JPS6324843B2 - - Google Patents

Info

Publication number
JPS6324843B2
JPS6324843B2 JP55183289A JP18328980A JPS6324843B2 JP S6324843 B2 JPS6324843 B2 JP S6324843B2 JP 55183289 A JP55183289 A JP 55183289A JP 18328980 A JP18328980 A JP 18328980A JP S6324843 B2 JPS6324843 B2 JP S6324843B2
Authority
JP
Japan
Prior art keywords
temperature
air
seat
deviation
passenger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55183289A
Other languages
Japanese (ja)
Other versions
JPS57107912A (en
Inventor
Kyoshi Hara
Yasushi Kojima
Sadaichi Nabeta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, NipponDenso Co Ltd filed Critical Toyota Motor Corp
Priority to JP55183289A priority Critical patent/JPS57107912A/en
Publication of JPS57107912A publication Critical patent/JPS57107912A/en
Publication of JPS6324843B2 publication Critical patent/JPS6324843B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 本発明は自動車の車室内への温調空気吹出の方
向を変更させて車室内の空調を制御する自動車用
空調制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air conditioning control device for an automobile that controls air conditioning in a vehicle interior by changing the direction of temperature-controlled air blowing into the vehicle interior.

従来、車室内が高温状態であるような急冷要求
時には、自動車に搭乗した搭乗者が急冷感を得る
ため自身で中央、左右等に設けた吹出口を切替調
整して自分の方向に冷風を吹出させ、この後に車
室内温度が暫時低下してくると過冷感を除くため
直接当たる冷気を少なくするため中央、左右に設
けた吹出口を適度に切替調整して車室内全体を空
調するようにしている。
Conventionally, when the inside of a vehicle is in a high-temperature state and a rapid cooling request is required, the passenger inside the vehicle can switch and adjust the air outlets installed in the center, left and right, etc., to blow cold air in his or her direction in order to obtain a rapid cooling sensation. After this, when the temperature inside the vehicle drops for a while, the air outlets installed in the center, left and right are appropriately switched and adjusted to air condition the entire vehicle interior in order to eliminate the feeling of overcooling and reduce the amount of cold air that hits the vehicle directly. ing.

このような手動操作では、搭乗者が寒い、暑い
と感じてから、中央、左右の吹出口を切替えてい
るために、搭乗者にとつては安定した空調状態を
得るまでに時間がかかり、またそのために度々吹
出口切替を行なわなければならないという問題が
ある。
With this type of manual operation, the center, left and right air outlets are switched after the passenger feels cold or hot, so it takes time for the passenger to obtain stable air conditioning conditions. Therefore, there is a problem in that the outlet must be changed frequently.

本発明は上記に鑑みて、車室内空調における過
渡時の空気吹出方向を空調制御の過程における車
室内温度と目標温度との偏差に応じて制御可能な
制御装置を提供し、システムが過渡時から定常時
に至る間に乗員が受ける空調フイーリングを好ま
しい状態に調節することを目的する。
In view of the above, the present invention provides a control device that can control the air blowing direction during transient times in vehicle interior air conditioning according to the deviation between the vehicle interior temperature and a target temperature in the process of air conditioning control, so that the system can The purpose of this system is to adjust the air conditioning feeling that the occupants receive during a steady state to a favorable state.

そこで本発明ではこの目的を達成するために車
室内の現実の温度を検出する室温センサ、車室内
の目標温度を設定する温度設定手段、および前記
車室内の現実の温度を前記目標温度に接近せしめ
る温度調節を行なう温度調節手段とを有し、この
温度調節手段にて調節された空気を車室内に送出
するようにした自動車用空調制御装置において、
車室内へ送出する調節空気の吹出方向を、対象搭
乗者の方向を含む第1の吹出方向と対象搭乗者の
方向を含まない第2の吹出方向との間で、変更す
る吹出方向変更手段と、 前記温度設定手段にて設定された目標温度と前
記室温センサにて検出された車室温度との偏差を
演算し、この偏差が大きい時は、前記吹出方向変
更手段を前記第1の方向に変更せしめるととも
に、前記偏差が小さくなると前記吹出方向変更手
段を前記第2の方向に変更せしめる制御信号を出
力する吹出方向制御手段と を備えるという技術手段を採用する。
Therefore, in order to achieve this object, the present invention includes a room temperature sensor that detects the actual temperature in the vehicle interior, a temperature setting means that sets a target temperature in the vehicle interior, and a temperature setting device that brings the actual temperature in the vehicle interior closer to the target temperature. In an air conditioning control device for an automobile, the air conditioning control device has a temperature control means for controlling the temperature, and sends air regulated by the temperature control means into a vehicle interior,
Blow direction changing means for changing the blow direction of the conditioned air sent into the vehicle interior between a first blow direction including the direction of the target passenger and a second blow direction not including the direction of the target passenger; , calculating the deviation between the target temperature set by the temperature setting means and the cabin temperature detected by the room temperature sensor, and when this deviation is large, moving the blowing direction changing means in the first direction; and a blow-off direction control means for outputting a control signal for changing the blow-off direction changing means to the second direction when the deviation becomes smaller.

以下、特に全ての座席に着座する対象搭乗者に
対して有効に作動するようにした本発明自動車用
空調制御装置の一実施例について説明する。
Hereinafter, an embodiment of the air conditioning control device for an automobile according to the present invention will be described, which is designed to operate effectively particularly for target passengers seated in all seats.

第1図は本発明の一実施例を示す全体構成図で
ある。
FIG. 1 is an overall configuration diagram showing an embodiment of the present invention.

