JPS63248542A - Method for forming coating layer in mold - Google Patents

Method for forming coating layer in mold

Info

Publication number
JPS63248542A
JPS63248542A JP8016987A JP8016987A JPS63248542A JP S63248542 A JPS63248542 A JP S63248542A JP 8016987 A JP8016987 A JP 8016987A JP 8016987 A JP8016987 A JP 8016987A JP S63248542 A JPS63248542 A JP S63248542A
Authority
JP
Japan
Prior art keywords
mold
coating layer
coating material
mixture
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8016987A
Other languages
Japanese (ja)
Other versions
JPH044054B2 (en
Inventor
Hideaki Ikeda
英明 池田
Fushimi Hatanaka
節美 畑中
Yu Onda
祐 恩田
Takeshi Oba
健史 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP8016987A priority Critical patent/JPS63248542A/en
Publication of JPS63248542A publication Critical patent/JPS63248542A/en
Publication of JPH044054B2 publication Critical patent/JPH044054B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)

Abstract

PURPOSE:To form coating layer having excellent corrosion resistance and heat resistance and high detaching strength at the time of casting on mold surface for casting by adding the specific mixture in organic solvent, uniformly dissolving and dispersing and using sol-state or slurry-state coating material. CONSTITUTION:The coating material is produced by adding the mixture containing at least two kinds of organic metal compounds generating oxide series ceramic material by hydrolysis or the mixture containing at least one kind of organic metal compounds and ceramic oxide powder in the organic solvent, and uniformly dissolving and dispersing. By adding catalyst to the coating material, it is gelatinized and applied on surface of cavity 4 in the mold 1 and dried to form the mixture layer on the surface and further, the mold 1 is held in steam atmosphere at the prescribed temp. After that, the mold 1 is dried, and molten steel is poured from a sprue 2 to cast, and after passing the prescribed time, the mold is detached from the casting and the close coating layer is formed on the surface of cavity 4.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、鋳造用鋳型表面に、耐食、耐熱性を有するコ
ーティング層を容易に形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for easily forming a coating layer having corrosion resistance and heat resistance on the surface of a casting mold.

(従来の技術) 鋳造用鋳型、例えば鉄、アルミニウム、銅等の合金又は
高密度炭素材からなる鋳型表面には該鋳型表面保護層及
び鋳造される鋳物表面が急冷されることによるチル化防
止用断熱層としてコーティング層が形成される。
(Prior Art) A casting mold, for example, a mold surface made of an alloy of iron, aluminum, copper, etc. or a high-density carbon material, has a protective layer on the surface of the mold, and is used to prevent chilling caused by rapid cooling of the surface of the casting to be cast. A coating layer is formed as a heat insulating layer.

従来該コーティング層は、S、C系、 Z、02系及び
Al1203系等の耐火物粉末と骨材及び結合材を含む
スラリーを作製し、該スラリーをスプレー又は刷毛塗り
によって上記鋳型表面に塗布し、該スラリーを乾燥した
後、焼成するという方法により形成されていた。
Conventionally, the coating layer is prepared by preparing a slurry containing refractory powder such as S, C, Z, 02, and Al1203, aggregate, and a binder, and applying the slurry to the surface of the mold by spraying or brushing. , the slurry was dried and then fired.

(発明が解決しようとする問題点) ところで、S、C系、 Z、02系及び+l 203系
等酸化物系セラミック材を含むコーティング層は、その
焼成温度が高い方がより耐食、耐熱性があり、鋳造時の
!IIHi強度が高くなる。
(Problems to be Solved by the Invention) By the way, coating layers containing oxide-based ceramic materials such as S, C-based, Z, 02-based, and +l 203-based ceramic materials have better corrosion resistance and heat resistance when the firing temperature is higher. Yes, at the time of casting! IIHi intensity increases.

しかしながら、上記方法によると、鋳型表面に塗布され
たスラリーを高温で焼成すると、鋳型が劣化するため、
コーティング層の焼成温度を高くすることができなかっ
た。
However, according to the above method, when the slurry applied to the mold surface is fired at high temperature, the mold deteriorates.
It was not possible to increase the firing temperature of the coating layer.

