JPS6324947B2 - - Google Patents

Info

Publication number
JPS6324947B2
JPS6324947B2 JP54119937A JP11993779A JPS6324947B2 JP S6324947 B2 JPS6324947 B2 JP S6324947B2 JP 54119937 A JP54119937 A JP 54119937A JP 11993779 A JP11993779 A JP 11993779A JP S6324947 B2 JPS6324947 B2 JP S6324947B2
Authority
JP
Japan
Prior art keywords
alumina
bricks
particle size
less
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54119937A
Other languages
Japanese (ja)
Other versions
JPS5645865A (en
Inventor
Tatsuo Matsumura
Akihiko Kikuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Refractories Co Ltd
Original Assignee
Harima Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Refractories Co Ltd filed Critical Harima Refractories Co Ltd
Priority to JP11993779A priority Critical patent/JPS5645865A/en
Publication of JPS5645865A publication Critical patent/JPS5645865A/en
Publication of JPS6324947B2 publication Critical patent/JPS6324947B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は混銑車又は製鋼取鍋等の内張として使
用されるアルミナ・クロム質耐火物の製造方法に
係るものである。 従来、混銑車の内張としては高級シヤモツト質
煉瓦又は高アルミナ煉瓦が使用されていたが、最
近に至り混銑車にて脱硫処理が実施されるように
なり、これに伴つてスラグの塩基度が高まり、或
いは溶銑を撹拌する結果耐火物の損耗が大きくな
つている。 この対策として塩基性耐火物を使用することが
考えられるが、塩基性耐火物は耐スラグ性は優れ
ているが熱膨張係数が大きいため、膨張応力によ
る割れ若しくは純熱的スポーリング又はスラグの
侵透による構造的スポーリングを起し易く、これ
らが原因となる剥離現象を生起して意外に損耗速
度が大きいのである。また、混銑車は溶銑排出
後、次の受銑までの間に冷却される場合が多く、
熱膨張の大きい塩基性煉瓦はいわゆる目地開きを
発生することが多かつたのである。 次に溶鋼取鍋の内張りとしては、従来高珪酸質
煉瓦及びジルコン煉瓦が一般的に使用されていた
が、最近の傾向として連続鋳造、真空脱ガス処理
等が汎用されるに至つて溶鋼温度は高くなり溶鋼
の滞留時間は長くなり耐火物の溶損は以前にまし
て激しくなつている。 このような混銑車又は溶鋼取鍋の耐火物の要求
される特性の推移への対策の一つとしてアルミ
ナ・クロム質煉瓦が開発されている。通常アルミ
ナ・クロム質煉瓦は耐蝕性が非常に優れたもの
で、混銑車に使用した場合にはアルミナ・クロム
質煉瓦は、その耐蝕性は塩基性煉含よりは劣るが
熱膨張率が小さく、その結果スラグが侵透し難く
剥落現象を示さずその損耗速度はかえつて小さく
なり、また溶鋼取鍋に使用した場合にはこのアル
ミナ・クロム質煉瓦は耐蝕性は非常に優れている
が、溶鋼の温度が1650℃を越えるような高温域で
は溶鋼の摩耗作用による損耗に弱い欠点が看取さ
れるのであつた。 このような欠点の改良も含めてアルミナ・クロ
ム耐火物に関しての在来技術としては以下に示す
提案がなされている。すなわち、特公昭44−8995
号公報にはシヤモツト、ろう石等の珪酸アルミナ
系原料に40μ以下の微粉のクロム鉱を5%以上
(実質的には10〜20%)加え、配合物中のSiO2
45〜80%とすることによつて溶鋼取鍋に適したク
ロムアルミナ質耐火物が示されている。この場合
珪酸アルミナ系原料が微粒にも使用されている
が、これでは長期間の使用中に緻密化して耐スポ
ール性が低下してくる傾向があり、又耐蝕性も、
珪酸アルミナ系原料を粗粒のみに使用する場合に
較べると劣つている。 この点を改善したものとして特開昭51−102006
号公報に開示されているところによると、アルミ
ナ珪酸原料を粗粒として50〜80%と細粒以下のク
ロム鉱50〜20%とを組合わせている。しかしこの
組成による場合には用途によつて適応性がないの
で、その改良として開示された特開昭51−127108
号公報の記載によれば、アルミナシリカ系原料と
クロム鉱との比率が4:1〜4:6の混合物85〜
99%に対して、第三成分としてアルミナ、ジルコ
ン、マグネシア、スピネル、粘土、炭化珪素又は
酸化チタンを15〜1%添加するものである。 これらの在来の煉瓦は溶鋼取鍋に使用すれば高
珪酸質やジルコン質より耐蝕性が優れていること
は認められるが、1650℃以上に達する特に高温の
溶鋼を受鋼する場合には、スラグに接蝕する部分
では耐摩耗性は良好であるが、溶鋼に接する部分
では摩耗による損耗が大きくなる事例が見られた
のである。 本発明は斯かる現況に鑑がみなされたもので、
上記のような在来のアルミナ・クロム質耐火物の
問題点を解決した耐火物を提案せんとするもので
あり、Al2O3含有が50〜90%の高アルミナ原料を
粗粒とし、これと配合する微粒部分をAl2O3純度
98%以上の高純度アルミナ30%程度と30〜35%の
クロム鉄鉱とで構成させることにより、荷重軟化
点を高め高温の溶鋼流に対する抵抗性を向上させ
たアルミナ・クロム質耐火物の製造方法の提供を
目的としている。 次に本発明方法における耐火物につきその材料
種、適用条件等を例示して詳述すると、本発明の
粗粒子に使用する高アルミナ原料としては
Al2O350〜90%のもの、すなわちシリマナイト、
焼成ボーキサイト、アンダルサイト、焼成バン土
頁岩を用いる。Al2O3の含有が50%以下では本発
明の目的とする高耐蝕性の煉瓦が得られない。
Al2O390%以上含有の原料を使用した場合、耐蝕
性は大差がないが耐スポール性が低下する。 このAl2O3の含有が50〜90%の高アルミナ質原
料の配合率は35〜45%が望ましい。35%以下の配
合では煉瓦の耐スポール性が低下し、45%以上で
は耐蝕性が低下する傾向が生ずる。 Al2O3の含有が50〜90%の高アルミナ原料はす
べて粒径1mm以上の粗粒子として使用することが
望ましいが、そのうちの20%程度までは粒径1mm
以下のものを配合することも可能である。ただし
一般に高アルミナ質原料を微粒として配合すると
長期間の使用中に焼結が進み剥離傾向がでてくる
ので微粒子は20%以下が好ましいし、また粒径1
mm以下のものは20%以下に押えないと粒度構成上
粗粒が過少となり、成形時の充填性が悪くなる。 クロム質たるクロム鉄鉱についてはCr2O330〜
40%、SiO26%以下のものをすべて1mm以下の微
粉として使用し、このクロム鉄鉱の配合量は30〜
35%とする。クロム鉄鉱が30%以下ではスラグに
よる化学的な溶損に弱く、35%以上になると相対
的に高アルミナ原料の量が低下することになり耐
スポール性が低下するか或いはアルミナ量が低下
して溶鋼による機械的摩耗に対する抵抗性が低下
する。 Al2O398%以上の高純度アルミナはすべて粒径
1mm以下の微粒とする。このものの配合量は、25
%以下では高温の溶鋼の摩耗に対する抵抗性が不
充分であり、35%以上になつて、相対的にクロム
鉄鉱の量が低下した場合には化学的耐蝕性が低下
し、又相対的に高アルミナ原料の量が低下した場