この第1図において、1は空調ユニツトで公知
の空気導入装置より車室内または車室外よりの空
気を選択的に導入して送風するブロワモータ1a
と、このブロワモータ1aによる送風空気を冷却
通過させるエバポレータ1bと、エンジン冷却水
を導入してその熱により送風空気を加熱通過させ
るヒータコア1cと、エバポレータ1bの通過空
気に対しヒータコア1c側に導入する割合を調整
して温度調整を行なうエアミツクスダンパ1dな
どより構成されている。2B,2Cは前中央吹出
口、2A,2Dは前横吹出口で、風向変更板群2
a,2b,2c,2dを備えて車室内前側の吹出
方向を切替えるものである。3B,3Cは後中央
吹出口、3A,3Dは後横吹出口で、風向変更板
群3a,3b,3c,3dを備えて車室内後側の
吹出方向を切替えるものである。これら吹出口に
は公知のものと同様に吹出方向を手動調節し得る
変更グリルを設けてある。そして、前中央吹出口
2および後中央吹出口3における風向変更板群は
それぞれ実線で示す開度から破線で示す開度まで
連続的に位置決めし得るように回転自在に支持さ
れ、吹出方向変更手段を構成している。4はリヤ
クーラユニツトで、ブロワモータ4aとエバポレ
ータ4bなどより構成されている。5,6,7は
座席スイツチで、それぞれ助手席、後左席、後右
席に搭乗者が着座した時に閉成して座席信号を発
生するものである。8はリヤクーラスイツチで、
運転席前面の計器パネルまたは後席乗員が操作で
きる位置に配設してあり、リヤクーラを作動させ
る時に投入されてリヤクーラ信号を発生するもの
である。9は目標温度を定める温度設定器で、前
記計器パネル等に配設され乗員がマニユアルにて
希望の温度を定めるものである。10は室温セン
サで、たとえば車室内の前記パネルに設けられた
車室内の代表温度を検出するものである。11は
アナログ信号をデイジタル信号に変換するA/D
変換器で、室温センサ9よりの室温信号、温度設
定器11よりの設定信号を順次デイジタル信号に
変換するものである。
In FIG. 1, reference numeral 1 denotes an air conditioning unit, and a blower motor 1a that selectively introduces and blows air from inside or outside the vehicle from a known air introduction device.
, an evaporator 1b through which air blown by the blower motor 1a is cooled and passed through, a heater core 1c through which engine cooling water is introduced and the blown air is heated by the heat thereof, and a proportion of the air passing through the evaporator 1b that is introduced into the heater core 1c side. It is composed of an air mix damper 1d that adjusts the temperature by adjusting the temperature. 2B and 2C are the front center outlet, 2A and 2D are the front side outlet, and the wind direction changing plate group 2
a, 2b, 2c, and 2d to switch the blowing direction on the front side of the vehicle interior. Reference numerals 3B and 3C represent rear central air outlets, and 3A and 3D represent rear side air outlets, which are provided with wind direction changing plate groups 3a, 3b, 3c, and 3d to change the airflow direction at the rear of the vehicle interior. These outlets are provided with changeable grilles that allow manual adjustment of the outlet direction, similar to known ones. The wind direction changing plate groups at the front central outlet 2 and the rear central outlet 3 are rotatably supported so that they can be continuously positioned from the opening shown by the solid line to the opening shown by the broken line, and the air direction changing means It consists of 4 is a rear cooler unit, which is composed of a blower motor 4a, an evaporator 4b, and the like. Reference numerals 5, 6, and 7 designate seat switches that are closed to generate a seat signal when a passenger is seated in the front passenger seat, rear left seat, and rear right seat, respectively. 8 is the rear cooler switch,
It is located on the instrument panel in front of the driver's seat or in a position that can be operated by rear seat passengers, and is turned on to generate a rear cooler signal when the rear cooler is activated. Reference numeral 9 denotes a temperature setting device for setting a target temperature, which is disposed on the instrument panel or the like, and allows the occupant to manually set the desired temperature. Reference numeral 10 denotes a room temperature sensor, which is provided, for example, on the panel in the vehicle interior and detects a representative temperature inside the vehicle interior. 11 is an A/D that converts analog signals into digital signals.
The converter sequentially converts the room temperature signal from the room temperature sensor 9 and the setting signal from the temperature setting device 11 into digital signals.

12は予め定めた制御プログラムに従つてソフ
トウエアによるデイジタル演算処理を実行するデ
イジタルコンピユータで、マイクロコンピユータ
を使用している。このコンピユータは数メガヘル
ツ(MHz)の水晶振動子13を接続するととも
に、車載バツテリより電源供給を受けて5ボルト
(V)の安定化電圧を発生する安定化電源回路
(図示せず)よりの安定化電圧の供給を受けて作
動状態になるものである。そして、このマイクロ
コンピユータ12は、演算手順を定めた制御プロ
グラムを記憶している読出専用メモリ(ROM)
と、このROMの制御プログラムを順次読出して
それに対応する演算処理を実行する中央処理部
(CPU)と、このCPUの演算処理に関連する各種
データを一時記憶するとともにそのデータの
CPUによる読出しが可能なメモリ(RAM)と、
水晶振動子13を伴つて上記各種演算のための基
準クロツクパルスを発生するクロツク発生部と、
各種信号の入出力(I/O)回路部とを主要部に
構成したものである。このマイクロコンピユータ
12の演算処理によつて、ブロワモータ1a,4
aの回転速度制御の指令信号、前中央吹出口2に
おける風向変更板群2a,2b,2c,2d、お
よび後中央吹出口3における風向変更板群3a,
3b,3c,3dの方向変更の指令信号を発生す
る。
Reference numeral 12 denotes a digital computer that executes digital arithmetic processing using software according to a predetermined control program, and uses a microcomputer. This computer is connected to a several megahertz (MHz) crystal oscillator 13, and is stabilized by a stabilizing power supply circuit (not shown) that receives power from an on-board battery and generates a stabilized voltage of 5 volts (V). It becomes operational when supplied with a voltage. The microcomputer 12 has a read-only memory (ROM) that stores a control program that defines calculation procedures.
There is a central processing unit (CPU) that sequentially reads out the control programs in this ROM and executes the corresponding arithmetic processing, and a central processing unit (CPU) that temporarily stores various data related to the arithmetic processing of this CPU and stores the data.
Memory (RAM) that can be read by the CPU,
a clock generator that generates reference clock pulses for the various calculations with a crystal oscillator 13;
The main part is an input/output (I/O) circuit section for various signals. By the calculation processing of this microcomputer 12, the blower motors 1a, 4
command signal for controlling the rotational speed of a, the wind direction changing plate groups 2a, 2b, 2c, 2d at the front central outlet 2, and the wind direction changing plate group 3a at the rear central outlet 3,
A command signal for changing the direction of 3b, 3c, and 3d is generated.

14,15はブロワモータ1a,4aの回転速
度をそれぞれ制御するモータ駆動回路で、第2図
に示すように、マイクロコンピユータ12よりの
回転速度を示すデイジタルの指令信号12aをラ
ツチ指令パルス信号12bに応答してラツチする
ラツチ回路20と、ラツチされたデイジタル信号
をアナログ信号に変換するD/A変換器21と、
このアナログ信号を増幅する増幅回路22とから
構成され、ブロワモータの回転速度を制御するも
のである。16,17,18,19は駆動手段と
しての変更アクチユエータで、それぞれ前中央吹
出口2の風向変更板群2a,2b,2c,2d、
後中央吹出口3の風向変更板群3a,3b,3
c,3dを変更駆動するものである。
Reference numerals 14 and 15 denote motor drive circuits that control the rotational speeds of the blower motors 1a and 4a, respectively, and as shown in FIG. a latch circuit 20 that latches the latched digital signal; a D/A converter 21 that converts the latched digital signal into an analog signal;
It is composed of an amplifier circuit 22 that amplifies this analog signal, and controls the rotation speed of the blower motor. Reference numerals 16, 17, 18, and 19 are change actuators serving as driving means, and the wind direction change plate groups 2a, 2b, 2c, 2d of the front central outlet 2, respectively.
Wind direction changing plate group 3a, 3b, 3 of rear central outlet 3
c and 3d.