従って、形成されるコーティング層の鋳造時での剥離強
度が低く、連続して数ショット程度しか鋳造作業が行え
ず、顧繁にコーティング作業を行う必要があり、生産効
率が悪いという問題があった。
Therefore, the peel strength of the coating layer that is formed during casting is low, and only a few shots can be cast in succession, requiring repeated coating operations, resulting in poor production efficiency. .

本発明はかかる現状に鑑みなされたものであり、鋳造用
鋳型表面に、耐食、耐熱性に優れ鋳造時の剥離強度の高
いコーティング層を容易に形成する方法を提供すること
を目的とする。
The present invention was made in view of the current situation, and an object of the present invention is to provide a method for easily forming a coating layer on the surface of a casting mold, which is excellent in corrosion resistance and heat resistance, and has high peel strength during casting.

(問題点を解決するための手段) 上記従来技術の問題点を解決する手段として、加水分解
により酸化物系セラミック材を生成する有機金属化合物
の少なくとも2種を含む混合物、又は該有機金属化合物
の少なくとも1種及び酸化物系セラミック粉末を含む混
合物を有機溶剤中に加え均一に溶解、分散させてコーテ
ィング材とし、該コーティング材をゲル化して鋳型表面
に塗布し乾燥させて該鋳型表面に上記混合物層を形成し
た後、該混合物層内の上記有機金属化合物を水蒸気雰囲
気中にて酸化物系セラミック材とし、更に得られた鋳型
に溶湯を注湯し、該溶湯熱により上記混合物層をコーテ
ィング層とした。
(Means for Solving the Problems) As a means for solving the above-mentioned problems of the prior art, a mixture containing at least two types of organometallic compounds that produce an oxide ceramic material by hydrolysis, or a mixture of the organometallic compounds A mixture containing at least one kind and an oxide ceramic powder is added to an organic solvent, uniformly dissolved and dispersed to obtain a coating material, and the coating material is gelled and applied to the surface of a mold, dried, and the above mixture is applied to the surface of the mold. After forming the layer, the organic metal compound in the mixture layer is converted into an oxide ceramic material in a steam atmosphere, and the molten metal is poured into the mold, and the mixture layer is converted into a coating layer by the heat of the molten metal. And so.

本明細書において、上記有機金属化合物とは、Zr+s
l+ Aj2 、Mg、Ca等のアルキル金属化合物及
びアリール金属化合物に加えて、フェノキシト、アルコ
キシド等を含む。
In this specification, the organometallic compound is Zr+s
In addition to alkyl metal compounds and aryl metal compounds such as l+ Aj2, Mg, and Ca, phenoxides, alkoxides, and the like are included.

(作用) 以上の手段によれば、上記混合物を有機溶剤中に加え均
一に溶解、分散させることによりゾル状またはスラリー
状のコーティング材が得られる。
(Function) According to the above means, a sol-like or slurry-like coating material can be obtained by adding the above-mentioned mixture into an organic solvent and uniformly dissolving and dispersing it.

また、該コーティング材をゲル化して鋳型表面に塗布し
乾燥させて得られる上記混合物層には、2種以上の上記
有機金属化合物又は1種以上の上記有機金属化合物と酸
化物系セラミック粉末が均一に含まれている。
In addition, the mixture layer obtained by gelling the coating material, applying it to the surface of the mold, and drying it, contains two or more of the above organometallic compounds or one or more of the above organometallic compounds and an oxide ceramic powder uniformly. included in.

以上の混合物層中の有機金属化合物は加水分解され最終
的に水蒸気雰囲気中にて酸化物系セラミック材を生成す
る。以下にエトキシドの加水分解例について記す。
The organometallic compound in the above mixture layer is hydrolyzed and finally produces an oxide ceramic material in a steam atmosphere. Examples of hydrolysis of ethoxide are described below.