合には耐スポール性が低下する傾向がみられる。 上記のような各原料を混合し、これに結合剤と
して、例えば亜硫酸パルプ廃液、糖蜜、CMC、
PVA等と水とをそれぞれ適当量添加して混練し、
適宜成形乾燥した後1350〜1400℃で焼成して煉瓦
を得るのである。このようにして得られた煉瓦は
取鍋のスラグライン等に1650℃以上の高温出鋼が
なされる場合に使用して優れた耐損耗性を示し、
また脱硫処理を多く行なう混銑車の内張に使用し
て好結果を得ることができたのである。 本発明のアルミナ・クロム質耐火物の製造方法
についての実施の一例を具体的に挙げると、第1
表に示すような化学成分の原料を用いて、第2表
に示す配合割合の杯土を練成し、成形した後120
℃で24時間乾燥し更に1350℃での5時間保持を含
めて延3日間焼成した。斯くして得られた耐火物
たる煉瓦の物性値は第3表に示すとおりであり、
第2表又は第3表におけるNo.1〜5は本発明方法
で得られる耐火物(以下、本発明品という。)を、
No.6〜7は比較品についてそれぞれの値を示して
いる。比較品のうちNo.6は微粒部分がすべてクロ
ム鉄鉱で構成されているものであり、No.7は微粉
部分にアルミナを添加しているがその量が本発明
品の範囲よりも少なくしたものである。 本発明品の物性値で典型的なのは荷重軟化点が
比較品に較べて高いことである。これらの煉瓦を
出鋼温度が1650〜1700℃の100t取鍋のスラグライ
ンに使用したところ、いずれも溶損は少なく良好
であつたが、比較品No.6とNo.7とはスラグライン
直下の溶鋼に接する部分で大きく溶損されたので
あり、その結果は第3表最下欄に示すとおりであ
つた。 また、脱硫処理を行なう600t混銑車において最
も苛酷な使用条件となるスラグラインに適用し、
そのときの溶損速度を検認したところ第4表に示
すごとくであつた。すなわち本発明品の使用実績
はシヤモツト煉瓦の約1/3、高アルミナ煉瓦の約
2/3の溶損速度にとどまり良好な結果が得られた
のである。
The present invention relates to a method for producing an alumina-chromium refractory used as a lining for pig iron mixers, steelmaking ladles, etc. Traditionally, high-grade chamomile bricks or high-alumina bricks were used for the lining of pig iron mixed cars, but recently, desulfurization treatment has been carried out on mixed pig iron cars, and as a result, the basicity of the slag has decreased. As a result of increasing the amount of heat or stirring the hot metal, the wear and tear of refractories is increasing. As a countermeasure to this problem, it is possible to use basic refractories, but basic refractories have excellent slag resistance but have a large coefficient of thermal expansion, so they may cause cracking due to expansion stress, pure thermal spalling, or slag attack. Structural spalling due to transparent material is likely to occur, and this causes a peeling phenomenon, resulting in a surprisingly high rate of wear and tear. In addition, pig iron mixing cars are often cooled down after discharging hot metal until the next pig iron is received.
Basic bricks with large thermal expansion often develop so-called joint openings. Next, high silicic acid bricks and zircon bricks were commonly used as the lining for molten steel ladle, but as a recent trend, continuous casting, vacuum degassing treatment, etc. have become widely used, and the temperature of molten steel has increased. As the temperature rises, the residence time of molten steel becomes longer, and the erosion of refractories becomes more severe than before. Alumina-chromium bricks have been developed as one of the measures to address the changes in properties required of refractories for pig iron mixers or molten steel ladles. Normally, alumina-chromium bricks have very good corrosion resistance, and when used in mixed pig iron cars, alumina-chromium bricks have a lower coefficient of thermal expansion than basic bricks, but their corrosion resistance is lower than that of basic bricks. As a result, slag is difficult to penetrate and does not show any flaking phenomenon, and the rate of wear and tear is reduced.Also, when used in ladle for molten steel, this alumina-chromium brick has excellent corrosion resistance, but In the high-temperature range where the temperature exceeds 1650°C, the disadvantage was that the steel was susceptible to wear and tear due to the abrasive action of molten steel. The following proposals have been made as conventional techniques for alumina-chromium refractories, including improvements to these drawbacks. In other words, Special Public Interest Publication No. 44-8995
