JPS63248394A - Production of nucleic acid-relating substance - Google Patents

Production of nucleic acid-relating substance

Info

Publication number
JPS63248394A
JPS63248394A JP8399887A JP8399887A JPS63248394A JP S63248394 A JPS63248394 A JP S63248394A JP 8399887 A JP8399887 A JP 8399887A JP 8399887 A JP8399887 A JP 8399887A JP S63248394 A JPS63248394 A JP S63248394A
Authority
JP
Japan
Prior art keywords
genus
brevibacterium
dna
nucleic acid
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8399887A
Other languages
Japanese (ja)
Other versions
JP2545078B2 (en
Inventor
Tatsuro Fujio
達郎 藤尾
Ryoichi Katsumata
勝亦 瞭一
Takeshige Hagiwara
萩原 健茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KH Neochem Co Ltd
Original Assignee
Kyowa Hakko Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Hakko Kogyo Co Ltd filed Critical Kyowa Hakko Kogyo Co Ltd
Priority to JP62083998A priority Critical patent/JP2545078B2/en
Publication of JPS63248394A publication Critical patent/JPS63248394A/en
Application granted granted Critical
Publication of JP2545078B2 publication Critical patent/JP2545078B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1077Pentosyltransferases (2.4.2)

Abstract

PURPOSE:To obtain a nucleic acid-relating substance in high efficiency at a low cost, by culturing a microbial strain belonging to Corynebacterium genus or Brevibacterium genus and containing a recombinant DNA of a vector DNA and a DNA fragment containing gene of APTase. CONSTITUTION:A microbial strain belonging to Corynebacterium genus or Brevibacterium genus is transformed with a recombinant DNA derived from (A) a DNA fragment containing gene (hereinafter called as purF) of amidophosphoribosyl transferase (APTase) which is an enzyme participating in biosynthesis of purine nucleotide, preferably a DNA fragment containing purF originated from bacterium belonging to Escherichia genus, Corynebacterium genus or Brevibacterium genus and (B) a vector DNA which can be proliferated in bacterial cell of Corynebacterium genus or Brevibacterium genus by autonomous replication. The obtained transformant is cultured in a medium to obtain nucleic acid-relating substances such as inosine, 5'-inosinic acid and 5'-xanthylic acid.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はプリンヌクレオチド生合成に関与する酵素であ
るアミドフォスフォリボシル・トランスフェラーゼ(E
 C2,4,2,14、以下APTa s eと称する
こともある)の合成に関与する遺伝子を含むDNA断片
とベクターDNAとの組換え体DNAを用いて、コリネ
バクテリウム属またはブレビバクテリウム属に属する微
生物を形質転換し、得られる形質転換株を培地に培養し
、培養物中にイノシン、5′−イノシン酸、5′−キサ
ンチル酸などの核酸関連物質を生成蓄積させ、該培養物
から該核酸関連物質を採取する核酸関連物質の製造法に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to amidophosphoribosyl transferase (E), an enzyme involved in purine nucleotide biosynthesis.
Using a recombinant DNA of a DNA fragment containing a gene involved in the synthesis of C2,4,2,14 (hereinafter sometimes referred to as APTase) and vector DNA, a gene of the genus Corynebacterium or Brevibacterium spp. The resulting transformed strain is cultured in a medium, and nucleic acid-related substances such as inosine, 5'-inosinic acid, and 5'-xanthylic acid are produced and accumulated in the culture, and the resulting transformed strain is cultured in a culture medium. The present invention relates to a method for producing a nucleic acid-related substance by collecting the nucleic acid-related substance.

核酸関連物質は、調味料、医薬品原料として有用である
ことから、本発明は食品および医薬品工業の分野に属す
る。
Since nucleic acid-related substances are useful as seasonings and pharmaceutical raw materials, the present invention belongs to the field of food and pharmaceutical industries.

従来の技術 核酸関連物質の製造法としては、リボ核酸を分解する方
法、発酵生産した前駆物質を合成法により目的物質に変
換する方法、微生物により直接発酵生産する方法などが
知られている。発酵法で核酸関連物質を生産する方法に
ついては、野生株から誘導された突然変異株を用いる方
法が知られている。たとえば5′−イノシン酸生産性変
異株(特公昭58−46319)、5’−キサンチル酸
生産性変異株(特開昭60156399)などを用いる
方法が知られている。
Conventional techniques Known methods for producing nucleic acid-related substances include a method of decomposing ribonucleic acid, a method of converting a fermented precursor into a target substance by a synthetic method, and a method of direct fermentation production using microorganisms. As a method for producing nucleic acid-related substances by fermentation, a method using a mutant strain derived from a wild strain is known. For example, methods using 5'-inosinic acid-producing mutant strains (Japanese Patent Publication No. 58-46319), 5'-xanthylic acid-producing mutant strains (Japanese Patent Application Laid-Open No. 60156399), etc. are known.

発明が解決しようとする問題点 従来法によるイノシン、イノシン酸、キサンチル酸など
の核酸関連物質の生産は必ずしも満足すべきものではな
く、調味料、医薬品原料として重要なこれら核酸関連物
質をより高収率で安価に製造する方法の開発が望まれて
いる。
Problems to be Solved by the Invention The production of nucleic acid-related substances such as inosine, inosinic acid, and xanthylic acid by conventional methods is not necessarily satisfactory. It is desired to develop a method for manufacturing it at low cost.

問題点を解決するための手段 本発明者は微生物を用いる核酸関連物質の生産において
、従来の突然変異の付与による育種とは全く異なる、組
換えDNA技法による核酸関連物質生産菌株の育種方法
について研究を重ねた。その結果、核酸関連物質の生合
成に係る酵素であるAPTa s eの遺伝子(以下p
urFと略記することがある)を含むDNA断片とベク
ターDNAとの組換え体DNAを保有させた菌株が核酸
関連物質の高い生産性を存することを見い出し、本発明
を完成するに至った。
Means for Solving the Problems In the production of nucleic acid-related substances using microorganisms, the present inventor conducted research on a method of breeding nucleic acid-related substance-producing strains using recombinant DNA techniques, which is completely different from the conventional breeding by imparting mutations. layered. As a result, the gene for APTa se, an enzyme involved in the biosynthesis of nucleic acid-related substances (hereinafter p
The present inventors have discovered that a strain containing a recombinant DNA of a DNA fragment containing vector DNA (sometimes abbreviated as urF) has high productivity of nucleic acid-related substances, and has completed the present invention.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は、微生物のAPTa s eの合成に関与する
遺伝情報を担うD N A断片とベクターDNAとの組
換え体DNAを保有し、コリネバクテリウム属またはブ
レビバクテリウム属に属し、かつ核酸関連物質を生産す
る能力を有する微生物を培地に培養し、培養物中に核酸
関連物質を生成蓄積させ、該培養物から該核酸関連物質
を採取することを特徴とする核酸関連物質の製造法を提
供する。
The present invention possesses a recombinant DNA of a DNA fragment carrying genetic information involved in the synthesis of APTase of a microorganism and a vector DNA, belongs to the genus Corynebacterium or the genus Brevibacterium, and is associated with nucleic acids. Provided is a method for producing a nucleic acid-related substance, which comprises culturing a microorganism capable of producing the substance in a medium, producing and accumulating a nucleic acid-related substance in the culture, and collecting the nucleic acid-related substance from the culture. do.

該核酸関連物質としては、イノシン、イノシン酸または
キサンチル酸などがあげられる。
Examples of the nucleic acid-related substance include inosine, inosinic acid, and xanthylic acid.

本発明に用いるAPTaseの遺伝子(p u r F
)を含むDNA断片としては原核生物、バクテリオファ
ージまたはプラスミドに由来するものが用いられるが、
なかでも細菌特にエシェリヒア属、コリネバクテリウム
属またはブレビバクテリウム属に属する細菌由来のpu
rFを含むDNA断片が好適に用いられる。具体的には
大腸菌K12株の染色体DNA由来のpurFを含むD
NA断片があげられる。
APTase gene used in the present invention (pur F
) are derived from prokaryotes, bacteriophages, or plasmids, but
Among them, pu derived from bacteria, especially those belonging to the genus Escherichia, Corynebacterium or Brevibacterium.
A DNA fragment containing rF is preferably used. Specifically, D containing purF derived from the chromosomal DNA of E. coli K12 strain
NA fragments are listed.

本発明に用いるベクターとしてはコリネバクテリウム属
またはブレビバクテリウム属菌種内で自律増殖できるも
のであればいずれも用いることができる。具体的にはp
CGI、pCG2、pcc、1pcG11、pCE52
、pCE53、pCE54などが好適に用いられる。こ
れらベクターについては特開昭5’l−134500、
特開昭57 183799、特開昭58−35197 
、特開昭58−105999、特開昭58−12678
9、特開昭59−156292にそれぞれ記載されてい
る。
Any vector that can be used in the present invention can be used as long as it can autonomously proliferate within a species of the genus Corynebacterium or Brevibacterium. Specifically, p
CGI, pCG2, pcc, 1pcG11, pCE52
, pCE53, pCE54, etc. are preferably used. Regarding these vectors, see JP-A-5'1-134500;
Japanese Patent Application Publication No. 183799, Japanese Patent Application Publication No. 58-35197
, JP-A-58-105999, JP-A-58-12678
9 and JP-A No. 59-156292, respectively.

purFを含む供与体DNAとベクターD N Aとの
組換え体DNAは、試験管内で両DNAを制限酵素で切
断した後、D N A IJガーゼで再連結反応した後
、この結合反応混合物を用いて、purFを欠失したコ
リネバクテリウム属またはブレビバクテリウム属閑種を
形質転換し、欠損形質が相補された形質転換株を選択す
ることによって得ることができる。コリネバクテリウム
属またはブレビバクテリウム属菌種で直接組換え体DN
Aを選択するかわりに、たとえば大腸菌のような既に遺
伝子組換え技法が確立している宿主−ベクター系を用い
てpurFを分離し、しかる後にコリネバクテリウム属
またはブレビバクテリウム属菌種にてこの分離遺伝子を
発現させることもできる。すなわち、purFの供与体
DNAを、大腸菌とコリネバクテリウム属またはブレビ
バクテリウム属閑種とのシャトルベクターDNAと試験
管内で結合反応させ、この反応混合物を用い、purF
が欠損した大腸菌の変異株を形質転換する。ついで、欠
損形質が相補された形質転換株を選択し、この形質転換
株から組換え体プラスミドを単離する。
The recombinant DNA of the donor DNA containing purF and the vector DNA was obtained by cutting both DNAs with restriction enzymes in a test tube, religating them with DNA IJ gauze, and then using this ligation reaction mixture. It can be obtained by transforming a Corynebacterium genus or Brevibacterium genus mutant lacking purF, and selecting a transformed strain in which the defective trait is complemented. Directly recombinant DN with Corynebacterium or Brevibacterium species
Instead of selecting A, purF can be isolated using a host-vector system for which recombinant techniques are already established, such as E. coli, and then purified in Corynebacterium or Brevibacterium spp. Separate genes can also be expressed. That is, the donor DNA of purF is subjected to a binding reaction in a test tube with the shuttle vector DNA of Escherichia coli and Corynebacterium or Brevibacterium genus, and this reaction mixture is used to generate purF
Transform a mutant strain of E. coli that is defective. Then, a transformant strain in which the defective trait has been complemented is selected, and a recombinant plasmid is isolated from this transformant strain.