S I(OC2H5) 4 + 21hO→5102+
4C2H50H(テトラエトキシシラン)      
     ・・・■Zr(OCJs)4 + 2H20
= z、o2+ 4C2850H(ジルコニウムプロポ
キシド)        ・・・■Cl1(OC2H5
)2 + H2O→C,O+2C2H,OH(カリウム
エトキシド)            ・・・0Mg 
(OCJs)2 + H2O→MgO+2C2H6OH
(マグネシウムエトキシド)         ・・・
0次に、上記混合物層を有する鋳型に溶湯を注湯すると
、上記有機物化合物が加水分解することによる2種以上
の酸化物系セラミック材(上記反応式■〜■の右辺の酸
化物)、又は1種以上の該酸化物系セラミック材と酸化
物系セラミック粉末が上記溶湯熱により焼結して複合酸
化物を形成し、緻密で耐食、耐酸性に優れ、剥離強度の
高いコーティング層を得ることができる。
SI(OC2H5) 4 + 21hO→5102+
4C2H50H (tetraethoxysilane)
... ■ Zr (OCJs) 4 + 2H20
= z, o2+ 4C2850H (zirconium propoxide)...■Cl1(OC2H5
)2 + H2O→C,O+2C2H,OH (potassium ethoxide)...0Mg
(OCJs)2 + H2O→MgO+2C2H6OH
(Magnesium ethoxide)...
Next, when the molten metal is poured into the mold having the mixture layer, the organic compound is hydrolyzed, resulting in two or more oxide-based ceramic materials (the oxides on the right side of the reaction formulas ■ to ■), or One or more of the oxide-based ceramic materials and oxide-based ceramic powder are sintered by the heat of the molten metal to form a composite oxide, thereby obtaining a coating layer that is dense, has excellent corrosion resistance, acid resistance, and high peel strength. Can be done.

上記コーティング材中に含まれる上記有機金属化合物及
び上記酸化物系セラミック粉末の種類及び含有量比を調
製することにより様々な複合酸化物を得ることができ、
以下にその好ましい例を例示する。
Various composite oxides can be obtained by adjusting the types and content ratios of the organometallic compound and the oxide-based ceramic powder contained in the coating material,
Preferred examples are illustrated below.

(a)ジルコニウムプロポキシド及びテトラエトキシシ
ランを含むコーティング材 →ZrO2・5I02(ジルコン) (b)マグネシウムエトキシド、An 203粉末及び
5I02粉末を含むコーティング材 →2Mg0・2Au 203・5SIO2(コージェラ
イト)(e)マグネシウムエトキシド及びテトラエトキ
シシランを含むコーティング材 −MgO・5I02(ステアタイト)及び2Mg0・5
102(フォルステライト)(d)テトラエトキシシラ
ン及びAJ220.粉末を含むコーティング材 =3Aj!ro3・25102 (ムライト)(e)ジ
ルコニウムプロポキシド及びカリウムエトキシドを含む
コーティング材 →安定化ジルコニア (尚上記例(e)においてはコーティング材にY2O3
粉末を加えても良い) 以上、数例を例示したが、本発明は上記例(a)〜(e
)にその範囲を限定するものではない。
(a) Coating material containing zirconium propoxide and tetraethoxysilane → ZrO2.5I02 (zircon) (b) Coating material containing magnesium ethoxide, An 203 powder and 5I02 powder → 2Mg0.2Au 203.5SIO2 (cordierite) ( e) Coating materials containing magnesium ethoxide and tetraethoxysilane - MgO.5I02 (Steatite) and 2Mg0.5
102 (Forsterite) (d) Tetraethoxysilane and AJ220. Coating material including powder = 3 Aj! ro3・25102 (Mullite) (e) Coating material containing zirconium propoxide and potassium ethoxide → Stabilized zirconia (In the above example (e), the coating material contains Y2O3
Although several examples have been illustrated above, the present invention is applicable to the above examples (a) to (e).
) is not intended to limit its scope.