これらの変更アクチユエータは、それぞれ2つ
の変更板をコンピユータ12の指令により同時に
駆動するようになつており、例えばアクチユエー
タ16は変更板2aと2bを連動して駆動する。
そして、変更板2a,2bが破線位置にあると
き、空調ユニツト1からの空気の前中央吹出口2
Bから前左席に向つてつまり搭乗者に向つて吹出
され、また横吹出口2Aからも前左席に向つて吹
出される。変更アクチユエータ16が作動する
と、その作動量に応じて変更板2a,2bは破線
位置から実線位置への間の位置が規定され、実線
位置では横吹出口2Aからの吹出方向を座席側か
らウインド側に変更させると同時に、中央吹出口
2Bからも前左席に向う吹出量をほぼなくし乗員
のいない中央方向へ吹出させる。他の変更アクチ
ユエータ17,18,19も同様に作動し、その
作動量が小さい(実線位置)と直接座席搭乗者に
向う吹出量がほとんどなく、作動量が大きくなる
(破線位置方向)に比例して座席に向う吹出量が
増加する。
These change actuators are adapted to drive two change plates simultaneously according to commands from the computer 12. For example, the actuator 16 drives the change plates 2a and 2b in conjunction with each other.
When the change plates 2a and 2b are at the broken line position, the front central outlet 2 of the air from the air conditioning unit 1
The air is blown out from B towards the front left seat, that is, towards the passenger, and is also blown out from the side air outlet 2A towards the front left seat. When the change actuator 16 operates, the change plates 2a, 2b are defined in a position between the broken line position and the solid line position according to the amount of operation, and in the solid line position, the direction of air flow from the side air outlet 2A is changed from the seat side to the window side. At the same time, the amount of air blown from the central air outlet 2B toward the front left seat is almost eliminated, and air is blown toward the center where there are no occupants. The other change actuators 17, 18, and 19 operate in the same way, and when the amount of actuation is small (solid line position), there is almost no amount of air blowing directly toward the seat occupant, and as the amount of actuation increases (in the direction of the position of broken line), the amount of air blows directly toward the seat occupant. This increases the amount of air flowing toward the seats.

第3図は変更アクチユエータの構成を示すもの
で、マイクロコンピユータ12よりの作動量を示
すデイジタルの指令信号12cをラツチする指令
パルス12dに応答してラツチするラツチ回路2
5と、ラツチされたデイジタル信号をアナログ信
号に変換するD/A変換器26と、誤差増幅器2
7と、この誤差増幅器27に作動量を帰還しつつ
誤差増幅器27の出力信号によつて駆動されるサ
ーボモータ28とから構成され、サーボモータ2
8の出力作動量により前記風向変更板2a,2b
(2c,2d,3a,3b,3c,3dも同じ)
の変更量を制御する。
FIG. 3 shows the configuration of the change actuator, in which a latch circuit 2 latches in response to a command pulse 12d that latches a digital command signal 12c indicating the amount of operation from the microcomputer 12.
5, a D/A converter 26 that converts the latched digital signal into an analog signal, and an error amplifier 2.
7, and a servo motor 28 which is driven by the output signal of the error amplifier 27 while feeding back the operating amount to the error amplifier 27.
According to the output operation amount of 8, the wind direction changing plates 2a, 2b
(Same for 2c, 2d, 3a, 3b, 3c, 3d)
control the amount of change.

次に、上記構成においてその作動を第4乃至第
6図に示す演算流れ図とともに説明する。
Next, the operation of the above configuration will be explained with reference to the calculation flowcharts shown in FIGS. 4 to 6.

この第4図は制御プログラムによるマイクロコ
ンピユータ12の全体の演算処理を示す演算流れ
図、第5図は第4図中のブロワ速度制御演算ルー
チンの詳細な演算処理を示す演算流れ図、第6図
は第4図中の吹出方向制御演算ルーチンの詳細な
演算処理を示す演算流れ図である。まず、演算処
理について説明する。
FIG. 4 is a calculation flowchart showing the overall calculation processing of the microcomputer 12 according to the control program, FIG. 5 is a calculation flowchart showing the detailed calculation processing of the blower speed control calculation routine in FIG. 4, and FIG. 4 is a calculation flowchart showing detailed calculation processing of the blowout direction control calculation routine in FIG. 4. FIG. First, arithmetic processing will be explained.

今、この装置を備えた自動車において、エアコ
ンスイツチ(図示せず)を投入すると、マイクロ
コンピユータ12はイグニツシヨンスイツチ(図
示せず)を介して車載バツテリより電源供給され
る安定化電源回路よりの安定化電圧の供給を受け
て作動状態となり、数百ミリ秒(msec)程度の
周期にて制御プログラムの演算処理を実行する。
Now, in a car equipped with this device, when the air conditioner switch (not shown) is turned on, the microcomputer 12 receives power from the stabilized power supply circuit that is supplied with power from the on-board battery via the ignition switch (not shown). When supplied with a stabilizing voltage, it enters an operating state and executes arithmetic processing of a control program at a cycle of approximately several hundred milliseconds (msec).

すなわち、第4図のスタートステツプ100より
演算処理を開始し、初期設定ルーチン200に進ん
でマイクロコンピユータ12内のレジスタ、カウ
ンタ、ラツチなどを演算処理の開始に必要な初期
状態にセツトするとともに、マイクロコンピユー
タ12により制御される回路に初期設定信号を発
してその回路を初期状態にセツトする。そして、
この初期設定後にブロワ速度制御演算ルーチン
300に進む。
That is, the arithmetic processing is started from the start step 100 in FIG. 4, and the process proceeds to the initial setting routine 200, where the registers, counters, latches, etc. in the microcomputer 12 are set to the initial states necessary for starting the arithmetic processing, and the microcomputer 12 is set to the initial state necessary for starting the arithmetic processing. An initialization signal is issued to a circuit controlled by computer 12 to set the circuit to an initial state. and,
After this initial setting, the blower speed control calculation routine
Go to 300.