この組換え体プラスミドを用いてコリネ只りテリウム属
またはブレビバクテリウム属菌種を形質転換し、形質転
換株を選択分離することによっても目的とする組換え体
DNAを取得できる。大腸菌とコリネバクテリウム属ま
たはブレビバクテリウム属菌種とのシャトルベクターと
してはpCE52、pCE53、pCE54などが使用
できる。
The desired recombinant DNA can also be obtained by transforming a Corynebacterium or Brevibacterium species using this recombinant plasmid and selectively separating the transformed strain. pCE52, pCE53, pCE54, etc. can be used as shuttle vectors between E. coli and Corynebacterium or Brevibacterium species.

本発明の宿主微生物としては、コリネバクテリウム属ま
たはブレビバクテリウム属に属しDNA取込み能を有す
る微生物であれば、野生株の他に薬剤耐性、栄養要求性
などの性質を有する変異株、核酸関連物質生産性を有す
るまたは失った変異株など、いかなる菌株を用いてもよ
い。好適にはブレビバクテリウム・アンモニアゲネスΔ
TCC6872や、この菌株を親株として変異誘導され
た核酸関連物質生産菌株たとえば5′−イノシン酸生産
菌ブレビバクテリウム・アンモニアゲネスKY1318
4  (FERM  P−3790)、5’−キサンチ
ル酸生産菌ブレビバクテリウム・アンモニアゲネスΔT
CC21075、イノシン生産菌ブレビバクテリウム・
アンモニアゲネス^TCC21477などがあげられる
The host microorganisms of the present invention include wild strains, mutant strains having properties such as drug resistance and auxotrophy, and nucleic acid-related microorganisms that belong to the genus Corynebacterium or Brevibacterium and have DNA uptake ability. Any strain may be used, including mutant strains that have or have lost substance productivity. Preferably Brevibacterium ammoniagenes Δ
TCC6872 and nucleic acid-related substance producing strains mutated using this strain as a parent strain, such as 5'-inosinic acid producing bacterium Brevibacterium ammoniagenes KY1318
4 (FERM P-3790), 5'-xanthylic acid producing bacterium Brevibacterium ammoniagenes ΔT
CC21075, inosine-producing bacterium Brevibacterium
Examples include ammoniagenes^TCC21477.

微生物の形質転換法として、特開昭57−186492
にコリネバクテリウム属またはブレビバクテリウム属に
属する微生物の形質転換法について報告がある。しかし
、本発明で宿主微生物として好適に用いることができる
ブレビバクテリウム・アンモニアゲネスは、ブレビバク
テリウム属に属してはいるものの、他のブレビバクテリ
ウム属菌種、たとえばブレビバクテリウム・フラバムな
どとは、染色体DNAの相同性が明らかに異なる〔イン
ターナショナル・ジャーナル・オブ・システマティ、l
り・バクテリウムジ−(Int、 J、 Sys、 B
acteriol、 )■、 131 、  (198
1) 〕ため、従来の遺伝子組換え技法においては、宿
主微生物としては利用されていない。本発明により、ブ
レビバクテリウム・アンモニアゲネスを宿主微生物とし
て用いる遺伝子組換え技法が確立した点で、本発明はさ
らに有用である。
As a method for transforming microorganisms, JP-A-57-186492
A method for transforming microorganisms belonging to the genus Corynebacterium or Brevibacterium has been reported. However, although Brevibacterium ammoniagenes, which can be suitably used as a host microorganism in the present invention, belongs to the genus Brevibacterium, it is different from other species of Brevibacterium, such as Brevibacterium flavum. have clearly different chromosomal DNA homology [International Journal of Systematics, l.
Bacterium di(Int, J, Sys, B
acteriol, )■, 131, (198
1)], therefore, they are not used as host microorganisms in conventional genetic recombination techniques. The present invention is further useful in that it establishes a genetic recombination technique using Brevibacterium ammoniagenes as a host microorganism.

宿主微生物の組換え体DNAによる形質転換は(])培
養細胞からのプロトプラストの調製、(2)組換え体D
NAによるプロトプラストの形質転換処理、(3)プロ
トプラストの正常細胞への復帰再生と形質転換株の選択
からなる工程にて行われる。具体的方法をブレビバクテ
リウム・アンモニアゲネスを用いた例により以下に示す
Transformation of host microorganisms with recombinant DNA involves (]) preparation of protoplasts from cultured cells, (2) recombinant D
The process consists of transformation of protoplasts with NA, (3) regeneration of protoplasts into normal cells, and selection of transformed strains. A specific method will be shown below using an example using Brevibacterium ammoniagenes.

(1)培養細胞からのプロトプラストの調製プロトプラ
ストの調製は微生物を細胞壁の合成が阻害される条件下
で増殖させ、この培養細胞に高張液中でリゾチームある
いはアクロモペプチダーゼなどを作用させて、細胞壁を
溶解除去することによって行われる。栄養細胞を得るた
めに使用する培地は、ブレビバクテリウム・アンモニア
ゲネスが生育できるものであればいずれでも使用できる
。たとえばNB培地(第1表)のような完全栄養培地や
、GI培地(第2表)のような半合成培地などが使用で
きる。
(1) Preparation of protoplasts from cultured cells To prepare protoplasts, microorganisms are grown under conditions that inhibit cell wall synthesis, and the cultured cells are treated with lysozyme or achromopeptidase in a hypertonic solution to form cell walls. This is done by dissolving and removing. Any medium that can grow Brevibacterium ammoniagenes can be used to obtain vegetative cells. For example, a complete nutrient medium such as NB medium (Table 1) or a semi-synthetic medium such as GI medium (Table 2) can be used.

第1表 粉末ブイヨン       20g/j!酵母エキス 
     5 g/f! pH7,2 第   2   表 グルコース        15g/j!(NH4)2
SO,8g/n 尿    素             1.2g/β
酵母エスキ         1.2g/βKH2P0
.         0.5g/IK28P0.   
      0.5g/βMg5O,・7820   
  0.1g/、i!Fe50.・7H202mg/j
! Z n S 04 ・7 HzO1mg/ j!Mn 
S○−’46H201mg/j ビオチン     0.1mg/β サイアミン塩酸塩      2mg/βパントテン酸
カルシウム  IO+mg/j!アデニン    10
0mg/ R グアニン    100mg/j+ pH7,2 この培地にブレビバクテリウム・アンモニアゲネスを接
種し、20−40℃にて通気撹拌条件下で培養する。培
地の吸光度(OD)を比色計にて経時的に測定し、菌の
対数増殖期の初期(ODが0.1〜0.15に達したと
き)に細胞壁合成阻害剤を添加する。細胞壁合成を阻害
する薬剤としては、ペニシリン、グリシンなどを使用す
ることができる。これら薬剤の使用量は、微生物の生育
を半ば抑制する濃度もしくはそれ以下が望ましく、ペニ
シリンの場合には培養液中に0.1〜2.OU/m1程
度、またグリシンの場合にはlO〜49mg/m1程度
の濃度になるよ程度添加する。薬剤添加後さらに培養を
続け、数世代増殖させて栄養細胞を得る。
Table 1 Powder bouillon 20g/j! yeast extract
5 g/f! pH7.2 Table 2 Glucose 15g/j! (NH4)2
SO, 8g/n Urea 1.2g/β
Yeast eski 1.2g/βKH2P0
.. 0.5g/IK28P0.
0.5g/βMg5O, 7820
0.1g/, i! Fe50.・7H202mg/j
! Z n S 04 ・7 HzO1mg/j! Mn
S○-'46H201mg/j Biotin 0.1mg/β Thiamine hydrochloride 2mg/β Calcium pantothenate IO+mg/j! adenine 10
0mg/R Guanine 100mg/j+ pH 7,2 Brevibacterium ammoniagenes is inoculated into this medium and cultured at 20-40°C under aeration and stirring conditions. The optical density (OD) of the medium is measured over time using a colorimeter, and a cell wall synthesis inhibitor is added at the beginning of the logarithmic growth phase of the bacteria (when the OD reaches 0.1 to 0.15). Penicillin, glycine, etc. can be used as drugs that inhibit cell wall synthesis. The amount of these drugs to be used is preferably a concentration that partially suppresses the growth of microorganisms or less, and in the case of penicillin, 0.1 to 2. It is added to a concentration of about OU/ml, and in the case of glycine, it is added to a concentration of about 10 to 49 mg/ml. After adding the drug, the culture is continued and the cells are grown for several generations to obtain vegetative cells.

培養液から栄養細胞を集菌し、培地および高張液にて洗
浄したのち、それぞれの高張培地に懸濁し、溶菌酵素処
理を行う。洗浄に用いる培地としては前記のNB培地、
GI培地などが使用でき、高張液としてはP3高張液(
第3表)が使用できる。
The vegetative cells are collected from the culture solution, washed with a medium and a hypertonic solution, suspended in the respective hypertonic medium, and treated with a lytic enzyme. The medium used for washing is the above-mentioned NB medium,
GI medium etc. can be used, and the hypertonic solution is P3 hypertonic solution (
Table 3) can be used.

第   3   表 NaC170mM MgCI2   5mM CaCL    5nnM スルホン酸 ソルビトール          1.6MpH7,6 また高張培地としては栄養培地、半合成培地、最少培地
などに高張化薬剤として0.25−0.6 Mンユクロ
ース、0.3−0.7Mコハク酸2ナトリウム、0.4
−2.0 Mソルビトールのいずれかを添加したもの、
あるいはP3高張液などを用いることができる。溶菌酵
素処理は、卵白リゾ−チームあるいはアクロモペプチダ
ーゼなどをいずれも0.1−5.0mg/ml程度の濃
度となるように添加し、30−40℃にて5−20時間
保持する。プロトプラストの生成は光学顕微鏡で観察す
ることにより、球型の細胞として確認することができる
Table 3 NaC 170mM MgCI2 5mM CaCL 5nnM Sorbitol sulfonate 1.6M pH 7,6 In addition, as a hypertonic medium, nutrient medium, semi-synthetic medium, minimal medium, etc. may contain 0.25-0.6 M Nucrose, 0.3-M as a hypertonic agent. 0.7M disodium succinate, 0.4
- supplemented with either 2.0 M sorbitol,
Alternatively, P3 hypertonic solution or the like can be used. In the lytic enzyme treatment, egg white lysozyme or achromopeptidase is added to a concentration of about 0.1-5.0 mg/ml, and the mixture is kept at 30-40°C for 5-20 hours. The production of protoplasts can be confirmed as spherical cells by observing with an optical microscope.