The publication states that 5% or more (substantially 10 to 20%) of chromite in fine powder of 40 μ or less is added to silicate alumina-based raw materials such as siyamoto and waxite, and the SiO 2 in the mixture is reduced.
A chromium-alumina refractory suitable for molten steel ladles has been shown to have a content of 45 to 80%. In this case, alumina silicate raw materials are also used in fine particles, but these tend to become dense during long-term use and reduce spalling resistance, and corrosion resistance also deteriorates.
This is inferior to the case where alumina silicate raw material is used only for coarse grains. To improve this point, JP-A-51-102006
According to the disclosure in the publication, 50 to 80% of the alumina-silicate raw material is coarse particles, and 50 to 20% of chromite, which is fine particles or smaller, is combined. However, since this composition is not adaptable depending on the application, Japanese Patent Application Laid-Open No. 51-127108 was disclosed as an improvement.
According to the description in the publication, a mixture of alumina-silica-based raw materials and chromite in a ratio of 4:1 to 4:6 is 85~
99%, 15 to 1% of alumina, zircon, magnesia, spinel, clay, silicon carbide, or titanium oxide is added as a third component. It is recognized that these conventional bricks have better corrosion resistance than high silicic acid or zircon materials when used in molten steel ladles, but when receiving molten steel at a particularly high temperature of 1650℃ or higher, Although the wear resistance is good in the parts that come into contact with the slag, there have been cases where the parts that come into contact with the molten steel suffer from increased wear and tear. The present invention was created in consideration of the current situation,
The purpose of this project is to propose a refractory that solves the problems of conventional alumina/ chromium refractories as described above. The fine particulate part to be mixed with Al 2 O 3 purity
A method for manufacturing an alumina-chromium refractory that has a high softening point under load and improved resistance to high-temperature molten steel flow by comprising approximately 30% of high-purity alumina of 98% or higher and 30 to 35% of chromite. The purpose is to provide Next, the material type, application conditions, etc. of the refractory in the method of the present invention will be explained in detail with examples.
Al 2 O 3 50-90%, i.e. sillimanite,
Calcined bauxite, andalusite, and calcined shale are used. If the content of Al 2 O 3 is less than 50%, the highly corrosion-resistant brick that is the object of the present invention cannot be obtained.
When a raw material containing 90% or more of Al 2 O 3 is used, there is no significant difference in corrosion resistance, but spalling resistance decreases. The blending ratio of this high alumina raw material containing 50 to 90% Al 2 O 3 is preferably 35 to 45%. If the content is less than 35%, the spall resistance of the brick will decrease, and if it is more than 45%, the corrosion resistance will tend to decrease. It is desirable to use all high alumina raw materials containing 50 to 90% Al 2 O 3 as coarse particles with a particle size of 1 mm or more, but up to about 20% of them are coarse particles with a particle size of 1 mm or more.
It is also possible to mix the following: However, in general, if high alumina raw materials are blended as fine particles, sintering will progress during long-term use and there will be a tendency for them to peel off, so it is preferable that the fine particles be 20% or less, and the particle size is 1.