このブロワ速度制御演算ルーチン300では、室
温センサ10よりの室温信号および温度設定器9
よりの設定信号に基づき、室温と設定温の偏差に
対する風量を求め、この風量に対応させてブロワ
モータ1aおよびリヤクーラスイツチ8の投入時
にはブロワモータ4aの回転速度を制御するため
の演算処理を実行し、次の温度制御演算ルーチン
400に進む。
In this blower speed control calculation routine 300, the room temperature signal from the room temperature sensor 10 and the temperature setting device 9
Based on the setting signal, the air volume for the deviation between the room temperature and the set temperature is determined, and when the blower motor 1a and the rear cooler switch 8 are turned on, arithmetic processing is executed to control the rotational speed of the blower motor 4a in accordance with this air volume. Next temperature control calculation routine
Go to 400.

この温度制御演算ルーチン400では、室温と設
定温との偏差に基づき、エアミツクスダンパ1d
の開閉角度制御、図示しないコンプレツサのオ
ン、オフ制御、および内外気切替ダンパの切替制
御など温度を調整するための各種演算処理を実行
し、吹出方向制御演算ルーチン500に進む。
In this temperature control calculation routine 400, based on the deviation between the room temperature and the set temperature, the air mix damper 1d is
Various calculation processes are executed to adjust the temperature, such as opening/closing angle control of a compressor (not shown), on/off control of a compressor (not shown), and switching control of an inside/outside air switching damper, and then the flow advances to a blowing direction control calculation routine 500.

この吹出方向制御演算ルーチン500では、室温
と設定温との偏差、座席スイツチ5,6,7、リ
ヤクーラスイツチ8よりの信号状態に基づき、前
中央吹出口2の風向変更板群2a,2b,2c,
2dおよび後中央吹出口3の風向変更板群3a,
3b,3c,3dの駆動装置制御のための演算処
理を実行し、ブロワ速度制御演算ルーチン300に
もどる。以後このブロワ速度制御演算ルーチン
300から吹出方向制御演算ルーチン500への演算処
理を数百msecの周期にて繰返す。
In this airflow direction control calculation routine 500, the airflow direction changing plate groups 2a, 2b, 2c,
2d and the wind direction changing plate group 3a of the rear central outlet 3,
3b, 3c, and 3d are executed, and the process returns to the blower speed control calculation routine 300. From now on, this blower speed control calculation routine
The calculation process from 300 to the blowout direction control calculation routine 500 is repeated at a cycle of several hundred msec.

次に、上記繰返演算におけるブロワ速度制御演
算ルーチン300の詳細な演算処理を第5図の演算
流れ図とともに説明する。
Next, detailed calculation processing of the blower speed control calculation routine 300 in the above-mentioned iterative calculation will be explained with reference to the calculation flowchart of FIG.

このブロワ速度演算ルーチン300では、温度入
力ステツプ301よりその演算処理を開始し、室温
センサ10よりの室温信号および温度設定器9よ
りの設定信号をA/D変換器11を介して順次デ
イジタルの信号として入力し、偏差計算ステツプ
302に進む。この偏差計算ステツプ302では、温度
入力ステツプ301にて入力した室温Tr、設定温
Tsにより偏差△Tを△T=Tr−Tsの計算式にて
求め、次の風量設定ステツプ303に進む。なお、
偏差計算ステツプ302にて求めた偏差△Tはマイ
クロコンピユータ12のRAMにおける所定番地
に記憶される。そして、風量設定ステツプ303で
は、偏差△Tにより図に示す特性関係により風量
Wを求める。その特性関係は予めマイクロコンピ
ユータ12のROMに記憶されており、偏差△T
の数値範囲を探索し、その数値範囲に対する直線
関数の係数を読出し、偏差△Tに対する風量Wを
算出して求める。そして、次のリヤクーラ判定ス
テツプ304に進み、リヤクーラスイツチ8よりリ
ヤクーラ信号が発生しているか否かを判定し、リ
ヤクーラ信号が発生している時にその判定がイエ
ス(YES)になるが、リヤクーラ信号が発生し
ていない時にはその判定がノー(NO)になつて
出力ステツプ305に進む。この出力ステツプ305で
は、風量設定ステツプ303にて求めた風量Wに対
応する指令信号をモータ駆動回路14のみに発
し、ブロワ速度制御演算ルーチン300の演算処理
を終了する。
In this blower speed calculation routine 300, the calculation process starts at a temperature input step 301, and the room temperature signal from the room temperature sensor 10 and the setting signal from the temperature setting device 9 are sequentially converted into digital signals via the A/D converter 11. Enter the deviation calculation step as
Proceed to 302. In this deviation calculation step 302, the room temperature Tr input in the temperature input step 301, the set temperature
The deviation ΔT is calculated from Ts using the formula ΔT=Tr−Ts, and the process proceeds to the next air volume setting step 303. In addition,
The deviation ΔT obtained in the deviation calculation step 302 is stored at a predetermined location in the RAM of the microcomputer 12. Then, in the air volume setting step 303, the air volume W is determined from the characteristic relationship shown in the figure using the deviation ΔT. The characteristic relationship is stored in advance in the ROM of the microcomputer 12, and the deviation △T
The numerical value range is searched, the coefficient of the linear function for the numerical value range is read out, and the air volume W for the deviation ΔT is calculated and determined. Then, the process proceeds to the next rear cooler determination step 304, where it is determined whether or not a rear cooler signal is generated from the rear cooler switch 8. When the rear cooler signal is generated, the determination becomes YES; If no occurrence occurs, the determination becomes NO and the process proceeds to output step 305. In this output step 305, a command signal corresponding to the air volume W determined in the air volume setting step 303 is issued only to the motor drive circuit 14, and the calculation processing of the blower speed control calculation routine 300 is ended.

他方、前記リヤクーラ判定ステツプ304の判定
がYESの時には出力ステツプ306に進み、風量設
定ステツプ303にて求めた風量Wに対応する指令
信号をモータ駆動回路14,15の両方に発し、
ブロワ速度制御演算ルーチン300の演算処理を終
了する。
On the other hand, when the judgment in the rear cooler judgment step 304 is YES, the process proceeds to an output step 306, in which a command signal corresponding to the air volume W determined in the air volume setting step 303 is issued to both the motor drive circuits 14 and 15.
The calculation process of the blower speed control calculation routine 300 ends.

次に、吹出方向制御演算ルーチン500の詳細な
演算処理を第6図の演算流れ図とともに設明す
る。
Next, detailed calculation processing of the blowout direction control calculation routine 500 will be explained with reference to the calculation flowchart of FIG.