このようにして調製したプロトプラストは、高張寒天培
地上において生育してコロニーを形成し、栄養細胞に再
生する。再生を行わせるためには、通常3日から20日
間、20−40℃に保つ。高張寒天培地としては、栄養
培地、半合成培地、最少培地などに0.25−0.6M
のシュクロースまたは0.3−0.7 Mのコハク酸2
ナトリウムおよび寒天(ディフコ社製)14g/j!を
添加したものなどが用いられる。
The protoplasts thus prepared grow on a hypertonic agar medium to form colonies and regenerate into vegetative cells. In order to perform regeneration, it is usually kept at 20-40°C for 3 to 20 days. As a hypertonic agar medium, 0.25-0.6M can be used as a nutrient medium, semi-synthetic medium, minimal medium, etc.
of sucrose or 0.3-0.7 M succinic acid 2
Sodium and agar (manufactured by Difco) 14g/j! Added products are used.

(2)組換え体DNAによるプロトプラストの形質転換
処理 プロトプラストの組換え体DNAによる形質転換は、細
胞がプロトプラスト状態を保持できる高張液中でプロト
プラストと組換え体DNAとを混合し、これにDNA取
込み媒介作用のあるポリエチレングリコール(PEG、
平均分子量1,540−6.000)と2価金属陽イオ
ンを加えて処理することによって行われる。高張条件を
与える安定化剤としては、微生物のプロトプラストの保
持に一般に使われるものでよく、たとえばシュクロース
、コハク酸2ナトリウム:ソルビトールなどを用いるこ
とができる。PEGの使用可能な濃度範囲は最終濃度で
5−60%である。2価金属陽イオンとしては、たとえ
ばCa”、y、 g2−1Mn”、Ba2−1Sr”−
などが最終濃度1−100mMの範囲において効果的で
、単独使用あるいは併用することができる。
(2) Transformation of protoplasts with recombinant DNA Transformation of protoplasts with recombinant DNA involves mixing protoplasts and recombinant DNA in a hypertonic solution that allows cells to maintain their protoplast state, and then incorporating the DNA into the mixture. Polyethylene glycol (PEG,
average molecular weight 1,540-6.000) and divalent metal cations. Stabilizers that provide hypertonic conditions may be those commonly used to maintain protoplasts of microorganisms, such as sucrose, disodium succinate: sorbitol, and the like. The usable concentration range for PEG is 5-60% final concentration. Examples of divalent metal cations include Ca'', y, g2-1Mn'', Ba2-1Sr''-
etc. are effective at a final concentration of 1-100 mM and can be used alone or in combination.

処理の温度は0−25℃が好適である。The temperature of the treatment is preferably 0-25°C.

(3)プロトプラストの正常細胞への復帰再生と形質転
換株の選択 プロトプラストの正常細胞への復帰再生と形質転換株の
選択は次のように行う。組換え体DNAを用いて形質転
換処理したプロトプラストの再生は、前記のプロトプラ
ストの再生と同様に高張寒天培地上において行う。形質
転換株は却換え体DNAに由来する遺伝子が菌に付与す
る形質について選択することによって取得できる。この
特徴的形質獲得に基づく選択は、高張寒天培地上で再生
と同時に行ってもよい。また、一旦非選択的に再生させ
てから再生正常細胞を集め通常の低張寒天培地上で選択
を行ってもよい。
(3) Regeneration of protoplasts into normal cells and selection of transformed strains Regeneration of protoplasts into normal cells and selection of transformed strains are carried out as follows. Regeneration of protoplasts transformed using recombinant DNA is performed on a hypertonic agar medium in the same manner as the regeneration of protoplasts described above. A transformed strain can be obtained by selecting for a trait imparted to the bacterium by a gene derived from the transformant DNA. Selection based on the acquisition of this characteristic trait may be carried out simultaneously with regeneration on hypertonic agar media. Alternatively, after non-selective regeneration, regenerated normal cells may be collected and selected on a normal hypotonic agar medium.

形質転換株は通常の栄養培地に培養することにより、導
入した組換え体DNAの形質を発現させることができる
。組換え体DNAの導入により形質転換株に薬剤耐性な
どの性質が付与されている場合は、その性質にあわせて
培地に薬剤を補給することもある。
The transformed strain can be cultured in an ordinary nutrient medium to express the characteristics of the introduced recombinant DNA. If the transformed strain is endowed with properties such as drug resistance due to the introduction of the recombinant DNA, the culture medium may be supplemented with drugs depending on the properties.

このようにして得られた形質転換株を、発酵法による核
酸関連物質製造の際に用いられている培養方法により培
養することによって核酸関連物質を製造することができ
る。すなわち該形質転換株を炭素源、窒素源、無機物、
アミノ酸、ビタミンなどを含をする通常の培地中、好気
的条件下において温度、pHなどを調整しつつ培養を行
えば、培養物中に核酸関連物質が生成蓄積するのでこれ
を採取する。炭素源としては、グルコース、フラクトー
ス、シュクロース、グリセローノベ澱粉、澱粉加水分解
液、糖蜜、糖蜜加水分解物などの炭水化物、グルコン酸
、ピルビン酸、乳酸、酢酸などの各種有機酸、グリ7ン
、グルタミン酸、アラニン、アスパラギン酸などのアミ
ノ酸など、該生産菌が資化可能なものであればいずれも
使用可能である。窒素源としてはアンモニア、塩化アン
モニウム、硫酸アンモニウム、リン酸アンモニウム、硝
酸アンモニウム、炭酸アンモニウム、酢酸アンモニウム
などの各種無機および有機アンモニウム塩、尿素、ペプ
トン、NZ−アミン、肉エキス、酵母エキス、コーンス
チープリカー、カゼイン加水分解物、フィクンユミール
あるいはその消化物などの窒素含有有機物、グリシン、
グルタミン酸などの各種アミノ酸など種々のものが使用
できる。1@機物としてはリン酸第−カリウム、リン酸
第二カリウム、硫酸マグネシウム、リン酸マグネシウム
、塩化ナトリウム、硫酸第−扶、硫酸マンガン、硫酸亜
鉛、炭酸カルシウムなどを用いろことができる。さらに
、用いる菌がアミノ酸、核酸、ビタミンなど特定の栄養
素を生育に要求する場合には、培地にこれらの物質を適
当量添加するが、前記したような池の培地成分に伴って
培地に供給されれば特に加えなくても良い。
Nucleic acid-related substances can be produced by culturing the thus obtained transformed strain using a culture method that is used for producing nucleic acid-related substances by fermentation. That is, the transformed strain is treated with carbon sources, nitrogen sources, inorganic substances,
If the culture is carried out under aerobic conditions in a normal medium containing amino acids, vitamins, etc. while adjusting the temperature, pH, etc., nucleic acid-related substances will be generated and accumulated in the culture, which will be collected. Carbon sources include carbohydrates such as glucose, fructose, sucrose, glyceronove starch, starch hydrolyzate, molasses, and molasses hydrolysates, various organic acids such as gluconic acid, pyruvic acid, lactic acid, and acetic acid, glycerol, and glutamic acid. Any amino acid that can be assimilated by the producing bacteria can be used, such as amino acids such as , alanine, and aspartic acid. Nitrogen sources include ammonia, various inorganic and organic ammonium salts such as ammonium chloride, ammonium sulfate, ammonium phosphate, ammonium nitrate, ammonium carbonate, ammonium acetate, urea, peptone, NZ-amine, meat extract, yeast extract, corn steep liquor, casein. Nitrogen-containing organic matter such as hydrolyzate, fikunyumir or its digested product, glycine,
Various amino acids such as glutamic acid can be used. As the material, potassium phosphate, dipotassium phosphate, magnesium sulfate, magnesium phosphate, sodium chloride, potassium sulfate, manganese sulfate, zinc sulfate, calcium carbonate, etc. can be used. Furthermore, if the bacteria used require specific nutrients such as amino acids, nucleic acids, and vitamins for growth, appropriate amounts of these substances are added to the culture medium, but they are not supplied to the culture medium along with the pond culture medium components mentioned above. If so, there is no need to add anything.

培養は振盪培養あるいは通気撹拌培養などの好気的条件
下に行う。培養温度は一般に20−40℃が好適である
。培養期間は通常2−7日である。培地のp Hはアン
モニア水、尿素液、水酸化ナトリウム溶液などで中性付
近に保つことが望ましい。こうようにして培養物中に著
量の核酸関連物質がM債する。培養終了後、イオン交換
樹脂法、吸着法、沈殿法、抽出法などの単独または組合
せにより、培養物から核酸関連物質を回収することがで
きる。
Cultivation is performed under aerobic conditions such as shaking culture or aerated agitation culture. Generally, the culture temperature is preferably 20-40°C. The culture period is usually 2-7 days. It is desirable to keep the pH of the culture medium near neutral using aqueous ammonia, urea solution, sodium hydroxide solution, etc. In this way, significant amounts of nucleic acid-related substances are present in the culture. After completion of the culture, nucleic acid-related substances can be recovered from the culture using ion exchange resin method, adsorption method, precipitation method, extraction method, etc. alone or in combination.

次に実施例を示す。Next, examples will be shown.

実施例1 (1)purFのpCE53へのクローニング大腸菌の
染色体DNAは、大腸菌K 1.2株(エンエリヒア・
コリATCC33525)をバクトドリブトン(ディフ
コ社製)]、[)g/L酵母エキス(ディフコ社製)5
g/C NaC15g/j!を含み、pHを742に調整したし
培地に植菌し、30℃で18時間培養後、得られた培養
菌体からスミスのフェノール抽出法[Sm+th、 M
、 G、 、 ;メソッズ・イン・エンチモロジイ(M
ethods in Enzy+nology)。
Example 1 (1) Cloning of purF into pCE53 The chromosomal DNA of Escherichia coli was obtained from Escherichia coli K1.2 strain (E.
Coli ATCC 33525), Bactodributon (manufactured by Difco)], [) g/L yeast extract (manufactured by Difco) 5
g/C NaC15g/j! After adjusting the pH to 742, the cells were inoculated into a medium, and after culturing at 30°C for 18 hours, Smith's phenol extraction method [Sm+th, M
, G, , ;Methods in Enzymology (M
methods in Enzy+nology).