If it is less than 20%, there will be too few coarse particles in the particle size structure, and the filling property during molding will be poor. For chromite chromite, Cr 2 O 3 30 ~
40%, SiO 2 6% or less is used as fine powder of 1 mm or less, and the blending amount of this chromite is 30~
It shall be 35%. If chromite is less than 30%, it is susceptible to chemical erosion by slag, and if it is more than 35%, the amount of high alumina raw material is relatively reduced, resulting in a decrease in spall resistance or a decrease in the amount of alumina. Resistance to mechanical wear from molten steel is reduced. All high-purity alumina containing 98% Al 2 O 3 or more shall be fine particles with a particle size of 1 mm or less. The amount of this stuff is 25
If it is less than 35%, the resistance to wear of high-temperature molten steel is insufficient, and if it is more than 35%, and the amount of chromite is relatively reduced, the chemical corrosion resistance will be reduced, and the resistance to wear of high-temperature steel will be insufficient. When the amount of alumina raw material decreases, there is a tendency for spall resistance to decrease. The above raw materials are mixed, and a binder such as sulfite pulp waste liquid, molasses, CMC,
Add appropriate amounts of PVA etc. and water and knead,
After being appropriately shaped and dried, the bricks are fired at 1,350 to 1,400°C. The bricks obtained in this way can be used in slag lines of ladles, etc. where high-temperature steel tapping is carried out at temperatures above 1650℃, and exhibit excellent wear resistance.
Good results were also obtained when it was used for the lining of pig iron mixer cars that undergo a lot of desulfurization treatment. A specific example of the method for producing an alumina-chromium refractory of the present invention is as follows:
Using raw materials with chemical components as shown in the table, cup clay with the mixing ratio shown in Table 2 is kneaded and molded.
It was dried at 1350°C for 24 hours and then fired for 3 days including holding at 1350°C for 5 hours. The physical properties of the refractory brick thus obtained are as shown in Table 3.
Nos. 1 to 5 in Table 2 or 3 are refractories obtained by the method of the present invention (hereinafter referred to as the products of the present invention).
Nos. 6 and 7 show respective values for comparative products. Among the comparative products, No. 6 has a fine particle portion entirely composed of chromite, and No. 7 has alumina added to the fine powder portion, but the amount is smaller than the range of the present invention product. It is. A typical physical property value of the product of the present invention is that the softening point under load is higher than that of the comparative product. When these bricks were used in the slag line of a 100-ton ladle with a tapping temperature of 1650 to 1700°C, all of them were good with little melting damage, but comparative products No. 6 and No. There was a large amount of melt damage in the parts that were in contact with the molten steel, and the results were as shown in the bottom column of Table 3. In addition, it is applied to the slag line, which is the most severe operating condition in a 600t pig iron mixer car that performs desulfurization treatment,
The erosion rate at that time was verified and was as shown in Table 4. In other words, in the actual use of the product of the present invention, good results were obtained, with the erosion rate being only about 1/3 that of Shamoto bricks and about 2/3 that of high alumina bricks.