(実施例1) 以下に本発明の実施例を添付図面を参照して具体的に説
明する。
(Example 1) Examples of the present invention will be specifically described below with reference to the accompanying drawings.

第1図は本発明方法を実施した高密度炭素材[密度1.
75 (g/cm3)以上、 1.85 (g/cm3
)以下]からなる鋳型の全体図であり、炭素材鋳型1に
は、溶湯の注湯口2、湯道3及びキャビティ4(鋳物面
)が形成されている。ここで図示例にあってはキャビテ
ィ4はカムシャフトを鋳造するものである。
FIG. 1 shows a high-density carbon material [density 1.
75 (g/cm3) or more, 1.85 (g/cm3)
) Below] is an overall view of a mold consisting of a carbon material mold 1, in which a molten metal pouring port 2, a runner 3, and a cavity 4 (casting surface) are formed. In the illustrated example, the cavity 4 is for casting a camshaft.

先ず、上記キャビティ4の表面に以下に説明する操作に
よりコーティング材を塗布した。
First, a coating material was applied to the surface of the cavity 4 by the operation described below.

上記コーティング材は、100gのアルミニウムイソプ
ロポキシドと、50gのテトラエトキシシランとを30
0cm3のエタノール中に加え、スターンを用いて均一
に分散させゾル状として得られる。
The above coating material was made by mixing 100 g of aluminum isopropoxide and 50 g of tetraethoxysilane at 30 g.
It is added to 0 cm3 of ethanol and dispersed uniformly using a stern to obtain a sol.

次に該混合液に触媒として10cm3の塩酸を加えてゲ
ル化し、上記鋳型1のキャビティ4表面に塗布し、乾燥
させて該表面に混合物層を形成し、更に該鋳型を温度4
00℃の水蒸気雰囲気中に保持した。
Next, 10 cm3 of hydrochloric acid is added as a catalyst to the mixture to gel it, and the mixture is applied to the surface of the cavity 4 of the mold 1, dried to form a mixture layer on the surface, and the mold is heated to a temperature of 4.
It was maintained in a steam atmosphere at 00°C.

しかる後に、該鋳型1を乾燥させ、鋼材(SKDII)
の溶湯(温度1600℃)を上記湯口2より注湯して鋳
込み、10秒後に離型してキャビティ4表面を観察した
ところ該表面に緻密なコーティング層の形成が認められ
た。
After that, the mold 1 is dried and made of steel (SKDII).
The molten metal (temperature: 1600° C.) was poured from the sprue 2 and cast, and the mold was released after 10 seconds and the surface of the cavity 4 was observed, and a dense coating layer was observed to be formed on the surface.

また、上記コーティング層を有する上記鋳型1を用い、
10回連続して上記鋼材の鋳込みを行なったが、その後
もコーティング層は剥離部分がなく健全であり、溶湯に
よる侵食、酸化による劣化はなかった。該コーティング
層をX線解析により分析したところ、主にムライト (
3AJ2203・25103)から成ることがわかフた
Further, using the mold 1 having the coating layer,
The above-mentioned steel material was poured 10 times in succession, and even after that, the coating layer remained sound with no peeled parts, and there was no erosion by molten metal or deterioration due to oxidation. When the coating layer was analyzed by X-ray analysis, it was found that it was mainly composed of mullite (
3AJ2203/25103).

(実施例2) 300gのテトラエトキシシラン及びジルコニウムプロ
ポキシド500gを300cm3のエタノール中に加え
、アトライターを用いて均一に分散させてゾル状のコー
ティング材を得た。
(Example 2) 300 g of tetraethoxysilane and 500 g of zirconium propoxide were added to 300 cm 3 of ethanol and uniformly dispersed using an attritor to obtain a sol-like coating material.