!2 、Parj A 、 545(1967))に従
い単離した。
! 2, Parj A, 545 (1967)).

pCE53はこのプラスミドを保有する大腸菌12株亜
株MM294(特開昭60−210994号公報参照)
から、該公報記載の方法により分離精製した。
pCE53 is a 12-strain substrain of E. coli MM294 that carries this plasmid (see Japanese Patent Application Laid-Open No. 60-210994).
It was separated and purified by the method described in the publication.

上記で調製した大F%菌K12株の染色体DNA10■
を10mMトリス(ヒドロキシメチル)アミノメタン(
以下トリスと略す)−塩酸(pH7,5) 、100m
M  NaC,i!。
Chromosomal DNA 10 of the K12 strain of F% bacteria prepared above
in 10mM tris(hydroxymethyl)aminomethane (
(hereinafter abbreviated as Tris)-hydrochloric acid (pH 7.5), 100m
M NaC,i! .

7 m M  M g Cl 2および6mM2−メル
カプトエタノールを含む緩衝液(以下Y−100緩衝液
と称する)40Iに溶かし、24単位の制限酵素pst
l(宝酒造社製、以下特記しない限り制限酵素はすべて
宝酒造社製)と20単位の制限酵素BamHIを加え、
37℃で1時間消化反応を行った。その後、65℃、1
0分間の熱処理により反応を停止させた。一方pCE5
3プラスミドDNA3■をY−100緩衝液20m中に
溶かし、12単位のPStlと10単位のBamHIを
加え、37℃で1時間消化反応を行い、65℃、10分
間の熱処理により反応を停止させた。
Dissolved in 40I of a buffer (hereinafter referred to as Y-100 buffer) containing 7mM MgCl2 and 6mM2-mercaptoethanol, and added 24 units of restriction enzyme pst.
1 (manufactured by Takara Shuzo Co., Ltd.; unless otherwise specified, all restriction enzymes are manufactured by Takara Shuzo Co., Ltd.) and 20 units of restriction enzyme BamHI,
Digestion reaction was carried out at 37°C for 1 hour. After that, 65℃, 1
The reaction was stopped by heat treatment for 0 minutes. On the other hand, pCE5
3 Plasmid DNA 3■ was dissolved in 20ml of Y-100 buffer, 12 units of PStl and 10 units of BamHI were added, the digestion reaction was performed at 37°C for 1 hour, and the reaction was stopped by heat treatment at 65°C for 10 minutes. .

両消化物を混合した後、20mMトリス−塩酸(pH7
,6) 、10mM  MgCL、lQmMジチオスレ
イトールおよび0.5mMATPを含む緩衝液(以下T
4DNAリガーゼ緩衡液と称する)120ρおよび3単
位のT4DNA’Jガーゼ(宝酒造社製)を加え4℃、
18時間処理した。このようにして得られたT4DNΔ
リガーゼ反応混合物を用い、purFi損によるヒポキ
サンチン要求性の大腸菌FL−46株をコーエン((:
ohen)らの方法[Cohen et al、、 :
プロシーディング・オブ・ザ・ナショナル・アカデミイ
・オブ・サイエンス(Proc、 Nat l^cad
、 Sci、 )U、 S、 A、 、旦。
After mixing both digests, 20mM Tris-HCl (pH 7)
, 6), a buffer containing 10mM MgCL, 1QmM dithiothreitol and 0.5mM ATP (hereinafter referred to as T
Add 120ρ (referred to as 4DNA ligase buffer) and 3 units of T4DNA'J gauze (manufactured by Takara Shuzo Co., Ltd.) at 4°C.
Treated for 18 hours. T4DNΔ obtained in this way
Cohen ((:
Cohen et al.'s method [Cohen et al.:
Proceedings of the National Academy of Sciences
, Sci, ) U, S, A, , Dan.

2110(1972) )により形質転換し、選択培地
(グルコース2 g、Na2HPO+  6 g−KH
2P 04 3 gSN a C10,5g−NH<C
R1g 、 Mg Sc4・7 H2O0,5g、Ca
Cl2・2H2015mg、サイアミン塩酸塩4mg、
カザミノ酸2g、L−トリプトファン50mg、カナマ
イシン50mgおよび寒天16gを水11に含みp H
7,2に調整した培地)に塗布後、37℃で3日間培養
することによりカナマイシン(50Ag/ml >に耐
性で、かつ宿主が示すヒポキサンチン要求性が相補され
た形質転換株を得た。
2110 (1972)) and transformed with selective medium (glucose 2 g, Na2HPO + 6 g-KH
2P 04 3 gSN a C10,5g-NH<C
R1g, Mg Sc4.7 H2O0.5g, Ca
Cl2・2H2015mg, thiamine hydrochloride 4mg,
2 g of casamino acid, 50 mg of L-tryptophan, 50 mg of kanamycin, and 16 g of agar in 11 parts of water, pH
After coating on a medium adjusted to 7.2, and culturing at 37°C for 3 days, a transformed strain was obtained which was resistant to kanamycin (>50Ag/ml) and complemented the hypoxanthine auxotrophy exhibited by the host.

この形質転換株からプラスミドをアンらの方法CAn、
 G、 et al、 、ジャーナル・オブ・バクテリ
オロジイ(J、Bacteriol、)、 140 .
400(1979))により分離精製しPstlなどの
制限酵素で消化することによりプラスミドの構造解析を
行った。その結果、pCE53のPsll−BamHI
断片に大腸菌に12株の染色体DNA由来の約9kbの
PstI−BamHI DNA断片が挿入された組換え
体プラスミドであることを[812し、このプラスミド
をpEF12と名付けた。pEF 12を用い、大腸菌
FL−46株をコーエンらの方法により再形質転換した
ところ、カナマイシン耐性株として選択される形質転換
株のすべでがヒボキサンチン非要求性となっていた。こ
れらノコとより、pEF 12にpurFがクローン化
されていることが確認された。
From this transformed strain, a plasmid was extracted using the method of Ahn et al.
G. et al., Journal of Bacteriology, 140.
400 (1979)) and was digested with restriction enzymes such as Pstl to analyze the structure of the plasmid. As a result, Psll-BamHI of pCE53
It was determined that this was a recombinant plasmid in which an approximately 9 kb PstI-BamHI DNA fragment derived from the chromosomal DNA of E. coli strain 12 was inserted [812], and this plasmid was named pEF12. When E. coli FL-46 strain was re-transformed using pEF 12 by the method of Cohen et al., all of the transformed strains selected as kanamycin-resistant strains were non-auxotrophic for hyboxanthin. From these results, it was confirmed that purF was cloned into pEF12.

(2)  プラスミドpEF 12のブレビバクテリウ
ム・アンモニアゲネスへの導入 (1)にて分離精製したプラスミドpEF12をブレビ
バクテリウム・アンモニアゲネスΔTCC68j2の形
質転換に供した。
(2) Introduction of plasmid pEF 12 into Brevibacterium ammoniagenes Plasmid pEF12 isolated and purified in (1) was used to transform Brevibacterium ammoniagenes ΔTCC68j2.

形質転換は下記のようにして調製した ATCC6872株のプロトプラストを用いて行った。Transformation was prepared as follows. This was carried out using protoplasts of ATCC6872 strain.

ATCC6872株をNB培地で30℃、16時間振盪
培養し、その種培養液Q、8mlをGII[培地8ml
の入ったL字型試験管に接種し、モノー型振盪培養機を
用いて30℃で振盪培養した。培地の吸光度を東京光電
比色計にて経時的に測定し、対数増殖期の初期く培養時
間約3時間、菌体濃度約108個/mt)に0.3U/
mlになるようにペニシリンGを添加し、さらに3時間
培養を続けた。培養液から菌体を集菌しGII[培地で
洗浄後、2.0mg/ml卵白リゾチーム、0.6mg
/mlアクロモペプチダーゼ含有P3高張液1mlに再
懸濁し、30℃で16時間静置してプロトプラスト化し
た。
ATCC6872 strain was cultured with shaking in NB medium at 30°C for 16 hours, and 8 ml of the seed culture solution Q was mixed with GII [medium 8 ml].
The cells were inoculated into an L-shaped test tube containing a 100-mL tube, and cultured with shaking at 30°C using a mono-type shaking culture machine. The absorbance of the medium was measured over time using a Tokyo Photoden colorimeter, and at the beginning of the logarithmic growth phase, the culture time was about 3 hours, and the bacterial cell concentration was about 108 cells/mt).
ml of penicillin G was added, and the culture was continued for an additional 3 hours. Collect bacterial cells from the culture solution and add GII [after washing with medium, 2.0 mg/ml egg white lysozyme, 0.6 mg
The cells were resuspended in 1 ml of P3 hypertonic solution containing /ml achromopeptidase and allowed to stand at 30°C for 16 hours to form protoplasts.

このプロトプラスト懸濁液Q、5mlを小試験管にとり
2,500xg、  10分間遠心分離し、TSMC緩
衝液(I OmM  Mg(1,,30mM  CaC
C,50mMトリス−塩酸、0.4 M ’/ 、:L
クロース、pH7,5)1mlに再懸濁して遠心洗浄後
、TSMC緩衝液0.1mlに再懸濁した。この懸濁液
にpEF12プラスミドDNA10Agを含むTSMC
3MC緩衝液中lを加えて混和し、次いでTSMC緩衝
液中に20%ポリエチレングリコール(PEG)6.0
00(半井化学薬品社製)を含む液Q、3mlを添加し
て混合した。10分後、GIrlIrl培地2添lし、
2,500Xg、  10分間遠心分離し上澄液を除去
した。沈降したプロトプラストを1mlのG■培地に懸
濁してから、該懸濁液のQ、2mlをカナマイシフ20
0g/mlを含む高張寒天培地(GIII培地に0.5
Mコハク酸2す) IJウム、1.4%寒天を含む)に
塗布し、30℃で14日間培養し、培地上に生育してく
るカナマイシン耐性の形質転換株T−51を得た。得ら
れた形質転換株は、ブレビバクf ’Jウム・アンモニ
アゲネスT−51(FERIJBP−1332>として
、昭和62年 ゲ月3 日付で工業技術院微生物工業技
術研究所(微工研)に寄託されている。
Transfer 5 ml of this protoplast suspension Q to a small test tube, centrifuge at 2,500 xg for 10 minutes, add TSMC buffer (I OmM Mg (1, 30mM CaC
C, 50mM Tris-HCl, 0.4M'/:L
After centrifugal washing, the suspension was resuspended in 0.1 ml of TSMC buffer. TSMC containing 10Ag of pEF12 plasmid DNA in this suspension.
Add 6.0 l in 3MC buffer and mix, then add 20% polyethylene glycol (PEG) 6.0 in TSMC buffer.
3 ml of Solution Q containing 00 (manufactured by Hanui Chemical Co., Ltd.) was added and mixed. After 10 minutes, add 2 liters of GIrlIrl medium,
The mixture was centrifuged at 2,500×g for 10 minutes, and the supernatant was removed. After suspending the precipitated protoplasts in 1 ml of G medium, 2 ml of Q of the suspension was added to Kanamai Schiff 20.
Hypertonic agar medium containing 0 g/ml (0.5
The medium was coated on a medium containing 1.4% agar) and cultured at 30°C for 14 days to obtain a kanamycin-resistant transformant strain T-51 that grew on the medium. The obtained transformed strain was deposited as Brevibacterium f' Jum ammoniagenes T-51 (FERIJBP-1332) at the Institute of Microbial Technology, Agency of Industrial Science and Technology on August 3, 1986. ing.

