JPS632477B2 - - Google Patents

Info

Publication number
JPS632477B2
JPS632477B2 JP12010681A JP12010681A JPS632477B2 JP S632477 B2 JPS632477 B2 JP S632477B2 JP 12010681 A JP12010681 A JP 12010681A JP 12010681 A JP12010681 A JP 12010681A JP S632477 B2 JPS632477 B2 JP S632477B2
Authority
JP
Japan
Prior art keywords
metal
metal material
materials
expansion side
bimetal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12010681A
Other languages
Japanese (ja)
Other versions
JPS5821588A (en
Inventor
Shiro Nakatate
Masatoshi Komori
Fumio Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP12010681A priority Critical patent/JPS5821588A/en
Publication of JPS5821588A publication Critical patent/JPS5821588A/en
Publication of JPS632477B2 publication Critical patent/JPS632477B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Details Of Measuring And Other Instruments (AREA)
  • Thermally Actuated Switches (AREA)

Description

【発明の詳細な説明】 本発明は高膨張側および低膨張側の両金属材の
間に中間金属材を介在させたバイメタルの製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a bimetal in which an intermediate metal material is interposed between metal materials on a high expansion side and a low expansion side.

バイメタルとして、特に体積抵抗率をコントロ
ールするために、高膨張側金属材と低膨張側金属
材の間に、低融点金属例えば銅(Cu)および銅
合金からなる中間金属材を介在させた三層バイメ
タルが用いられている。
As a bimetal, in order to particularly control the volume resistivity, a three-layer structure in which an intermediate metal material made of a low melting point metal such as copper (Cu) and a copper alloy is interposed between a high expansion metal material and a low expansion metal material. Bimetal is used.

しかして、この種バイメタルを製造する方法に
おいて、帯状をなす各金属材を互いに圧接してバ
イメタル素材を成形する場合に、冷間圧延加工に
より行なうとその前段階で各金属材を個別に熱間
圧延加工により所定の肉厚まで圧延しておく前加
工が必要で工程数が増加するという問題があり、
このため一般には金属材の圧延と圧接を同時に行
なえる熱間圧延加工が多く採用されている。
However, in the method of manufacturing this type of bimetal, when forming a bimetal material by press-welding strip-shaped metal materials to each other, if cold rolling is performed, each metal material is individually hot-rolled in the previous step. There is a problem in that the number of steps increases because pre-processing is required to roll the material to a predetermined thickness.
For this reason, hot rolling is generally used in which metal materials can be rolled and welded at the same time.

しかしながら、中間金属材として多く使用され
ている銅および銅合金は変形能が大きく、すなわ
ち耐力が小さく軟らかいものであるから、バイメ
タル素材の成形のために熱間圧延加工を行なう
と、銅(銅合金)が加熱されて高温時における耐
力が著しく小さくなり、すなわち著しく軟化して
必要以上に変形し、高膨張側および低膨張側の各
金属材の隙間から外部にはみ出すことが多い。こ
のため、バイメタル素材は肉厚が不均一となり、
このバイメタル素材から得られるバイメタルは接
合比率が不均一な場合が多く生じて加工歩留りが
悪く、また個々のバイメタルの特性のばらつきが
多くなる欠点がある。
However, copper and copper alloys, which are often used as intermediate metal materials, have large deformability, that is, low yield strength and are soft, so when hot rolling is performed to form bimetallic materials, copper (copper alloy ) is heated and its yield strength at high temperatures becomes significantly smaller, that is, it becomes significantly softer and deforms more than necessary, often protruding from the gap between the metal materials on the high expansion side and the low expansion side. For this reason, bimetallic materials have uneven wall thickness.
Bimetals obtained from this bimetal material often have non-uniform bonding ratios, resulting in poor processing yields, and also have the disadvantage that the characteristics of individual bimetals vary widely.

本発明者は前記事情に鑑みてなされたもので、
高膨張側および低膨張側金属材の間に中間金属材
を介在させたバイメタルを容易且つ良好に製造で
きる製造方法を提供するものである。
The present inventor was made in view of the above circumstances,
It is an object of the present invention to provide a manufacturing method that can easily and favorably manufacture a bimetal in which an intermediate metal material is interposed between a high expansion side metal material and a low expansion side metal material.

