lb)の接着タイ
プと比べてマルチ光ファイバー(1)同志の接着強度は
やや落ちるが接着剤という余分な成分が入らなくて済む
点、及び接着の厚みを零としうるという点がメリットと
なる。特に元ファイバーシート(3)を積層して画像伝
送用などに使用する場合は接着剤(2)の部分は光伝送
に寄与しない為100%ファイバーのみである効果が大
きくクローズアップされることになる。
The fusion type shown in Figure 1 (01) does not use any adhesive at all, and the predetermined number of multi-optical fibers (+) are aligned and heated with an appropriate means such as hot air, far infrared rays, near infrared rays, etc. When the fibers (1) are brought together and brought into contact with each other, the adjacent portions of the fibers (1) are fused together, and the original fiber sheet (3) can be made without using an adhesive.In this case, (a) Although the adhesive strength between the multi-optical fibers (1) is slightly lower than that of the adhesive type lb), the advantages are that no extra component called adhesive is required and that the adhesive thickness can be reduced to zero. In particular, when the original fiber sheets (3) are laminated and used for image transmission, the adhesive (2) part does not contribute to optical transmission, so the effect of being 100% fiber will be greatly highlighted. .

第1図+a)、 (bl 、 (0)の各タイプはそれ
ぞれの持つ特徴を生かした用途に使用することが好まし
く、最も厳密な画像伝送には(CJタイプを、少しラフ
でも良い場合には(&]又は(b)を使えば良い。
It is preferable to use each type (Figure 1+a), (bl, and (0)) for applications that take advantage of their respective characteristics. You can use (&] or (b).

更に(al 、 (b)のタイプ紘線状の伝送に適し、
その接着強度の高さと形態安定性を生かしラインセンサ
ー6tOに使用するのも一つの方法である。
Furthermore, it is suitable for (al, (b) type linear transmission,
One way is to utilize its high adhesive strength and morphological stability to use it in a line sensor 6tO.

〈発明の効果〉 以上説明したように本発明による元ファイバーシートは
線状或いは面状の画像や信号を精度良く伝送できるばか
9でなく取扱性も容易であ夛、新しいタイプの元ファイ
バーシートとして工業的にも極めて有用である。
<Effects of the Invention> As explained above, the original fiber sheet according to the present invention is not only capable of transmitting linear or planar images and signals with high precision, but is also easy to handle, and can be used as a new type of original fiber sheet. It is also extremely useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光フアイバーシートの一例を表わ
す外観図(a)は片面接着タイプ、(b)は両面接着タ
イプ、(C)は融着タイプ、p42図は本発明による光
フアイバーシートに使うマルチ光ファイバーの構造を示
す断面図。 (1)  マルチ光ファイバー (2)  接着剤 (3)  光フアイバーシート (2I)島部 (22)海部
Fig. 1 is an external view showing an example of an optical fiber sheet according to the present invention. (a) is a single-sided adhesive type, (b) is a double-sided adhesive type, (C) is a fused type, and Figure 42 shows an optical fiber sheet according to the present invention. Cross-sectional view showing the structure of the multi-optical fiber used. (1) Multi-optical fiber (2) Adhesive (3) Optical fiber sheet (2I) Island part (22) Ama part

Claims (1)

【特許請求の範囲】[Claims] (1)光伝送性を有する多数の島部と該島部を取り囲む
海部とからなる断面形状が略矩形のマルチ光ファイバー
が複数本引揃えられ、その配列端の少なくとも1端の隣
接するファイバー同志が接触又は近接状態に平面状に配
列し、互に接着された構造を有していることを特徴とす
るマルチ光ファイバーシート。
(1) A plurality of multi-optical fibers each having a substantially rectangular cross section and consisting of a large number of islands having optical transmission properties and a sea area surrounding the islands are arranged, and adjacent fibers at at least one end of the array are aligned. A multi-optical fiber sheet characterized by having a structure in which the sheets are arranged in a plane in contact with or in close proximity and are bonded to each other.
JP62083915A 1987-04-07 1987-04-07 Optical fiber sheet Pending JPS63249803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62083915A JPS63249803A (en) 1987-04-07 1987-04-07 Optical fiber sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62083915A JPS63249803A (en) 1987-04-07 1987-04-07 Optical fiber sheet

Publications (1)

Publication Number Publication Date
JPS63249803A true JPS63249803A (en) 1988-10-17

Family

ID=13815896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62083915A Pending JPS63249803A (en) 1987-04-07 1987-04-07 Optical fiber sheet

Country Status (1)

Country Link
JP (1) JPS63249803A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154982A (en) * 2011-01-24 2012-08-16 Kuraray Co Ltd Method for manufacturing large diameter fiber device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933010B2 (en) * 1978-10-03 1984-08-13 三菱重工業株式会社 Method and apparatus for treating impurities in a fluid working system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933010B2 (en) * 1978-10-03 1984-08-13 三菱重工業株式会社 Method and apparatus for treating impurities in a fluid working system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154982A (en) * 2011-01-24 2012-08-16 Kuraray Co Ltd Method for manufacturing large diameter fiber device

Similar Documents

Publication Publication Date Title
US2979632A (en) Fiber optical components and method of manufacture
US3668304A (en) Single pickup tube color television camera
JPS5944019A (en) Star coupler for optical fiber
US3936149A (en) Non-homogeneous objective lens having an aperture diaphragm
US4285570A (en) Light branching device
JP2009175504A (en) Optical fiber structure
EP2083299B1 (en) Optical fiber structure
JPS63249803A (en) Optical fiber sheet
JP2664745B2 (en) WDM multi-core optical rotary joint
US4236177A (en) Beam splitting prism assembly with bias light source
JPS5988672A (en) Optical fiber sensor
JPS59195611A (en) Lens system
CN209746177U (en) optical lens
JPS5885401A (en) Optical apparatus and manufacture thereof
JP2005520218A5 (en)
JPS59191003A (en) Optical fiber, optical fiber sheet and image transmitting fiber device
JP2005321645A (en) Coated optical fiber ribbon
JPH06317716A (en) Sheet-shaped plastic optical fiber
JPH0210403B2 (en)
JPS58143303A (en) Optical fiber array
JPS6363006A (en) Laminated optical waveguide
JPH02240607A (en) Light incident/exit structure of light guide
JPS63192003A (en) Light guide device
CN117420686A (en) Display device and head-mounted display device
JP2573413Y2 (en) Polarization-independent optical isolator with microlens optical fiber termination