(3)  ブレビバクテリウム・アンモニアゲネスから
のプラスミドの調製 (2)で得られた形質転換株T −51(FERI、I
BP−7332)からpEF12プラスミドを次のよう
にして単離、精製した。NB培地で30℃、16時間振
盪培養し、その種培養液4mlをG[[培地400ml
に接種し、30℃で振盪培養した。対数増殖期の初期(
菌体濃度108個/m1)に0.3 U/mlになるよ
うにペニシリンGを添加し、さらに5時間培養を続けた
。培養液から菌体を集菌しTES緩衝液(30mM)リ
ス−塩酸、5mMエチレンジアミン4酢酸2ナトリウム
(EDTA)、50mM  NaCf1SpH8,0)
で洗浄後、リゾチーム−アクロモペプチダーゼ液(12
,5%ンxクロース、O,]、M  NaCj!、04
05Mトリス−塩酸、3mg/mlリゾチーム、1mg
/m17クロモベプチダーゼ、p H8,0)で10m
1に懸濁し、37℃で4時間反応させた。反応液に5M
  NaCj!  2.4ml、 0.5M  EDT
A(pH8,0)0.6ml、4%ラウリル硫酸ナトリ
ウムと0.7M  NaCfからなる溶液4.4mlを
順次添加し、緩やかに混和してから氷水中に16時間装
いた。溶菌物全体を遠心分離管に移し、4℃で60分間
69、000 X gの遠心分離を行い上清液を回収し
た。これに重量百分率10%相当のPEG6、000を
加え、静かに混和して溶解後、氷水中に置いた。10時
間後、1.500 x gで10分間遠心分離してペレ
ットを回収した。T8S緩衝液5mlを加えてベレット
を静かに再溶解してから、1.5mg/mlエチジウム
ブロマイド20m1を添加し、これに塩化セシウムを加
えて静かに溶解し密度を1.580に合わせた。
(3) Preparation of plasmid from Brevibacterium ammoniagenes (2) Transformant strain T-51 (FERI, I
BP-7332), the pEF12 plasmid was isolated and purified as follows. Cultured with shaking in NB medium at 30°C for 16 hours, and 4 ml of the seed culture was added to G [[400 ml of medium
and cultured with shaking at 30°C. Early logarithmic growth phase (
Penicillin G was added to give a bacterial cell concentration of 108 cells/ml and 0.3 U/ml, and the culture was continued for an additional 5 hours. Bacterial cells were collected from the culture solution and added to TES buffer (30mM) Lis-HCl, 5mM disodium ethylenediaminetetraacetic acid (EDTA), 50mM NaCf1SpH8,0).
After washing with lysozyme-achromopeptidase solution (12
,5%nxCrose,O,],M NaCj! ,04
05M Tris-HCl, 3mg/ml lysozyme, 1mg
/m17 chromobeptidase, pH 8,0) at 10m
1 and reacted at 37°C for 4 hours. 5M to the reaction solution
NaCj! 2.4ml, 0.5M EDT
0.6 ml of A (pH 8.0) and 4.4 ml of a solution consisting of 4% sodium lauryl sulfate and 0.7 M NaCf were sequentially added, mixed gently, and then placed in ice water for 16 hours. The entire lysate was transferred to a centrifuge tube and centrifuged at 69,000 x g for 60 minutes at 4°C to collect the supernatant. PEG 6,000 equivalent to 10% by weight was added thereto, mixed gently to dissolve, and then placed in ice water. After 10 hours, the pellet was collected by centrifugation at 1.500 x g for 10 minutes. After adding 5 ml of T8S buffer and gently redissolving the pellet, 20 ml of 1.5 mg/ml ethidium bromide was added, and cesium chloride was added thereto and gently dissolved to adjust the density to 1.580.

この溶液を20℃、105.000 X gで40時間
超遠心分離にかけた。この密度勾配遠心により共有結合
で閉じられた環状のDNAは紫外線照射下に遠心チャー
ブ中下方の密度の高いバンドとして見出された。このバ
ンド部分を注射器で遠心チューブの側面から抜き取るこ
とによってpEF 12プラスミドDNAを含む液を分
離した。次いで分離液を等容量のインプロパツール〔容
量百分率、インプロパツール:TBS緩衝液=9+1(
なおこのTBS緩衝液は飽和溶解量の塩化セシウムを含
む)〕で5回処理してエチジウムブロマイドを抽出除去
し、しかる後にTES緩衝液に対して透析した。
This solution was subjected to ultracentrifugation at 20° C. and 105.000×g for 40 hours. The circular DNA covalently closed by this density gradient centrifugation was found as a high-density band in the lower part of the centrifuged tube under ultraviolet irradiation. A liquid containing pEF 12 plasmid DNA was separated by extracting this band portion from the side of the centrifuge tube with a syringe. Next, the separated solution was added to an equal volume of Impropatool [volume percentage, Impropatool: TBS buffer = 9 + 1 (
Note that this TBS buffer solution contains cesium chloride in a saturating amount)] to extract and remove ethidium bromide five times, followed by dialysis against a TES buffer solution.

こうして単離、精製したプラスミドDNAをPstlな
どの制限酵素で消化することによって構造解析を行った
。その結果、(1)で確認したpEF 12と同じ構造
を有していることが確S忍された。
Structural analysis was performed by digesting the thus isolated and purified plasmid DNA with a restriction enzyme such as Pstl. As a result, it was confirmed that it had the same structure as pEF 12 confirmed in (1).

(4)プラスミドのイノシン生産性菌株への導入と、該
形質転換株のAPTa s e活性の測定イノシン生産
能を有するブレビバクテリウム・アンモニアゲネスAT
CC21477を(2)と同様の方法でプロトプラスト
化したのち(3)にて単離、精製した組換え体プラスミ
ドpEF 12を用いて形質転換し、カナマイシン耐性
の形質を有する形質転換株を取得した。
(4) Introduction of plasmid into inosine-producing strain and measurement of APTa se activity of the transformed strain Brevibacterium ammoniagenes AT capable of producing inosine
CC21477 was made into a protoplast in the same manner as in (2), and then transformed using the recombinant plasmid pEF 12 isolated and purified in (3) to obtain a transformant having kanamycin resistance.

ATCC21477および形質転換株 ATCC21477/pEF 12の^PTaseの活
性の測定は公知の方法CJ、 !J、 Lewis a
ndS、 C,tlartman、メソッズ・イン・エ
ンチモロジイ  (Methods  in  Enz
ymology)、   51 .171−178(1
978) :]を若干改変して下記のように実施した。
The PTase activity of ATCC21477 and the transformed strain ATCC21477/pEF 12 was measured using a known method CJ,! J, Lewis a
ndS, C, tlartman, Methods in Enzymology
ymology), 51. 171-178 (1
978) :] was slightly modified and carried out as follows.

活性測定に供する菌株を、10 QmlのGITI培地
を含む50 Qmlの三角フラスコを用いて30℃、1
6時間振盪培養し、得られた菌体を超音波で破砕して溶
菌液を調製した。これを6,000xg、30分間遠心
分離して得た上清を粗酵素液として用い、30mM)I
Jス−塩酸(pH8,0) 、9mM  MgCL 、
16mMフン化カリウム(KF) 、3111Mホスホ
リボシルビロリン酸、12mMグルタミンからなる溶液
0.31Tll中で25℃、5分間反応させた。なおグ
ルタミンを含まないものを対照実験とした。反応終了後
、0,1mlの1.0M酢酸ナトリウム溶液(pH5,
0) 、0.05mlの3mMピクリン酸ナトリウム溶
液、O,!mlの0.1M塩化マンガン溶液を順次加え
た後、1.500xg、5分間遠心分離してベレ:、 
l−を回収した。これにQ、5mlの0.01M塩化マ
ンガン溶液、Q、1mlの10%アセトン溶液を順次加
えて洗浄後、遠心分離してペレットを回収した。このペ
レットに1.ON硫酸1.Qmlを加え、100℃、1
5分間加熱した。冷却後、無機リン測定用アッセイキッ
ト(和光補薬社製)を用いてリンの定量を行い、グルタ
ミン依存性の活性を測定することによりAPTase活
性を求めた。第4表に活性測定結果を示す。
The strain to be subjected to activity measurement was incubated at 30°C for 1 hour using a 50 Qml Erlenmeyer flask containing 10 Qml of GITI medium.
After culturing with shaking for 6 hours, the resulting bacterial cells were disrupted using ultrasound to prepare a lysate. This was centrifuged at 6,000xg for 30 minutes, and the supernatant obtained was used as the crude enzyme solution.
J-Su-hydrochloric acid (pH 8,0), 9mM MgCL,
The reaction was carried out at 25° C. for 5 minutes in 0.31 Tll of a solution consisting of 16 mM potassium fluoride (KF), 3111 M phosphoribosylbirophosphate, and 12 mM glutamine. Note that a control experiment was one that did not contain glutamine. After the reaction, add 0.1 ml of 1.0M sodium acetate solution (pH 5,
0), 0.05 ml of 3mM sodium picrate solution, O,! After sequentially adding 0.1 ml of 0.1 M manganese chloride solution, centrifugation was performed at 1.500 x g for 5 minutes.
l- was recovered. After washing by sequentially adding Q, 5 ml of 0.01M manganese chloride solution, and Q, 1 ml of 10% acetone solution, the pellet was centrifuged to collect the pellet. This pellet contains 1. ON sulfuric acid 1. Add Qml, 100℃, 1
Heated for 5 minutes. After cooling, phosphorus was quantified using an assay kit for measuring inorganic phosphorus (manufactured by Wako Hyakuyaku Co., Ltd.), and APTase activity was determined by measuring glutamine-dependent activity. Table 4 shows the activity measurement results.

第   4   表 ATCC214,778,2 ATCC21477/pEF12 1.2.7purF
を含む組換え体プラスミドpEF12が導入されたこと
により、APTa s e活性が1.5倍に増大してお
り、明らかに活性上昇効果が認められた。
Table 4 ATCC214,778,2 ATCC21477/pEF12 1.2.7purF
By introducing the recombinant plasmid pEF12 containing , APTase activity was increased by 1.5 times, and an activity-increasing effect was clearly observed.