すなわち、本発明の製造方法は、高膨張側およ
び低膨張側金属材より高温耐力が小さい中間金属
材の周囲を囲む中間金属材より高温耐力が大きい
金属枠材を高膨張側および低膨張側金属材の間に
配置して熱間圧延を施すことにより、中間金属材
の不要な変形を阻止してはみ出しを防止するもの
である。
That is, in the manufacturing method of the present invention, a metal frame material having a higher high temperature yield strength than the intermediate metal material surrounding the intermediate metal material having a lower high temperature yield strength than the high expansion side metal material and the low expansion side metal material is used as the high expansion side metal material and the low expansion side metal material. By placing the intermediate metal material between the materials and subjecting it to hot rolling, unnecessary deformation of the intermediate metal material is prevented and extrusion is prevented.

以下本発明について説明する。まずバイメタル
素材を製作するために、第1図および第3図で示
すように帯状板をなす高膨張側の金属材1と低膨
張側の金属材2との間に帯状板をなす中間金属材
3を介在させて、これら各金属材1〜3を重ねて
配置する。また、高膨張側および低膨張側の両金
属材1,2の周縁部間に位置して、角棒をなす金
属枠材4,4を中間金属材3の長さ方向両側の周
縁に沿つて、金属枠材5,5を中間金属材3の両
端周縁に夫々沿つて配置する。すなわち、これら
金属枠材4,4,5,5は金属材1,2の間に重
ねられて中間金属材3の周囲を囲むものである。
ここで、高膨張側の金属材1は例えばニツケル
(Ni)−マンガン(Mn)−鉄(Fe)合金あるいは
ニツケル−クロム(Cr)−鉄合金からなり、低膨
張側の金属材2は36〜50重量%ニツケル−鉄合金
からなるものである。中間金属材3は金属材1,
2との組合せでバイメタル全体として所定の体積
抵抗率が得られる低融点の金属、主として銅
(Cu)および銅合金からなつている。中間金属材
3は金属材1,2より一回り小形の大きさをなす
ものである。金属枠材4,4,5,5は中間金属
材に比して高温耐力が大きい、好ましくは高膨張
側金属材1および低膨張側金属材2と同等の高温
耐力を有するとともに、銅より金属材1,2に近
い融点を有する金属で且つ金属材1,2との溶接
性が良く圧延により強度を増す金属、例えば軟鋼
やステンレス鋼で形成されている。
The present invention will be explained below. First, in order to manufacture a bimetallic material, as shown in FIGS. 1 and 3, an intermediate metal material is used to form a band-shaped plate between a metal material 1 on the high expansion side and a metal material 2 on the low expansion side, forming a band-shaped plate. These metal materials 1 to 3 are arranged one on top of the other with metal material 3 interposed therebetween. In addition, square rod metal frames 4, 4 are placed between the peripheral edges of both the metal materials 1, 2 on the high expansion side and the low expansion side, and are placed along the peripheral edges on both sides in the length direction of the intermediate metal material 3. , metal frame members 5, 5 are arranged along both end peripheries of the intermediate metal member 3, respectively. That is, these metal frame members 4, 4, 5, and 5 are overlapped between the metal members 1 and 2 to surround the intermediate metal member 3.
Here, the metal material 1 on the high expansion side is made of, for example, a nickel (Ni)-manganese (Mn)-iron (Fe) alloy or a nickel-chromium (Cr)-iron alloy, and the metal material 2 on the low expansion side is made of a nickel (Ni)-manganese (Mn)-iron (Fe) alloy. It consists of 50% by weight nickel-iron alloy. The intermediate metal material 3 is the metal material 1,
In combination with 2, a predetermined volume resistivity can be obtained as a bimetal as a whole.It is made of a metal with a low melting point, mainly copper (Cu) and a copper alloy. The intermediate metal material 3 is one size smaller than the metal materials 1 and 2. The metal frame materials 4, 4, 5, and 5 have higher high-temperature yield strength than the intermediate metal material, preferably have a high-temperature yield strength equivalent to that of the high-expansion side metal material 1 and the low-expansion side metal material 2, and are more metal than copper. It is made of a metal that has a melting point close to those of the metal materials 1 and 2, has good weldability with the metal materials 1 and 2, and increases its strength by rolling, such as mild steel or stainless steel.