この吹出方向制御演算ルーチン500では、偏差
△Tに応じて風向変更板群2a,2b,2c,2
d,3a,3b,3c,3dの位置を設定する。
まず変更板群位置設定ステツプ501において、図
に示す特性関係より前記変更アクチユエータ16
〜19の作動量Sを求める。この特性関係は、風
量Wと相似曲線であり、風量データWを流用し
て、S=K(W−C)の計算によつて算出する。
ただし、Kは比例定数、Cは最小送風量Woに相
当する定数である。
In this blowing direction control calculation routine 500, the wind direction changing plate groups 2a, 2b, 2c, 2
Set the positions of d, 3a, 3b, 3c, and 3d.
First, in the change plate group position setting step 501, the change actuator 16 is
Find the operating amount S of ~19. This characteristic relationship is a similar curve to the air volume W, and is calculated by using the air volume data W and calculating S=K(W-C).
However, K is a proportional constant, and C is a constant corresponding to the minimum air flow rate Wo.

ここで、△Tが大きい時作動量Sも最大値とな
り、風向変更板はその吹出方向を前述の破線位置
のごとく座席方向に集中した吹出方向となり、△
Tが小さい時作動量Sは最小値S0(o)となり吹
出方向は前述の実線位置のごとく座席方向をほぼ
避けた吹出方向となる。
Here, when △T is large, the operating amount S also reaches its maximum value, and the air direction changing plate directs its airflow to a direction concentrated in the direction of the seat, as indicated by the above-mentioned broken line position, and △
When T is small, the operating amount S is the minimum value S0 (o), and the blowing direction is the blowing direction that almost avoids the seat direction, as shown by the solid line position described above.

各アクチユエータ16,17,18,19の作
動は、まず助手席方向吹出判定ステツプ502にお
いて、助手席に設けた座席スイツチ5より座席信
号が発生しているか否かを判定し、座席信号が発
生していない時にその判定がNOとなり、運転席
吹出指令ステツプ504に進み、偏差△Tに応じて
上記ステツプ501で求めたストロークSを得るべ
く運転席アクチユエータ17に指令信号を発しそ
れを駆動し、左後席方向吹出判定ステツプ505へ
進む。一方助手席方向吹出判定ステツプ502の判
定がYESの時には、運転席及び助手席吹出指令
ステツプ503へ進み、運転席及び助手席のアクチ
ユエータ16,17に指令信号を発し、偏差△T
に応じた作動量Sを生じるようアクチユエータ1
6,17を駆動し、左後席方向吹出判定ステツプ
505へ進む。
The actuation of each actuator 16, 17, 18, 19 begins with determining whether or not a seat signal is being generated from the seat switch 5 provided in the passenger seat in step 502 for determining airflow toward the passenger seat. If not, the judgment becomes NO, and the process proceeds to driver's seat air blow command step 504, in which a command signal is issued to the driver's seat actuator 17 to obtain the stroke S obtained in step 501 above according to the deviation △T, and it is driven. The process advances to step 505 for determining whether air is blown in the rear seat direction. On the other hand, if the judgment in step 502 is YES, the air flow in the direction of the passenger seat is determined, the process proceeds to step 503 for blowing air from the driver's seat and passenger's seat, and a command signal is issued to the actuators 16, 17 for the driver's seat and passenger's seat, and the deviation △T
The actuator 1 is configured to generate an actuation amount S corresponding to
6 and 17 to determine the airflow in the left rear seat direction.
Proceed to 505.

この左後席方向吹出判定ステツプ505では座席
スイツチ6より座席信号が発生しているか否かを
判定し、座席信号が発生していない時にその判定
がNOになり、ステツプ506で左後席アクチユエ
ータ18には最小値Soを出力し、右後席方向吹
出判定ステツプ508へ進む。一方、判定がYESの
時は、左後席吹出指令ステツプ507へ進み、左後
席のアクチユエータ18に指令信号を発し、偏差
△Tに応じた作動量Sを生じるようアクチユエー
タ18を駆動し、右後席方向吹出判定ステツプ
508へ進む。
In this left rear seat direction blow determination step 505, it is determined whether or not a seat signal is generated from the seat switch 6. If a seat signal is not generated, the determination becomes NO, and in step 506, the left rear seat actuator 18 The minimum value So is outputted, and the process proceeds to step 508 for determining whether air is blown in the right rear seat direction. On the other hand, if the determination is YES, the process advances to step 507 for blowing air to the left rear seat, where a command signal is issued to the left rear seat actuator 18, the actuator 18 is driven to produce an actuation amount S according to the deviation ΔT, and the right Rear seat direction air blow determination step
Proceed to 508.

この右後席方向吹出判定ステツプ508では、座
席スイツチ7により座席信号が発生しているか否
かを判定し、座席信号が発生していない時にはそ
の判定がNOとなり、右後席方向吹出指令ステツ
プ509へ進み、右後席のアクチユエータ19に共
に最小作動量Soを生じさせるよう指令信号を発
し、アクチユエータ19を駆動し吹出方向制御演
算ルーチン500の演算処理を終了する。右後席座
席信号が発生している時には、判定はYESとな
り右後席吹出指令ステツプ510へ進み、アクチユ
エータ19に指令信号を発し偏差△Tに応じた作
動量Sを生じるようアクチユエータ19を駆動
し、吹出方向制御演算ルーチン500の演算処理を
終了する。
In this right rear seat direction blow determination step 508, it is determined whether or not a seat signal is generated by the seat switch 7. If a seat signal is not generated, the determination becomes NO, and the right rear seat direction blow command step 509 is performed. Then, a command signal is issued to both the right rear seat actuator 19 to produce the minimum actuation amount So, the actuator 19 is driven, and the calculation process of the blowing direction control calculation routine 500 is completed. When the right rear seat seat signal is generated, the determination is YES and the process proceeds to right rear seat air blowing command step 510, where a command signal is issued to the actuator 19 and the actuator 19 is driven to produce the actuation amount S according to the deviation ΔT. , the calculation process of the blowout direction control calculation routine 500 ends.

次に、種々の状態における空調制御の全体作動
を順次説明する。
Next, the overall operation of air conditioning control in various states will be sequentially explained.