次に上記コーティング材に触媒として10cm3の塩酸
を加えてゲル状とし、実施例1と同様の鋳型1のキャビ
ティ4表面に塗布し乾燥させて該表面に混合物層を形成
し、更に該鋳型1を温度400℃の水蒸気雰囲気中に保
持した。
Next, 10 cm3 of hydrochloric acid was added as a catalyst to the above coating material to make it into a gel, and it was applied to the surface of the cavity 4 of the mold 1 similar to that in Example 1 and dried to form a mixture layer on the surface. It was maintained in a steam atmosphere at a temperature of 400°C.

しかる後に、該鋳型1を乾燥させ、鋼材(SKDII)
の溶湯(温度1600℃)を湯口2より注湯して鋳込み
、10秒後に離型してキャビティ4表面を観察したとこ
ろ、該表面に緻密なコーティング層の形成が認められた
After that, the mold 1 is dried and made of steel (SKDII).
The molten metal (temperature: 1600° C.) was poured from the sprue 2 and cast, and the mold was released after 10 seconds and the surface of the cavity 4 was observed, and it was observed that a dense coating layer had been formed on the surface.

また上記鋳型1を用い、20回連続して上記鋼材の鋳込
みを行ったが、その後もコーティング層は剥離部分がな
く健全であり、溶湯による侵食、酸化による劣化が認め
られなかった。また、鋳造した鋳物表面のチル層は減少
し、充分な断熱効果があった。該コーティング層をX線
解析により分析したところ主にジルコン(zr02・5
102)から成ることがわかった。
Further, the above-mentioned steel material was cast 20 times in succession using the above-mentioned mold 1, and even after that, the coating layer remained sound with no peeling parts, and no corrosion by molten metal or deterioration due to oxidation was observed. In addition, the chill layer on the surface of the cast metal was reduced, and a sufficient heat insulation effect was achieved. When the coating layer was analyzed by X-ray analysis, it was mainly found that zircon (zr02/5
102).

以上、実施例において、高密度炭素材から成る鋳型を用
いたが、本発明はその他の公知合金製鋳型、例えば鉄、
アルミニウム又は銅合金製鋳型等においても適用可能で
ある。
In the above examples, a mold made of high-density carbon material was used, but the present invention also applies to molds made of other known alloys, such as iron,
It is also applicable to aluminum or copper alloy molds.

(発明の効果) 以上説明したように本発明に°よれば、コーティング材
に含まれる有機金属化合物及び酸化物系セラミック粉末
を選択することにより、様々な組成の複合酸化物から成
るコーティング層を得られるばかりでなく、得られたコ
ーティング層は充分な断熱性を有し、更に溶湯熱により
高温にて焼成されたものであるため、耐食、耐酸化性に
優れ、剥離強度が高いものである。
(Effects of the Invention) As explained above, according to the present invention, by selecting the organometallic compound and the oxide-based ceramic powder contained in the coating material, a coating layer made of composite oxides of various compositions can be obtained. In addition, the obtained coating layer has sufficient heat insulation properties, and since it is fired at a high temperature using the heat of the molten metal, it has excellent corrosion resistance, oxidation resistance, and high peel strength.

以上のように本発明によれば、コーティング層の耐久性
が向上するため、連続して鋳造を行なえるため生産性を
向上でき、更に第1回の鋳造によりコーティング層を形
成できるため、特別にコーティング層焼成工程を必要と
せず、鋳型製造作業の省力化を図ることができる。
As described above, according to the present invention, the durability of the coating layer is improved, so casting can be performed continuously, improving productivity, and furthermore, since the coating layer can be formed in the first casting, special There is no need for a coating layer firing step, and labor savings in mold manufacturing work can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は、本発明を実施した高密度炭素材から成る鋳
型の全体図である。 尚図中、1は鋳型、2は湯口、3は湯道、4はキャビテ
ィである。
The accompanying drawing is an overall view of a mold made of high-density carbon material in which the present invention is implemented. In the figure, 1 is a mold, 2 is a sprue, 3 is a runner, and 4 is a cavity.