このようにして各金属材1,2と金属枠材4,
4,5,5を組合せた状態において、第2図およ
び第4図で示すように金属材1と中間金属材3の
互いに接する周縁部間と、金属材2と中間金属材
3の互いに接する周縁部間を夫々全周にわたり溶
接を施して接合する。この場合の溶接は電子ビー
ム溶接、レーザ溶接あるいはMIG溶接を行なう。
この溶接により金属材1,2と中間金属材3が相
互に固定され、各金属材1〜3と金属枠材4,
4,5,5が組合さつた状態で仮止め固定され
る。なお、金属枠材4,4,5,5を形成する軟
鋼やステンレス鋼は金属体1,2を形成する合金
に対し溶接性が良く確実に接合する。
In this way, each metal material 1, 2 and the metal frame material 4,
4, 5, and 5 are combined, as shown in FIG. 2 and FIG. The parts are joined by welding around the entire circumference. Welding in this case is performed by electron beam welding, laser welding, or MIG welding.
By this welding, the metal materials 1 and 2 and the intermediate metal material 3 are fixed to each other, and each of the metal materials 1 to 3 and the metal frame material 4,
4, 5, and 5 are temporarily fixed in the assembled state. Note that the mild steel and stainless steel that form the metal frames 4, 4, 5, and 5 have good weldability and are reliably joined to the alloy that forms the metal bodies 1 and 2.

次いで、金属体1〜3と金属枠材4,4,5,
5を組合せた組合せ体に対し熱間圧延加工を行な
い、この組合せ体4,4,5,5を加熱しながら
圧延ローラの間に通すことにより、金属材1と中
間金属材3および金属材2と中間金属材3とを相
互に圧接する。この場合、変形能が大なる銅また
は銅合金からなる中間金属材3は加熱されて高温
時の耐力が著しく小さくなり、すなわち著しく軟
化する。しかして、金属材1,2と接合した金属
枠材4,4,5,5で中間金属材3の周囲を囲ん
でいるために、中間金属材3は軟化しても金属枠
材4,4,5,5により金属材1,2の間から外
部へはみ出すことを阻止され、原形の形状に保持
されて均一な肉厚で圧延される。このため、中間
金属材3は金属枠材4,4,5,5により外部へ
はみ出すような必要以上の変形を防止され、均一
な状態で金属体1,2に夫々確実に圧接する。な
お、金属枠材4,4,5,5は中間金属材3より
高融点であり変形能が小さいため中間金属材3に
比して軟化は著しく小さい。また、金属枠材4,
4,5,5は金属材1,2と溶接により確実に接
合しているので、圧延時に金属材1〜3、金属枠
材4,4,5,5が剥離しない。
Next, metal bodies 1 to 3 and metal frames 4, 4, 5,
A hot rolling process is performed on the combination body 5, and the combination body 4, 4, 5, 5 is passed between rolling rollers while being heated, thereby forming the metal material 1, the intermediate metal material 3, and the metal material 2. and intermediate metal material 3 are pressed together. In this case, the intermediate metal material 3 made of copper or copper alloy, which has a large deformability, is heated and its yield strength at high temperatures is significantly reduced, that is, it is significantly softened. However, since the intermediate metal material 3 is surrounded by the metal frames 4, 4, 5, and 5 joined to the metal materials 1 and 2, even if the intermediate metal material 3 becomes soft, the metal frames 4, 4, , 5, 5 prevents it from protruding outside from between the metal materials 1 and 2, and is maintained in its original shape and rolled to a uniform thickness. Therefore, the intermediate metal material 3 is prevented from being deformed more than necessary by the metal frames 4, 4, 5, and 5, such as protruding outside, and is reliably pressed against the metal bodies 1 and 2 in a uniform state. Note that the metal frame materials 4, 4, 5, and 5 have a higher melting point than the intermediate metal material 3 and have a smaller deformability, so the softening is significantly smaller than that of the intermediate metal material 3. In addition, metal frame material 4,
4, 5, and 5 are reliably joined to the metal materials 1 and 2 by welding, so that the metal materials 1 to 3 and the metal frame materials 4, 4, 5, and 5 do not peel off during rolling.

次いで、金属材1,2の周縁部全体と、この周
縁部全体と接合している各金属枠材4,4,5,
5とを一緒にカツタやプレスにより切断して除去
し、第5図で示すように金属材1,2と中間金属
材3のみを重ねて圧接してなるバイメタル素材を
得る。このバイメタル素材は中間金属材3が全体
にわたり均一な肉厚で金属材1,2に接合して、
全体として肉厚にばらつきがなく均質なものであ
る。
Next, the entire periphery of the metal materials 1 and 2, and each metal frame material 4, 4, 5, which is joined to the entire periphery.
5 are cut and removed together with a cutter or press to obtain a bimetallic material in which only the metal materials 1 and 2 and the intermediate metal material 3 are stacked and pressed together as shown in FIG. In this bimetal material, the intermediate metal material 3 is joined to the metal materials 1 and 2 with a uniform thickness throughout,
As a whole, the wall thickness is uniform with no variation.