(5)形質転換株によるイノシンの化1帝ブレビバクテ
リウム・アンモニアゲネスATCC21477およびそ
の形質転換株ATCC21477/pEF 12のイノ
シン生産性を調べた。
(5) Inosine production by transformed strain Inosine productivity of Brevibacterium ammoniagenes ATCC21477 and its transformed strain ATCC21477/pEF 12 was investigated.

両菌株を各々NB培地20m1を含む250m1容三角
フラスコに一白金耳ずつ接種し、30℃、24時間培養
して得た種培養液を、生産培地(グルコース130g1
KH2PO410gXK2HPOn  10g、Mg5
O<・7H20Log、コーンスチープリカ−20g、
CaCj!z’2Hzo  O,1g。
A loopful of both strains was inoculated into a 250 ml Erlenmeyer flask containing 20 ml of NB medium, and cultured at 30°C for 24 hours.
KH2PO410gXK2HPOn 10g, Mg5
O<・7H20Log, corn steep liquor - 20g,
CaCj! z'2Hzo O, 1g.

FeS○+ ・7H2010mg、ZnSO4・71h
0 2mg、MnCA’z・4−68202wg、ビオ
チン30■、ビタミンBl 5mLパントテン酸カシカ
ルシウム10.ニコチン酸5mg5アデニンi o O
”Lグアニン100mg。
FeS○+・7H2010mg, ZnSO4・71h
0 2mg, MnCA'z・4-68202wg, biotin 30■, vitamin Bl 5mL calcium pantothenate 10. Nicotinic acid 5 mg 5 adenine i o O
``L-guanine 100mg.

尿素4gを純水1βに含みp H7,6に調整した培f
i)20mlを含むバッフルプレート付250ml容三
角フラスコに10%(容仝比)の割合で植菌し、30℃
で4日間、220rpmにて振盪培養した。培養中48
および72時時間−別殺菌した尿素を2g/βの割合で
添加しpHを調整した。培養疼了後、培養物中のイノシ
ン蓄積量をイーパークD −7トゲラフイーにより定量
した。その結果を第5表に示す。
Culture medium containing 4g of urea in 1β of pure water and adjusting the pH to 7.6
i) Inoculate a 250 ml Erlenmeyer flask with a baffle plate at a ratio of 10% (by volume) and incubate at 30°C.
The cells were cultured with shaking at 220 rpm for 4 days. Cultivating 48
And at 72 hours, separately sterilized urea was added at a rate of 2 g/β to adjust the pH. After completion of the culture, the amount of inosine accumulated in the culture was quantified using E-Park D-7 Togelafy. The results are shown in Table 5.

第   5   表 菌  株       イノシン(g/β)ATCC2
14776,2 ^TCC21477/ρEF12     9.4pu
rFを含む組換え体プラスミドpEF12を導入したこ
とにより、顕著なイノシン生産性の改善が認められた。
Table 5 Bacterial strain Inosine (g/β) ATCC2
14776,2 ^TCC21477/ρEF12 9.4pu
By introducing the recombinant plasmid pEF12 containing rF, a remarkable improvement in inosine productivity was observed.

実施例2 実施1列1の(3)で単離、精製した組換え体プラスミ
ドpEF 12を用い、5′−イノシン酸生産性を有す
るブレビバクテリウム・アンモニアゲネスKY1318
4 (FERM  P  3790)を、実;缶例1の
(2)と同様の方法でプロトプラスト化したのち形質転
換し、カナマイノン耐性の形質を有する形質転(力株を
取得した。該形質転換株KY13184/pEF12の
APTa s e活性の測定を実施例1のr・1)と同
様の方法で実施した。その結果を第6表に示す。また該
形質転換株KY1.3184/pEF12を実施例1の
(5)と同様にしてペーパークロマトグラフィーにより
5′−イノンン酸を定型した。蓄積した5′−イノシン
酸の量を第7表に示す。対照菌株としてi沫KY 13
184を用い同様に実施した。
Example 2 Using the recombinant plasmid pEF 12 isolated and purified in Example 1, column 1 (3), Brevibacterium ammoniagenes KY1318 having 5'-inosinic acid productivity was produced.
4 (FERM P 3790) was transformed into a protoplast in the same manner as in (2) of Can Example 1, and then transformed, and a transformed strain (power strain) having kanamainone resistance was obtained. The transformed strain KY13184 The APTa se activity of /pEF12 was measured in the same manner as in Example 1 r.1). The results are shown in Table 6. Furthermore, 5'-ynonic acid was determined from the transformed strain KY1.3184/pEF12 by paper chromatography in the same manner as in Example 1 (5). The amount of 5'-inosinic acid accumulated is shown in Table 7. KY13 as a control strain
The same procedure was carried out using 184.

第   6   表 KY13184   7.I KYi3184/pEFI2 1.0.4第   7 
  表 閑  株    5′−イノシン酸<g/l>KYI3
1f14          20. IKY131.
84/pEF12      24.9pEF 12が
導入されたことにより、APTase活性の上昇、5′
−イノシン酸生産性の改善が認められた。
Table 6 KY13184 7. I KYi3184/pEFI2 1.0.4 No. 7
Omotekan strain 5'-inosinic acid <g/l> KYI3
1f14 20. IKY131.
84/pEF12 24.9Introduction of pEF 12 increased APTase activity, 5'
- Improvement in inosinic acid productivity was observed.

実施例3 実施例1の(3)で単離、精製した組換え体プラスミド
pEF 12を用い、5′−キサンチル酸生産能を有す
るブレビバクテリウム・アンモニアゲネスATCC21
075を形質転換した。形質転換は、ペニシリン濃度を
0.5 U /mlとしてプロトプラストを調製する以
外は実施例1の(2)と同様にして行い、カナマイシン
耐性形質を獲得した形質転換株を取得した。該形質転換
株ATCC21075/IFεF12 の、へPTa 
s e活性の測定を実施例1の(4)と同様の方法で実
施した。対照として八TCC21075株を用い同様に
処理した。結果を第8表に示す。
Example 3 Using the recombinant plasmid pEF 12 isolated and purified in (3) of Example 1, Brevibacterium ammoniagenes ATCC21 having the ability to produce 5'-xanthylic acid was produced.
075 was transformed. Transformation was carried out in the same manner as in Example 1 (2) except that protoplasts were prepared at a penicillin concentration of 0.5 U/ml, and a transformed strain that acquired kanamycin resistance was obtained. PTa of the transformed strain ATCC21075/IFεF12
Measurement of se activity was carried out in the same manner as in Example 1 (4). As a control, eight TCC21075 strains were used and treated in the same manner. The results are shown in Table 8.

第8表 ATCロ21075                
 8.9ATCロ21θ75/pEF12      
    1 4.7pN1rFを含む組換え体プラスミ
ドpEF 12が導入されたことにより、APTase
活性の上昇が認められた。
Table 8 ATC ro 21075
8.9ATCro21θ75/pEF12
1 By introducing the recombinant plasmid pEF 12 containing 4.7pN1rF, APTase
An increase in activity was observed.

次に該形質転換株、へTCC2+、(175/pEFI
2の5′−キサンチル酸生産能を調べた。ブレビバクテ
リウム・アンモニアゲネスATCC21075および、
へTCC21,O75/pEF 12をNB培地20m
1を含む25 Qmlml用フラスコに各々−白金耳ず
つ接種し、30℃、24時間培養して得た種培養液を実
施例1の(5)と同じ組成の生産培地20m1を含む2
5 Qmlml用フラスコに10%(容f比)の割合で
植菌し、30℃で4日間、22Orpmにて振盪培養し
た。培養中48および72時間目に別殺菌した尿素を2
 g/f!、の割合で添加しDHを調整した。蓄積した
5′−キサンチル酸をペーパークロマトグラフィーによ
り定量した。結果を第9表に示す。
Next, the transformed strain, TCC2+, (175/pEFI
The 5'-xanthylic acid producing ability of No. 2 was investigated. Brevibacterium ammoniagenes ATCC21075 and
TCC21, O75/pEF 12 to NB medium 20m
A loopful of 25 Qml containing 1 was inoculated into each flask and cultured at 30°C for 24 hours.
The cells were inoculated into a 5Qml flask at a ratio of 10% (volume f ratio), and cultured at 30°C for 4 days with shaking at 22Orpm. Separately sterilized urea was added at 48 and 72 hours during incubation.
g/f! , to adjust the DH. Accumulated 5'-xanthylic acid was quantified by paper chromatography. The results are shown in Table 9.

第   9   表 閑  株    5′−キサンチル酸(g/l2)AT
C(:21075        14.8^TCC2
1075/i’1EF12     19.5purF
を含む組換え体プラスミドpEF 12が導入されたこ
とにより、5′−キサンチル酸の生産性改善が認められ
た。
Table 9 Strain 5'-xanthylic acid (g/l2) AT
C(:21075 14.8^TCC2
1075/i'1EF12 19.5purF
By introducing the recombinant plasmid pEF 12 containing pEF 12, an improvement in the productivity of 5'-xanthylic acid was observed.

発明の効果 本発明方法により、プリンヌクレオチド主合成に関与す
る酵素であるAPTa s eの遺伝子を&む組換え体
DNA、該組換え体D N Aを保有させたコリネバク
テリウム属またはプレヒバクテリウム属に属する微生物
および該微生物を用いた核酸関連物質の製造法を提供す
ることができる。
Effects of the Invention By the method of the present invention, a recombinant DNA containing the gene of APTase, which is an enzyme involved in the main synthesis of purine nucleotides, and a Corynebacterium genus or Prehybacterium harboring the recombinant DNA can be obtained. It is possible to provide a microorganism belonging to the genus P. genus and a method for producing a nucleic acid-related substance using the microorganism.