まず、車室内温度が設定温度よりも5℃以上高
いような車室内高温状態時に2人の乗員がこの車
両の前席に搭乗した時について説明する。このと
き、車室内高温状態であるために運転開始と同時
にエアコンスイツチを投入すると、安定化電源回
路より安定化電圧が供給されるマイクロコンピユ
ータ12が作動状態となる。そして、第3図のス
タートステツプ100よりその演算処理を開始し、
初期設定ルーチン200に進んで各種初期設定を行
なつた後にブロワ速度制御演算ルーチン300に進
む。
First, a case will be described in which two occupants are seated in the front seats of this vehicle during a high temperature state in the vehicle interior, where the vehicle interior temperature is 5° C. or more higher than the set temperature. At this time, since the vehicle interior is in a high temperature state, when the air conditioner switch is turned on at the same time as the start of operation, the microcomputer 12 to which a stabilized voltage is supplied from the stabilized power supply circuit becomes operational. Then, the calculation process starts from the start step 100 in FIG.
After proceeding to the initial setting routine 200 and performing various initial settings, the process proceeds to the blower speed control calculation routine 300.

このブロワ速度制御演算ルーチン300では、温
度入力ステツプ301にて室温Tr、設定温Tsを入
力し、偏差計算ステツプ302に進んで偏差△Tを
求める。このとき、車室内が高温状態であるため
にその偏差△Tは5℃以上の値になる。従つて、
次の風量設定ステツプ303にて求める風量Wは最
大の約370m3/hになる。そして、次のリヤクー
ラ判定ステツプ304に進むが、この時リヤクーラ
スイツチ8を投入しているとその判定がYESに
なり、出力ステツプ306に進んで前記求めた風量
W、すなわち約370m3/hに対応する指令信号を
モータ駆動回路14,15に発し、ブロワ速度制
御演算ルーチン300の1回の演算処理を終了する。
従つて、ブロワモータ1aは高速回転される。
In this blower speed control calculation routine 300, the room temperature Tr and set temperature Ts are input in a temperature input step 301, and the process proceeds to a deviation calculation step 302 to calculate the deviation ΔT. At this time, since the interior of the vehicle is in a high temperature state, the deviation ΔT becomes a value of 5° C. or more. Therefore,
The air volume W determined in the next air volume setting step 303 becomes the maximum of approximately 370 m 3 /h. Then, the process proceeds to the next rear cooler determination step 304, but if the rear cooler switch 8 is turned on at this time, the determination becomes YES, and the process proceeds to the output step 306, where the air volume W determined above, that is, approximately 370 m 3 /h is reached. A corresponding command signal is issued to the motor drive circuits 14 and 15, and one calculation process of the blower speed control calculation routine 300 is completed.
Therefore, the blower motor 1a is rotated at high speed.

そして、次の温度制御演算ルーチン400に進み、
その時の偏差△Tに対応してエアミツクスダンパ
1dの開閉角度を制御し、コンプレツサをオンし
て冷風を吹出させるための演算処理を実行し、次
の吹出方向制御演算ルーチン500に進む。この吹
出方向制御演算ルーチン500では、まず風向変更
板群位置設定ステツプ501にて求められる作動量
は、偏差△Tが5℃以上の値であるため、最大の
20mmになる。
Then, proceed to the next temperature control calculation routine 400,
The opening/closing angle of the air mix damper 1d is controlled in accordance with the deviation ΔT at that time, and calculation processing for turning on the compressor and blowing out cold air is executed, and the flow advances to the next blowing direction control calculation routine 500. In this blowing direction control calculation routine 500, first, the operating amount found in the wind direction changing plate group position setting step 501 is the maximum since the deviation △T is a value of 5°C or more.
It will be 20mm.

そして、次の助手席方向吹出判定ステツプ502
に進むが助手席に乗員が着席しているためにその
判定がYESになり、運転席及び助手席吹出指令
ステツプ503に進んで、アクチユエータ16,1
7に指令信号を発し、各々20mmのストロークにな
るようアクチユエータを駆動させ、運転席及び助
手席に集中的に吹出させる。
Then, the next step 502 is to determine air flow toward the passenger seat.
However, since a passenger is seated in the front passenger seat, the determination becomes YES, and the flow advances to step 503 for blowing out the air from the driver's seat and front passenger seat, where the actuators 16 and 1 are
A command signal is issued to 7 to drive the actuator so that each has a stroke of 20 mm, and blows air intensively to the driver's and passenger's seats.

次に左後席方向吹出判定ステツプ505へ進むが
乗員が前席2人であるため、判定はNOとなり、
次の右後席方向吹出判定ステツプ508へ進むが同
じく判定はNOとなり、各々左・右後席方向吹出
一定指令ステツプ506、509へ進んで、アクチユエ
ータ18,19に最小作動量Soの指令信号を送
り、リヤクーラの作動にかかわらずリヤクーラの
吹出の後席を避けた方向とするようにアクチユエ
ータを駆動させ、吹出方向制御演算ルーチン500
の1回の演算処理を終了してブロワ速度制御演算
ルーチン300にもどる。
Next, the process proceeds to step 505 for determining airflow in the left rear seat direction, but since there are two occupants in the front seat, the determination is NO.
The process proceeds to the next step 508 for determining airflow in the right rear seat direction, but the judgment is also NO, and the process proceeds to steps 506 and 509 for commanding a constant airflow in the left and right rear seat directions, respectively, and sends a command signal for the minimum actuation amount So to the actuators 18 and 19. Air-flow direction control calculation routine 500 drives the actuator so that air from the rear cooler is directed away from the rear seats regardless of whether the rear cooler is in operation or not.
After completing one calculation process, the process returns to the blower speed control calculation routine 300.

以後、このブロワ速度制御演算ルーチン300か
ら吹出方向制御演算ルーチン500への演算処理を
数百msecの周期にて繰返すことにより、前中央
吹出口2Bにおける風向変更板群2bを運転席方
向に、風向変更板群2aを助手席方向にし、ブロ
ワモータ1aの最大回転による最大冷風を運転席
と助手席方向に吹出して集中吹出による冷房を行
なう。なお、リヤクーラからの吹出は零である。
Thereafter, by repeating the calculation process from the blower speed control calculation routine 300 to the blowout direction control calculation routine 500 at a cycle of several hundred milliseconds, the wind direction changing plate group 2b at the front central outlet 2B is moved toward the driver's seat. The change plate group 2a is directed toward the passenger seat, and the maximum amount of cold air generated by the maximum rotation of the blower motor 1a is blown toward the driver's seat and the passenger seat, thereby performing cooling by concentrated blowing. Note that the amount of air blown out from the rear cooler is zero.