そして、バイメタル素材に対し冷間圧延加工を
施して所定寸法の肉厚となるように圧延する。さ
らに、バイメタル素材を長さ方向に沿い切断して
複数の細長素材を得え、この細長帯状素材を所定
長さで切断することにより、第6図で示すバイメ
タルを成形する。
Then, the bimetal material is cold-rolled to a predetermined thickness. Furthermore, the bimetal material is cut along its length to obtain a plurality of elongated materials, and the bimetal material shown in FIG. 6 is formed by cutting these elongated strip materials to a predetermined length.

しかして、成形されたバイメタルは、金属材
1,2および中間金属材3を含めて全体が均一な
肉厚を有するので、各バイメタルは規格寸法のも
のを容易に得ることができ、また各バイメタルは
夫々均質でバイメタル特性のばらつきが小さい。
Since the formed bimetal has a uniform wall thickness throughout including the metal materials 1 and 2 and the intermediate metal material 3, each bimetal can be easily obtained with standard dimensions, and each bimetal can have a uniform thickness. are homogeneous and have small variations in bimetallic properties.

実施例 ニツケル−マンガン−鉄合金からなる金属材1
と、36%ニツケル−鉄合金からなる金属材2と、
銅からなる中間金属材3と、軟鋼からなる金属枠
材4,4,5,5を組合せ、全体として肉厚50mm
×幅120mm×長さ600mmをなす組合せ体とした。金
属材1,2と金属枠材3との周縁部間に溶接を行
ない接合した。次いで熱間圧延加工を施し、各金
属材1〜3を圧接するとともに肉厚3mm×幅130
mmのコイル材とした。この圧延工程においては中
間金属材3が金属材1,2からはみ出す現象は見
られなかつた。次いで、金属材1,2の周縁部と
金属枠材4,4,5,5をスリツターにより切断
して、中間金属材3を含む全体が均一な厚さを有
するバイメタル素材を得ることができた。
Example Metal material 1 made of nickel-manganese-iron alloy
, a metal material 2 made of 36% nickel-iron alloy,
The intermediate metal material 3 made of copper and the metal frame materials 4, 4, 5, 5 made of mild steel are combined, and the overall thickness is 50 mm.
The combined body was 120 mm wide x 600 mm long. Welding was performed between the peripheral edges of the metal materials 1 and 2 and the metal frame material 3 to join them. Next, hot rolling is applied to press-weld each metal material 1 to 3, and the thickness is 3 mm x width 130 mm.
mm coil material. In this rolling process, no phenomenon in which the intermediate metal material 3 protruded from the metal materials 1 and 2 was observed. Next, the peripheral parts of the metal materials 1 and 2 and the metal frame materials 4, 4, 5, and 5 were cut with a slitter to obtain a bimetal material having a uniform thickness throughout including the intermediate metal material 3. .

本発明のバイメタルの製造方法は以上説明した
ように、高膨張側および低膨張側の両金属材の間
にこれら両金属材に比して高温耐力が小さい中間
金属材を介在して熱間圧延加工を行なうに際して
中間金属材の必要以上の変形を阻止することによ
り、均質なバイメタル素材を歩留り良く製造でき
る。
As explained above, the method for producing a bimetal of the present invention involves interposing an intermediate metal material having a lower high-temperature yield strength than the two metal materials on the high-expansion side and the low-expansion side, and then hot-rolling the bimetal. By preventing unnecessary deformation of the intermediate metal material during processing, a homogeneous bimetal material can be manufactured with a high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はバイメタル素材を示す分解斜視図、第
2図は同斜視図、第3図は同平面図、第4図は同
縦断側面図、第5図は金属材および金属枠材を取
除いた状態のバイメタル素材を示す斜視図であ
る。 1……高膨張側金属材、2……低膨張側金属
材、3……中間金属材、4,5……金属枠材。
Figure 1 is an exploded perspective view showing the bimetallic material, Figure 2 is the same perspective view, Figure 3 is the same top view, Figure 4 is the same longitudinal side view, and Figure 5 is the metal material and metal frame removed. FIG. 3 is a perspective view showing the bimetal material in a state where 1... High expansion side metal material, 2... Low expansion side metal material, 3... Intermediate metal material, 4, 5... Metal frame material.