Claims (1)

【特許請求の範囲】[Claims] 加水分解により酸化物系セラミック材を生成する有機金
属化合物の少なくとも2種を含む混合物、又は該有機金
属化合物の少なくとも1種及び酸化物系セラミック粉末
を含む混合物を有機溶剤中に加え均一に溶解、分散させ
てコーティング材とし、該コーティング材をゲル化して
鋳型表面に塗布し乾燥させて該鋳型表面に上記混合物層
を形成した後、該混合物層内の上記有機金属化合物を水
蒸気雰囲気中にて酸化物系セラミック材とし、更に得ら
れた鋳型に溶湯を注湯し、該溶湯熱により上記混合物層
をコーティング層とすることを特徴とする鋳型コーティ
ング層形成方法。
A mixture containing at least two organometallic compounds that produce an oxide ceramic material by hydrolysis, or a mixture containing at least one of the organometallic compounds and an oxide ceramic powder is added to an organic solvent and uniformly dissolved; The coating material is dispersed to form a coating material, and the coating material is gelled and applied to the mold surface and dried to form the mixture layer on the mold surface.The organic metal compound in the mixture layer is then oxidized in a steam atmosphere. 1. A method for forming a coating layer in a mold, characterized in that the mixture layer is formed into a coating layer by pouring a molten metal into the obtained mold, and using the heat of the molten metal.
JP8016987A 1987-04-01 1987-04-01 Method for forming coating layer in mold Granted JPS63248542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8016987A JPS63248542A (en) 1987-04-01 1987-04-01 Method for forming coating layer in mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8016987A JPS63248542A (en) 1987-04-01 1987-04-01 Method for forming coating layer in mold

Publications (2)

Publication Number Publication Date
JPS63248542A true JPS63248542A (en) 1988-10-14
JPH044054B2 JPH044054B2 (en) 1992-01-27

Family

ID=13710823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8016987A Granted JPS63248542A (en) 1987-04-01 1987-04-01 Method for forming coating layer in mold

Country Status (1)

Country Link
JP (1) JPS63248542A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192820A1 (en) * 2013-05-29 2014-12-04 三菱重工業株式会社 Core for precision casting, production method therefor, and mold for precision casting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192820A1 (en) * 2013-05-29 2014-12-04 三菱重工業株式会社 Core for precision casting, production method therefor, and mold for precision casting

Also Published As

Publication number Publication date
JPH044054B2 (en) 1992-01-27

Similar Documents

Publication Publication Date Title
CN110280717B (en) Ink-jet bonding three-dimensional printing sand mold titanium alloy casting process
JP2000510050A (en) Inert calcia overcoat for investment casting of titanium and titanium-aluminide alloys
CN111085658B (en) Multilayer composite casting coating for aluminum lithium alloy sand casting and coating method thereof
CN102990006A (en) Shell for titanium and titanium alloy precision casting and preparation method thereof
JPH06583A (en) Core for casting of titanium and its alloy
CN106040992A (en) Casting sand core paint dipping process
CN1704188A (en) Hot investment precision casting technique for rare earth ceramic cased titanium alloys
JPH0335839A (en) Molding material
US3441078A (en) Method and apparatus for improving grain structures and soundness of castings
JPS63248542A (en) Method for forming coating layer in mold
JP2011255398A (en) Casting tool, method for producing casting tool and precision casting method
US3815658A (en) Process for making a metallurgically slow reacting mold
JPH10156484A (en) Mold for precision casting
JPH04333343A (en) Manufacture of ceramic shell mold
JP2008114265A (en) Method for manufacturing casting gypsum mold
JPS63140740A (en) Mold for casting active metal of high melting point
JPS59166340A (en) Casting method of titanium product
JPH03106553A (en) Manufacture of hollow member having heat insulating ceramic covering layer on inside surface
KR101328099B1 (en) Method for manufacturing cast product
JPH05123820A (en) Mold for precision casting of titanium or tianium alloy
JPS6225066B2 (en)
JPS60191656A (en) Precision casting method
JP3044981B2 (en) Core for cast-in
SU1284674A1 (en) Coating composition for metal moulds
JPH02200346A (en) Calcia shell mold