その後、車室内温度が順次低下して設定温との
偏差が5℃よりも低くなると、ブロワ速度制御演
算ルーチン300における風量設定ステツプ303にて
求める風量Wが順次小さくなる。従つて、車室内
への冷風吹出量は順次少なくなつていく。それと
共に風向変更板群位置の作動量Sも最大値から順
次小さくなることによつて、集中吹出から、その
吹出方向を徐々に乗員を避けるように変化させて
いく。そして、車室内温度Tsと設定温Trとの偏
差△Tが2℃以内になると風量Wは最小のWo、
約180m3/hとなり、また風向変更板群位置の作
動量も最小値So(約4mm)となり、乗員に直接風
をほとんど与えることなく車室内全体の空調を行
なう。
Thereafter, when the temperature inside the vehicle gradually decreases and the deviation from the set temperature becomes less than 5° C., the air volume W determined in the air volume setting step 303 in the blower speed control calculation routine 300 gradually decreases. Therefore, the amount of cold air blown into the vehicle interior gradually decreases. At the same time, the actuation amount S of the wind direction changing plate group position is also gradually decreased from the maximum value, so that the direction of the airflow is gradually changed from concentrated airflow to avoid the occupant. Then, when the deviation △T between the vehicle interior temperature Ts and the set temperature Tr becomes within 2°C, the air volume W becomes the minimum Wo,
The airflow is approximately 180m 3 /h, and the operating amount of the wind direction changing plate group position is also the minimum value So (approximately 4mm), allowing air conditioning of the entire cabin without providing direct wind to the occupants.

なお、3人あるいは4人の搭乗時には、リヤク
ーラスイツチ8の投入により座席位置に応じ、後
席吹出方向を風向変更板群3a,3b,3c,3
dにより、前席と同様に調節がなされる。
In addition, when three or four people are on board, the rear air conditioner switch 8 is turned on to change the direction of airflow from the rear seats according to the seat position.
d, the adjustment is made in the same way as the front seat.

さらに、温調空気吹出を対象搭乗者の方向にさ
せる集中吹出は車室内高温時のみでなく、車室内
低温時にも行なわれる。すなわち、ステツプ501
に示される特性関係により車室内温度が設定温よ
りも所定温度差以上低い時には、暖風が対象搭乗
者の方向に集中して吹出される。
Furthermore, the concentrated blowing of temperature-adjusted air in the direction of the target passenger is performed not only when the cabin temperature is high, but also when the cabin cabin is cold. i.e. step 501
According to the characteristic relationship shown in , when the vehicle interior temperature is lower than the set temperature by a predetermined temperature difference or more, warm air is blown out in a concentrated manner in the direction of the target passenger.

なお、本発明は上述の実施例に限られるもので
はなく次のような変形を付加して実施することも
できる。
Note that the present invention is not limited to the above-described embodiments, and can be implemented with the following modifications.

(1) 上記実施例のように搭乗している全ての搭乗
者に対して集中吹出と全体吹出との間で吹出方
向を連続調節するほか、特定の搭乗者、例えば
運転者に対する吹出のみ本発明を適用し、他の
吹出に関しては搭乗者の手動調節が可能なよう
に公知の手動切替機構を採用してもよい。
(1) In addition to continuously adjusting the blowing direction between concentrated blowing and general blowing for all passengers on board as in the above embodiment, the present invention only blows blowing to a specific passenger, such as the driver. may be applied, and a known manual switching mechanism may be employed to enable manual adjustment by the passenger for other blowouts.

(2) 空調ユニツト1は上記実施例のようにいわゆ
るエアミツクス型のものを使用するほか、エバ
ポレータとその下流に配置したヒータコアと、
そのヒータコアを通るエンジン冷却水の量を調
節する弁機構とからなる、いわゆるリヒート型
のものを使用してもよい。
(2) The air conditioning unit 1 uses a so-called air mix type unit as in the above embodiment, and also includes an evaporator and a heater core located downstream of the evaporator.
A so-called reheat type heater may also be used, which includes a valve mechanism that adjusts the amount of engine cooling water passing through the heater core.

(3) 搭乗者方向への吹出量が安定化とともに比例
して減少する場合について述べたが、これを段
階的に行つてもよく、ステツプ変化させてもよ
い。また室温が所定の安定領域に到達したと
き、変更アクチユエータ16〜19に徐々に変
化する作動量Sを示す指令信号を作り出して与
え、変更板2a〜2d,3a〜3dを動かすよ
うにしてもよい。
(3) Although the case has been described in which the amount of air blown toward the passenger decreases proportionally as it stabilizes, this may be done in stages or may be changed in steps. Furthermore, when the room temperature reaches a predetermined stable region, a command signal indicating a gradually changing actuation amount S may be generated and given to the change actuators 16 to 19 to move the change plates 2a to 2d and 3a to 3d. .

以上のごとく本発明によれば、車室温度と目標
温度との偏差が大きい時には、対象乗員には温度
調節された風が直接当たるため、平均的な車室温
度が目標温度と大きく違つていても乗員は快適な
冷房あるいは暖房感を得ることができる。
As described above, according to the present invention, when the deviation between the cabin temperature and the target temperature is large, the temperature-controlled air directly hits the target occupant, so that the average cabin temperature is not significantly different from the target temperature. However, the occupants can enjoy a comfortable feeling of cooling or heating.

また、上記偏差が小さい安定状態では、乗員の
周囲空気温度も目標値付近になつているため、乗
員に対する風の吹出し状態を直接的なものから間
接的吹出し状態にするため、長時間にわたつて直
接風が当たることによる不快感を防止している。
In addition, in a stable state where the above deviation is small, the ambient air temperature around the occupants is around the target value, so in order to change the air blowing state from direct to indirect air blowing to the occupants, the air temperature is This prevents discomfort caused by direct wind.