Claims (1)

【特許請求の範囲】 1 高膨張側金属材と、低膨張側金属材と、これ
ら両金属材の間に介在されたこれら両金属材より
高温耐力が小さい中間金属材と、この中間金属材
の周囲を囲んで配置され且つ中間金属材より高温
耐力が大きい金属枠材とを組合わせて、前記高膨
張側および低膨張側の両金属材と前記金属枠材と
の周縁部を接合した後圧延加工を施すことを特徴
とするバイメタルの製造方法。 2 金属枠材は、軟鋼でなる特許請求の範囲第1
項記載のバイメタルの製造方法。 3 中間金属材は銅およびその合金である特許請
求の範囲第1項記載のバイメタルの製造方法。
[Scope of Claims] 1. A metal material on the high expansion side, a metal material on the low expansion side, an intermediate metal material interposed between these metal materials and having a lower high temperature proof strength than both of these metal materials, and the intermediate metal material of this intermediate metal material. A metal frame material that is arranged surrounding the surrounding metal material and has a higher high temperature proof strength than the intermediate metal material is combined, and the peripheral edges of both the metal materials on the high expansion side and the low expansion side and the metal frame material are joined and then rolled. A method for manufacturing bimetal, which is characterized by processing. 2. The metal frame material is made of mild steel.
2. Method for producing bimetal as described in section. 3. The method for manufacturing a bimetal according to claim 1, wherein the intermediate metal material is copper and its alloy.
JP12010681A 1981-07-31 1981-07-31 Manufacture of bimetal Granted JPS5821588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12010681A JPS5821588A (en) 1981-07-31 1981-07-31 Manufacture of bimetal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12010681A JPS5821588A (en) 1981-07-31 1981-07-31 Manufacture of bimetal

Publications (2)

Publication Number Publication Date
JPS5821588A JPS5821588A (en) 1983-02-08
JPS632477B2 true JPS632477B2 (en) 1988-01-19

Family

ID=14778069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12010681A Granted JPS5821588A (en) 1981-07-31 1981-07-31 Manufacture of bimetal

Country Status (1)

Country Link
JP (1) JPS5821588A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997049110A1 (en) * 1996-06-20 1997-12-24 Kabushiki Kaisha Toshiba Thermal deformation member for electron tube, color picutre tube using the same, thermal deformation member for current controller and circuit breaker using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997049110A1 (en) * 1996-06-20 1997-12-24 Kabushiki Kaisha Toshiba Thermal deformation member for electron tube, color picutre tube using the same, thermal deformation member for current controller and circuit breaker using the same
GB2320961A (en) * 1996-06-20 1998-07-08 Toshiba Kk Thermal deformation member for electron tube,color picture tube using the same,thermal deformation member for current controller and circuit breaker
US6069437A (en) * 1996-06-20 2000-05-30 Kabushiki Kaisha Toshiba Thermal deformation member for electron tube and color picture tube using thereof, and thermal deformation member for electric current control and circuit breaker and using thereof
GB2320961B (en) * 1996-06-20 2000-11-15 Toshiba Kk Thermal deformation member for electron tube, and thermal deformation member for electric current control and circuit breaker using thereof

Also Published As

Publication number Publication date
JPS5821588A (en) 1983-02-08

Similar Documents

Publication Publication Date Title
JPS632477B2 (en)
JP2000190020A (en) Manufacture of plate and bar and manufacture of welded groove tube
JP3446016B2 (en) Pack rolling method
KR20190060699A (en) Hot rolling process of high strength metal sheet material and sheet produced using the same
JPS5690546A (en) Composite material for semiconductor part
US3628235A (en) Method of making edgelay material
US2898667A (en) Method of preventing edge cracking in the rolling of stainless steel
JPS6350112B2 (en)
US1934673A (en) Metallic joint and method of forming it
JPS59104202A (en) Cold rolling method of ferritic stainless steel
JP3283695B2 (en) Large area metal sheet manufacturing method
JPS59183906A (en) Method for rolling ti-base alloy
JP2543749B2 (en) Manufacturing method of Ni-copper alloy clad plate
JPH04367381A (en) Abreast contact member and its manufacture
JPS59212103A (en) Manufacture of rolled shape-sheet
JPH07108406B2 (en) Pack rolling method
JPS6258477B2 (en)
JPS60148687A (en) Production of composite material
JPS643012B2 (en)
JPS6356034B2 (en)
JPH0371231B2 (en)
JPS6242716B2 (en)
US1718750A (en) Method of manufacturing bimetallic thermostats
JPS6344475B2 (en)
JPH0373361B2 (en)