Claims (5)

【特許請求の範囲】[Claims] (1)微生物のアミドフォスフォリボシル・トランスフ
ェラーゼの合成に関与する遺伝情報を担うDNA断片と
ベクターDNAとの組換え体DNAを保有し、コリネバ
クテリウム属またはブレビバクテリウム属に属し、かつ
核酸関連物質を生産する能力を有する微生物を培地に培
養し、培養物中に核酸関連物質を生成蓄積させ、該培養
物から該核酸関連物質を採取することを特徴とする核酸
関連物質の製造法。
(1) Contains recombinant DNA of a DNA fragment carrying genetic information involved in the synthesis of microbial amidophosphoribosyl transferase and vector DNA, belongs to the genus Corynebacterium or Brevibacterium, and is related to nucleic acids. 1. A method for producing a nucleic acid-related substance, which comprises culturing a microorganism capable of producing a substance in a medium, producing and accumulating a nucleic acid-related substance in the culture, and collecting the nucleic acid-related substance from the culture.
(2)該DNA断片がエシェリヒア属、コリネバクテリ
ウム属またはブレビバクテリウム属に属する微生物から
得られるDNA断片であることを特徴とする特許請求の
範囲第1項記載の製造法。
(2) The production method according to claim 1, wherein the DNA fragment is a DNA fragment obtained from a microorganism belonging to the genus Escherichia, Corynebacterium, or Brevibacterium.
(3)該核酸関連物質がイノシン、イノシン酸またはキ
サンチル酸であることを特徴とする特許請求の範囲第1
項記載の製造法。
(3) Claim 1, wherein the nucleic acid-related substance is inosine, inosinic acid, or xanthylic acid.
Manufacturing method described in section.
(4)エシェリヒア属、コリネバクテリウム属またはブ
レビバクテレウム属に属する微生物のアミドフォスフォ
リボシル・トランスフェラーゼの合成に関与する遺伝情
報を担うDNA断片とベクターDNAとの組換え体DN
A。
(4) Recombinant DNA of vector DNA and a DNA fragment carrying genetic information involved in the synthesis of amidophosphoribosyl transferase of a microorganism belonging to the genus Escherichia, Corynebacterium, or Brevibacterium
A.
(5)エシェリヒア属、コリネバクテリウム属またはブ
レビバクテリウム属に属する微生物のアミドフォスフォ
リボシル、トランスフェラーゼの合成に関与する遺伝情
報を担うDNA断片とベクターDNAとの組換え体DN
Aを保有し、コリネバクテリウム属またはブレビバクテ
リウム属に属し、かつ核酸関連物質を生産する能力を有
する微生物。
(5) Recombinant DNA of a DNA fragment carrying genetic information involved in the synthesis of amidophosphoribosyl and transferase of a microorganism belonging to the genus Escherichia, Corynebacterium, or Brevibacterium and vector DNA
A microorganism that possesses A, belongs to the genus Corynebacterium or the genus Brevibacterium, and has the ability to produce nucleic acid-related substances.
JP62083998A 1987-04-06 1987-04-06 Method for producing nucleic acid-related substance Expired - Fee Related JP2545078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62083998A JP2545078B2 (en) 1987-04-06 1987-04-06 Method for producing nucleic acid-related substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62083998A JP2545078B2 (en) 1987-04-06 1987-04-06 Method for producing nucleic acid-related substance

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP7232218A Division JPH08168383A (en) 1995-09-11 1995-09-11 Production of hucleic acid-related substance

Publications (2)

Publication Number Publication Date
JPS63248394A true JPS63248394A (en) 1988-10-14
JP2545078B2 JP2545078B2 (en) 1996-10-16

Family

ID=13818200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62083998A Expired - Fee Related JP2545078B2 (en) 1987-04-06 1987-04-06 Method for producing nucleic acid-related substance

Country Status (1)

Country Link
JP (1) JP2545078B2 (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999053071A1 (en) 1998-04-14 1999-10-21 Kyowa Hakko Kogyo Co., Ltd. Process for producing isoprenoid compounds by using microorganisms and method for detecting compounds having antibacterial or herbicidal activity
WO2003027297A1 (en) 2001-09-26 2003-04-03 Kyowa Hakko Kogyo Co., Ltd. PROCESS FOR PRODUCING α2,3/α2,8-SIALYLTRANSFERASE AND SIALIC ACID-CONTAINING COMPLEX SUGAR
EP1577386A2 (en) * 1997-07-18 2005-09-21 Ajinomoto Co., Inc. Method for producing purine nucleosides by fermentation
EP1627884A1 (en) 2004-06-25 2006-02-22 Kyowa Hakko Kogyo Co., Ltd. Process for producing dipeptides
EP1700910A2 (en) 2005-03-10 2006-09-13 Ajinomoto Co., Inc. Purine-derived substance-producing Bacillus and a method for producing purine-derived substance therewith
WO2006101023A1 (en) 2005-03-18 2006-09-28 Kyowa Hakko Kogyo Co., Ltd. Method for producing dipeptide
WO2007037301A1 (en) 2005-09-29 2007-04-05 Kyowa Hakko Kogyo Co., Ltd. Process for producing useful substance
WO2007063866A1 (en) 2005-11-29 2007-06-07 Kyowa Hakko Kogyo Co., Ltd. Novel protein and dna encoding the protein
WO2007125783A1 (en) 2006-04-24 2007-11-08 Ajinomoto Co., Inc. Bacterium capable of producing purine substance, and process for production of purine substance
WO2007125782A1 (en) 2006-04-24 2007-11-08 Ajinomoto Co., Inc. Bacterium capable of producing purine substance, and process for production of purine substance
WO2008038613A1 (en) 2006-09-25 2008-04-03 Kyowa Hakko Bio Co., Ltd. Method for production of dipeptide
EP1908773A2 (en) 2002-12-26 2008-04-09 Kyowa Hakko Kogyo Co., Ltd. Process for producing dipeptides
WO2008126784A1 (en) 2007-04-06 2008-10-23 Kyowa Hakko Bio Co., Ltd. Method for production of glutathione or ϝ-glutamylcysteine
WO2008126783A1 (en) 2007-04-06 2008-10-23 Kyowa Hakko Bio Co., Ltd. Method for producing dipeptide
EP2077275A2 (en) 1998-06-02 2009-07-08 Nihon University IgA nephropathy-related DNA
EP2143789A1 (en) 2008-07-10 2010-01-13 National University Corporation Hokkaido University New microorganism capable of producing polyhydroxyalkanoate, polyhydroxyalkanoate synthase, and gene encoding the same
WO2010024267A1 (en) 2008-09-01 2010-03-04 国立大学法人信州大学 Process for producing useful substance
WO2010041715A1 (en) 2008-10-09 2010-04-15 協和メデックス株式会社 Novel fructosyl peptide oxidase
WO2010090330A1 (en) 2009-02-09 2010-08-12 協和発酵バイオ株式会社 Process for producing l-amino acid
WO2010095642A1 (en) 2009-02-18 2010-08-26 国立大学法人信州大学 Process for producing useful substance
US8034767B2 (en) 2006-12-22 2011-10-11 Ajinomoto Co., Inc. Method for producing purine nucleosides and nucleotides by fermentation using a bacterium belonging to the genus Escherichia or Bacillus
WO2012008298A1 (en) 2010-07-14 2012-01-19 住友ゴム工業株式会社 Isoprene oligomer, polyisoprene, processes for producing these materials, rubber composition, and pneumatic tire
WO2012102290A1 (en) 2011-01-26 2012-08-02 住友ゴム工業株式会社 Synthesis system, rubber chemical substance for tires, synthetic rubber for tires, and pneumatic tire
JP2012522503A (en) * 2009-04-01 2012-09-27 シージェイ チェイルジェダン コーポレーション Corynebacterium microorganism with improved 5'-inosinic acid productivity and method for producing nucleic acid using the same
WO2015005258A1 (en) 2013-07-09 2015-01-15 協和メデックス株式会社 Glycated hexapeptide oxidase and use thereof
WO2018030499A1 (en) 2016-08-10 2018-02-15 Spiber株式会社 Production method for insoluble recombinant protein aggregate
WO2018066558A1 (en) 2016-10-03 2018-04-12 Spiber株式会社 Method for purifying recombinant protein
WO2018190398A1 (en) 2017-04-13 2018-10-18 協和発酵バイオ株式会社 Method for producing theanine
WO2019022163A1 (en) 2017-07-26 2019-01-31 Spiber株式会社 Modified fibroin
WO2020032261A1 (en) 2018-08-10 2020-02-13 協和発酵バイオ株式会社 Microorganism producing eicosapentaenoic acid and method for producing eicosapentaenoic acid
WO2020032258A1 (en) 2018-08-10 2020-02-13 協和発酵バイオ株式会社 Microorganism producing polyunsaturated fatty acid and method for producing polyunsaturated fatty acid
WO2020145363A1 (en) 2019-01-09 2020-07-16 Spiber株式会社 Modified fibroin
WO2020158877A1 (en) 2019-01-31 2020-08-06 Spiber株式会社 Method for producing recombinant protein
JP2020533947A (en) * 2018-07-27 2020-11-26 シージェイ チェイルジェダング コーポレイション A novel 5'-inosinic acid dehydrogenase and a method for producing 5'-inosinic acid using the novel 5'-inosinic acid dehydrogenase.
WO2021125245A1 (en) 2019-12-16 2021-06-24 協和発酵バイオ株式会社 Microorganism having modified lactose permease, and method for producing lactose-containing oligosaccharide
WO2021187502A1 (en) 2020-03-16 2021-09-23 Spiber株式会社 Synthetic polymer and method for producing same, molding material, and molded body
WO2021261564A1 (en) 2020-06-25 2021-12-30 協和発酵バイオ株式会社 Method for producing dipeptide
WO2022168992A1 (en) 2021-02-08 2022-08-11 協和発酵バイオ株式会社 Protein having 1,3-fucosyltransferase activity, and method for producing fucose-containing sugar
WO2022168991A1 (en) 2021-02-08 2022-08-11 協和発酵バイオ株式会社 Protein having fucose-containing sugar transporting activity, and method for producing fucose-containing sugar
WO2022176994A1 (en) 2021-02-19 2022-08-25 協和発酵バイオ株式会社 MODIFIED PROTEIN HAVING α1,2-FUCOSYLTRANSFERASE ACTIVITY AND METHOD FOR PRODUCING FUCOSE-CONTAINING CARBOHYDRATE
US11545182B2 (en) 2017-09-29 2023-01-03 The Systems Biology Institute Encryption method, decryption method, encryption system and decryption system
WO2023038128A1 (en) 2021-09-10 2023-03-16 協和発酵バイオ株式会社 Recombinant microorganism used for producing cdp-choline, and method for producing cdp-choline using said recombinant microorganism

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5959877A (en) * 1982-09-30 1984-04-05 Fujitsu Ltd Chemical vapor growth method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5959877A (en) * 1982-09-30 1984-04-05 Fujitsu Ltd Chemical vapor growth method