このように本発明では、室温が設定温に近づい
てゆく過渡時から、温度制御により室温が設定温
に維持される定常時にわたつて、吹出方向を搭乗
者方向から搭乗者以外の方向へと変化させること
により、搭乗者に対して急冷感または急暖感およ
び安定した空調感を自動的に選択して与え得ると
いう優れた効果がある。
In this way, in the present invention, the blowing direction is changed from the direction towards the passenger to the direction other than the passenger from a transient period when the room temperature approaches the set temperature to a steady state when the room temperature is maintained at the set temperature by temperature control. By doing so, there is an excellent effect that a rapid cooling sensation or rapid heating sensation and a stable air conditioning sensation can be automatically selected and given to the passenger.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す全体構成図、
第2図は第1図中のモータ駆動回路図14,15
の詳細構成図、第3図は第1図中の変更アクチユ
エータ16,17,18,19の詳細構成図、第
4図は第1図中のマイクロコンピユータの制御プ
ログラムによる全体の演算処理を示す演算流れ
図、第5図は第4図中のブロワ速度制御演算ルー
チンの詳細な演算処理を示す演算流れ図、第6図
は第4図中の吹出方向制御演算ルーチンの詳細な
演算処理を示す演算流れ図である。 1……空調ユニツト、2a,2b,2c,2
d,3a,3b,3c,3d……変更手段を構成
する風向変更板群、4……リヤクーラユニツト、
9……温度設定器、10……室温センサ、12,
16,17,18,19……制御手段をなすマイ
クロコンピユータ12と変更アクチユエータ。
FIG. 1 is an overall configuration diagram showing an embodiment of the present invention;
Figure 2 is the motor drive circuit diagram 14 and 15 in Figure 1.
FIG. 3 is a detailed configuration diagram of the change actuators 16, 17, 18, and 19 in FIG. 1, and FIG. FIG. 5 is a calculation flowchart showing detailed calculation processing of the blower speed control calculation routine in FIG. 4, and FIG. 6 is a calculation flowchart showing detailed calculation processing of the blowing direction control calculation routine in FIG. 4. be. 1...Air conditioning unit, 2a, 2b, 2c, 2
d, 3a, 3b, 3c, 3d... wind direction changing plate group constituting the changing means, 4... rear cooler unit,
9...Temperature setting device, 10...Room temperature sensor, 12,
16, 17, 18, 19... Microcomputer 12 and change actuator forming control means.

Claims (1)

【特許請求の範囲】 1 車室内の現実の温度を検出する室温センサ、
車室内の目標温度を設定する温度設定手段、およ
び前記車室内の現実の温度を前記目標温度に接近
せしめる温度調節を行なう温度調節手段とを有
し、この温度調節手段にて調節された空気を車室
内に送出するようにした自動車用空調制御装置に
おいて、 車室内へ送出する調節空気の吹出方向を、対象
搭乗者の方向を含む第1の吹出方向と対象搭乗者
の方向を含まない第2の吹出方向との間で、変更
する吹出方向変更手段と、 前記温度設定手段にて設定された目標温度と前
記室温センサにて検出された車室温度との偏差を
演算し、この偏差が大きい時は、前記吹出方向変
更手段を前記第1の方向に変更せしめるととも
に、 前記偏差が小さくなると前記吹出方向変更手段
を前記第2の方向に変更せしめる制御信号を出力
する吹出方向制御手段と を備えることを特徴とする自動車用空調制御装
置。
[Claims] 1. A room temperature sensor that detects the actual temperature inside the vehicle;
It has a temperature setting means for setting a target temperature in the vehicle interior, and a temperature adjustment means for adjusting the temperature so that the actual temperature in the vehicle interior approaches the target temperature, and the air adjusted by the temperature adjustment means is In an air conditioning control device for an automobile, the blowing direction of the conditioned air to be sent into the passenger compartment is divided into a first blowing direction including the direction of the target passenger and a second blowing direction not including the direction of the target passenger. Calculate the deviation between the target temperature set by the temperature setting means and the cabin temperature detected by the room temperature sensor, and if this deviation is large, The blowing direction control means outputs a control signal that changes the blowing direction changing means to the first direction and changes the blowing direction changing means to the second direction when the deviation becomes smaller. An automotive air conditioning control device characterized by:
JP55183289A 1980-12-23 1980-12-23 Air conditioning controller for car Granted JPS57107912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55183289A JPS57107912A (en) 1980-12-23 1980-12-23 Air conditioning controller for car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55183289A JPS57107912A (en) 1980-12-23 1980-12-23 Air conditioning controller for car

Publications (2)

Publication Number Publication Date
JPS57107912A JPS57107912A (en) 1982-07-05
JPS6324843B2 true JPS6324843B2 (en) 1988-05-23

Family

ID=16133041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55183289A Granted JPS57107912A (en) 1980-12-23 1980-12-23 Air conditioning controller for car

Country Status (1)

Country Link
JP (1) JPS57107912A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932512A (en) * 1982-08-13 1984-02-22 Nissan Motor Co Ltd Car air-conditioner
JPS61122443A (en) * 1984-11-20 1986-06-10 Matsushita Electric Ind Co Ltd Air conditioner
JPS61285340A (en) * 1985-06-13 1986-12-16 Mitsubishi Electric Corp Control device for air-conditioning machine
JPS61285339A (en) * 1985-06-13 1986-12-16 Mitsubishi Electric Corp Control device for air-conditioning machine
JPH07102775B2 (en) * 1985-11-29 1995-11-08 日産自動車株式会社 Automotive air conditioner
CN111731067B (en) * 2020-06-30 2021-11-12 东风汽车有限公司 Active temperature compensation method for automobile air conditioner and electronic equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50102038A (en) * 1974-01-18 1975-08-13
JPS5547915A (en) * 1979-07-06 1980-04-05 Nippon Denso Co Ltd Air conditioning control method for vehicle
JPS5628419B2 (en) * 1976-09-30 1981-07-01

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5166948U (en) * 1974-11-21 1976-05-27
JPS5628419U (en) * 1979-08-13 1981-03-17

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50102038A (en) * 1974-01-18 1975-08-13
JPS5628419B2 (en) * 1976-09-30 1981-07-01
JPS5547915A (en) * 1979-07-06 1980-04-05 Nippon Denso Co Ltd Air conditioning control method for vehicle

Also Published As

Publication number Publication date
JPS57107912A (en) 1982-07-05

Similar Documents

Publication Publication Date Title
JPS588422A (en) Controller for air conditioning of automobile
JPS635290B2 (en)
JPS6247727B2 (en)
JP2780060B2 (en) Vehicle air conditioning controller
JPS628327B2 (en)
JPS6228006B2 (en)
JPH0424246B2 (en)
JPS6324843B2 (en)
JPS6220456B2 (en)
JP2579514B2 (en) Vehicle air conditioning controller
JPS6233969B2 (en)
JPH05240497A (en) Device for air conditioning for vehicle
JPS5826618A (en) Car air conditioner controlling device
JP3235104B2 (en) Automotive air conditioners
JP3690026B2 (en) Air conditioner for vehicles
JPS59160617A (en) Controller of air conditioner for automobile
JPH0757565B2 (en) Air conditioning controller for automobile
JPS63484Y2 (en)
JPS6224285B2 (en)
JPS6238165B2 (en)
JPH1148742A (en) Air-conditioning device for vehicle
JPS60979Y2 (en) Vehicle air conditioner
JP3239495B2 (en) Air conditioner
JPS6230932B2 (en)
JPS6315164B2 (en)