【表】【table】

【表】【table】

【表】【table】

【表】 以上述べたごとく本発明方法で得られるアルミ
ナ・クロム質耐火物は、在来のアルミナ―クロム
系煉瓦に比較して多くの優れた特性を有してお
り、本発明の趣旨に従えばこれに包括される技術
的思想は上記の実施例に限定されるものではな
く、これらより導かれる応用、転用等はすべて本
発明の技術的範囲に含まれるものであることはい
うまでもない。
[Table] As stated above, the alumina-chromium refractories obtained by the method of the present invention have many superior properties compared to conventional alumina-chromium bricks, and can be used in accordance with the purpose of the present invention. It goes without saying that the technical ideas encompassed herein are not limited to the above-mentioned embodiments, and that all applications, diversions, etc. derived from these are included within the technical scope of the present invention. .

Claims (1)

【特許請求の範囲】[Claims] 1 Al2O3を50〜90%含有するもので、その内の
20%以下は粒径1mm以下の微粒子で残りはすべて
粒径1mm以上の粗粒子に整粒した高アルミナ原料
30〜45%と、粒径1mm以下の微粒のクロム鉄鉱30
〜35%と、Al2O3を98%以上含有する高純度アル
ミナの粒径1mm以下の微粒子25〜35%とに、適宜
結合剤、水等の添加剤を配して混練、成形、乾
燥、焼成することを特徴とするアルミナ・クロム
質耐火物の製造方法。
1 Contains 50 to 90% Al 2 O 3 , of which
Less than 20% is fine particles with a particle size of 1 mm or less, and the rest is high alumina raw material sized into coarse particles with a particle size of 1 mm or more.
30-45% fine-grained chromite with a particle size of 1 mm or less30
-35% and 25-35% of fine particles of high purity alumina with a particle size of 1 mm or less containing 98% or more of Al 2 O 3 are mixed with appropriate additives such as a binder and water, then kneaded, molded, and dried. , a method for producing an alumina-chromium refractory, characterized by firing.
JP11993779A 1979-09-17 1979-09-17 Alumina chromium refractories Granted JPS5645865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11993779A JPS5645865A (en) 1979-09-17 1979-09-17 Alumina chromium refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11993779A JPS5645865A (en) 1979-09-17 1979-09-17 Alumina chromium refractories

Publications (2)

Publication Number Publication Date
JPS5645865A JPS5645865A (en) 1981-04-25
JPS6324947B2 true JPS6324947B2 (en) 1988-05-23

Family

ID=14773847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11993779A Granted JPS5645865A (en) 1979-09-17 1979-09-17 Alumina chromium refractories

Country Status (1)

Country Link
JP (1) JPS5645865A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501111A (en) * 1972-11-24 1975-01-08

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501111A (en) * 1972-11-24 1975-01-08

Also Published As

Publication number Publication date
JPS5645865A (en) 1981-04-25

Similar Documents

Publication Publication Date Title
Racher et al. Magnesium aluminate spinel raw materials for high performance refractories for steel ladles
JPH0420871B2 (en)
US5506181A (en) Refractory for use in casting operations
JPH0463032B2 (en)
JPS63117951A (en) Molten iron pretreatment vessel
JP2874831B2 (en) Refractory for pouring
JPS5932423B2 (en) Spinel refractories
CN113800891A (en) Magnesium light tundish coating material and using method thereof
JPS6324947B2 (en)
JPS59128271A (en) Flow in material for molten iron desilicating launder
JP4408552B2 (en) Alumina-magnesia castable refractories using magnesium carbonate as a magnesia source
JPH026373A (en) Cast amorphous refractory
JP2832064B2 (en) Fused alumina / magnesia composition and refractory products
JP4347952B2 (en) Basic amorphous refractories using magnesia calcia clinker
JPS6143305B2 (en)
JP2000327406A (en) Chromia-containing brick excellent in slag infiltration resistance, and molten metal vessel
JP2003226583A (en) Unshaped refractory for hot metal
JP2516720B2 (en) Alumina-spinel amorphous refractory
JP2000327407A (en) High spalling resistant chromia-containing brick and molten metal vessel
JP3002296B2 (en) Method for producing coarse aggregate blended magnesia-carbon refractory
JP2003306388A (en) Electromelted spinel raw material and refractory material using the same
JP3209842B2 (en) Irregular refractories
JPH06172044A (en) Castable refractory of alumina spinel
JPH0256303B2 (en)
JPH0459665A (en) Aluminum spinel casting material