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7608432B2 (en) 1997-07-18 2009-10-27 Ajinomoto Co., Inc. Method for producing purine nucleoside by fermentation
US7776566B2 (en) 1997-07-18 2010-08-17 Ajinomoto Co., Inc. Method for producing purine nucleoside by fermentation
EP1577386A2 (en) * 1997-07-18 2005-09-21 Ajinomoto Co., Inc. Method for producing purine nucleosides by fermentation
EP1584679A1 (en) * 1997-07-18 2005-10-12 Ajinomoto Co., Inc. Method for producing purine nucleosides by fermention
EP1577386A3 (en) * 1997-07-18 2005-10-12 Ajinomoto Co., Inc. Method for producing purine nucleosides by fermentation
US7435560B1 (en) 1997-07-18 2008-10-14 Ajinomoto Co., Inc. Method for producing purine nucleoside by fermentation
US7601519B2 (en) 1997-07-18 2009-10-13 Ajinomoto Co., Inc. Method for producing purine nucleoside by fermentation
WO1999053071A1 (en) 1998-04-14 1999-10-21 Kyowa Hakko Kogyo Co., Ltd. Process for producing isoprenoid compounds by using microorganisms and method for detecting compounds having antibacterial or herbicidal activity
EP2077275A2 (en) 1998-06-02 2009-07-08 Nihon University IgA nephropathy-related DNA
WO2003027297A1 (en) 2001-09-26 2003-04-03 Kyowa Hakko Kogyo Co., Ltd. PROCESS FOR PRODUCING α2,3/α2,8-SIALYLTRANSFERASE AND SIALIC ACID-CONTAINING COMPLEX SUGAR
EP1908773A2 (en) 2002-12-26 2008-04-09 Kyowa Hakko Kogyo Co., Ltd. Process for producing dipeptides
EP1983059A2 (en) 2002-12-26 2008-10-22 Kyowa Hakko Kogyo Co., Ltd. Process for producing dipeptides
EP1627884A1 (en) 2004-06-25 2006-02-22 Kyowa Hakko Kogyo Co., Ltd. Process for producing dipeptides
US7326546B2 (en) 2005-03-10 2008-02-05 Ajinomoto Co., Inc. Purine-derived substance-producing bacterium and a method for producing purine-derived substance
US8298791B2 (en) 2005-03-10 2012-10-30 Ajinomoto Co., Inc. Purine-derived substance-producing bacterium and a method for producing purine-derived substance
EP1700910A2 (en) 2005-03-10 2006-09-13 Ajinomoto Co., Inc. Purine-derived substance-producing Bacillus and a method for producing purine-derived substance therewith
WO2006101023A1 (en) 2005-03-18 2006-09-28 Kyowa Hakko Kogyo Co., Ltd. Method for producing dipeptide
WO2007037301A1 (en) 2005-09-29 2007-04-05 Kyowa Hakko Kogyo Co., Ltd. Process for producing useful substance
WO2007063866A1 (en) 2005-11-29 2007-06-07 Kyowa Hakko Kogyo Co., Ltd. Novel protein and dna encoding the protein
US8058037B2 (en) 2005-11-29 2011-11-15 Kyowa Hakko Bio Co., Ltd. Protein and DNA encoding the protein
WO2007125782A1 (en) 2006-04-24 2007-11-08 Ajinomoto Co., Inc. Bacterium capable of producing purine substance, and process for production of purine substance
WO2007125783A1 (en) 2006-04-24 2007-11-08 Ajinomoto Co., Inc. Bacterium capable of producing purine substance, and process for production of purine substance
US8409563B2 (en) 2006-04-24 2013-04-02 Ajinomoto Co., Inc. Purine-derived substance-producing bacterium and a method for producing a purine-derived substance
US8236531B2 (en) 2006-04-24 2012-08-07 Ajinomoto Co., Inc. Purine-derived substance-producing bacterium and a method for producing a purine-derived substance
WO2008038613A1 (en) 2006-09-25 2008-04-03 Kyowa Hakko Bio Co., Ltd. Method for production of dipeptide
US8034767B2 (en) 2006-12-22 2011-10-11 Ajinomoto Co., Inc. Method for producing purine nucleosides and nucleotides by fermentation using a bacterium belonging to the genus Escherichia or Bacillus
WO2008126783A1 (en) 2007-04-06 2008-10-23 Kyowa Hakko Bio Co., Ltd. Method for producing dipeptide
WO2008126784A1 (en) 2007-04-06 2008-10-23 Kyowa Hakko Bio Co., Ltd. Method for production of glutathione or ϝ-glutamylcysteine
US8334129B2 (en) 2008-07-10 2012-12-18 Hitachi Chemical Co., Ltd. Microorganism capable of producing polyhydroxyalkanoate, polyhydroxyalkanoate synthase, and gene encoding the same
EP2143789A1 (en) 2008-07-10 2010-01-13 National University Corporation Hokkaido University New microorganism capable of producing polyhydroxyalkanoate, polyhydroxyalkanoate synthase, and gene encoding the same
WO2010024267A1 (en) 2008-09-01 2010-03-04 国立大学法人信州大学 Process for producing useful substance
WO2010041715A1 (en) 2008-10-09 2010-04-15 協和メデックス株式会社 Novel fructosyl peptide oxidase
WO2010090330A1 (en) 2009-02-09 2010-08-12 協和発酵バイオ株式会社 Process for producing l-amino acid
WO2010095642A1 (en) 2009-02-18 2010-08-26 国立大学法人信州大学 Process for producing useful substance
JP2012522503A (en) * 2009-04-01 2012-09-27 シージェイ チェイルジェダン コーポレーション Corynebacterium microorganism with improved 5'-inosinic acid productivity and method for producing nucleic acid using the same
US8993272B2 (en) 2009-04-01 2015-03-31 Cj Cheiljedang Corporation Microorganisms of Corynebacterium with improved 5′-inosinic acid productivity, and method for producing nucleic acids using same
WO2012008298A1 (en) 2010-07-14 2012-01-19 住友ゴム工業株式会社 Isoprene oligomer, polyisoprene, processes for producing these materials, rubber composition, and pneumatic tire
WO2012102290A1 (en) 2011-01-26 2012-08-02 住友ゴム工業株式会社 Synthesis system, rubber chemical substance for tires, synthetic rubber for tires, and pneumatic tire
WO2015005258A1 (en) 2013-07-09 2015-01-15 協和メデックス株式会社 Glycated hexapeptide oxidase and use thereof
WO2018030499A1 (en) 2016-08-10 2018-02-15 Spiber株式会社 Production method for insoluble recombinant protein aggregate
WO2018066558A1 (en) 2016-10-03 2018-04-12 Spiber株式会社 Method for purifying recombinant protein
WO2018190398A1 (en) 2017-04-13 2018-10-18 協和発酵バイオ株式会社 Method for producing theanine
WO2019022163A1 (en) 2017-07-26 2019-01-31 Spiber株式会社 Modified fibroin
US11545182B2 (en) 2017-09-29 2023-01-03 The Systems Biology Institute Encryption method, decryption method, encryption system and decryption system
JP2020533947A (en) * 2018-07-27 2020-11-26 シージェイ チェイルジェダング コーポレイション A novel 5'-inosinic acid dehydrogenase and a method for producing 5'-inosinic acid using the novel 5'-inosinic acid dehydrogenase.
WO2020032258A1 (en) 2018-08-10 2020-02-13 協和発酵バイオ株式会社 Microorganism producing polyunsaturated fatty acid and method for producing polyunsaturated fatty acid
WO2020032261A1 (en) 2018-08-10 2020-02-13 協和発酵バイオ株式会社 Microorganism producing eicosapentaenoic acid and method for producing eicosapentaenoic acid
WO2020145363A1 (en) 2019-01-09 2020-07-16 Spiber株式会社 Modified fibroin
WO2020158877A1 (en) 2019-01-31 2020-08-06 Spiber株式会社 Method for producing recombinant protein
WO2021125245A1 (en) 2019-12-16 2021-06-24 協和発酵バイオ株式会社 Microorganism having modified lactose permease, and method for producing lactose-containing oligosaccharide
WO2021187502A1 (en) 2020-03-16 2021-09-23 Spiber株式会社 Synthetic polymer and method for producing same, molding material, and molded body
WO2021261564A1 (en) 2020-06-25 2021-12-30 協和発酵バイオ株式会社 Method for producing dipeptide
WO2022168992A1 (en) 2021-02-08 2022-08-11 協和発酵バイオ株式会社 Protein having 1,3-fucosyltransferase activity, and method for producing fucose-containing sugar
WO2022168991A1 (en) 2021-02-08 2022-08-11 協和発酵バイオ株式会社 Protein having fucose-containing sugar transporting activity, and method for producing fucose-containing sugar
WO2022176994A1 (en) 2021-02-19 2022-08-25 協和発酵バイオ株式会社 MODIFIED PROTEIN HAVING α1,2-FUCOSYLTRANSFERASE ACTIVITY AND METHOD FOR PRODUCING FUCOSE-CONTAINING CARBOHYDRATE
WO2023038128A1 (en) 2021-09-10 2023-03-16 協和発酵バイオ株式会社 Recombinant microorganism used for producing cdp-choline, and method for producing cdp-choline using said recombinant microorganism

Also Published As

Publication number Publication date
JP2545078B2 (en) 1996-10-16

Similar Documents

Publication Publication Date Title
JPS63248394A (en) Production of nucleic acid-relating substance
AU2019219799B2 (en) Novel promoter and method for producing purine nucleotide using the same
JP7125477B2 (en) Microorganism with increased glycine-producing ability and method for producing fermentation composition using same
CN117568249A (en) Mutant strain having improved L-glutamic acid productivity and method for producing L-glutamic acid using same
JP7372329B2 (en) Microorganisms that produce purine nucleotides and methods for producing purine nucleotides using the same
KR20110105662A (en) Microorganism having enhanced 5&#39;-xanthosine monophosphate and 5&#39;-guanine monophosphate productivity and a method of producing 5&#39;-xanthosine monophosphate or 5&#39;-guanine monophosphate using the same
JP2023550754A (en) Microorganism expressing protein derived from Schwanella oneidensis and method for producing L-amino acids using the same
JPH0523751B2 (en)
CN111621454B (en) Gene engineering high-yield strain streptomyces diastatochromogenes, production method and application of epsilon-polylysine
JPH08168383A (en) Production of hucleic acid-related substance
JP2722504B2 (en) Novel microorganism and method for producing d-biotin using the same
JPS62186795A (en) Production of amino acid
JPS63102692A (en) Production of l-glutamic acid
JP7447294B2 (en) Microorganism expressing protein derived from Schwanella atlantica and L-amino acid production method using the same
JPH0459877B2 (en)
JP7362895B2 (en) L-amino acid producing microorganism with enhanced cytochrome C activity and method for producing L-amino acid using the same
CN115261247B (en) Corynebacterium glutamicum mutant strain having improved L-lysine productivity and method for producing L-lysine using same
EP4332230A1 (en) Corynebacterium glutamicum variant with improved l-lysine production ability, and method for producing l-lysine using same
KR20230175159A (en) Mutant of Corynebacterium glutamicum with enhanced L-lysine productivity and method for preparing L-lysine using the same
KR20240017394A (en) Mutant of Corynebacterium glutamicum with enhanced L-citrulline productivity and method for preparing L-citrulline using the same
CN115261246A (en) Corynebacterium glutamicum mutant strain having improved L-lysine productivity and method for producing L-lysine using the same
KR920008383B1 (en) Method for producing l-lysine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees