JPS63247643A - Method for measuring suspended bacteria - Google Patents

Method for measuring suspended bacteria

Info

Publication number
JPS63247643A
JPS63247643A JP62079788A JP7978887A JPS63247643A JP S63247643 A JPS63247643 A JP S63247643A JP 62079788 A JP62079788 A JP 62079788A JP 7978887 A JP7978887 A JP 7978887A JP S63247643 A JPS63247643 A JP S63247643A
Authority
JP
Japan
Prior art keywords
bacteria
air
sample
sample air
pulses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62079788A
Other languages
Japanese (ja)
Inventor
Masao Saruyama
猿山 政雄
Tsutomu Ishii
力 石井
Kenji Kadoma
角間 健二
Kuniki Sugiyama
訓樹 杉山
Masayoshi Tsuchiya
土屋 政義
Shunji Okuda
奥田 舜治
Masato Aoki
正人 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kondo Kogyo Co Ltd
Original Assignee
Kondo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kondo Kogyo Co Ltd filed Critical Kondo Kogyo Co Ltd
Priority to JP62079788A priority Critical patent/JPS63247643A/en
Publication of JPS63247643A publication Critical patent/JPS63247643A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To permit measurement of the number of bacteria in real time by projecting UV rays to sample air during sampling at a prescribed suction rate and measuring the number of pulses, pulse crest value and pulse width of the fluorescent spectra emitted from the bacteria. CONSTITUTION:The light from an ultra-high pressure mercury lamp 1 is focused through a condenser lens 2 and an excitation filter 3 to a UV ray excitation part 5 in a sample air introducing pipeline 4. On the other hand, a suction pump 9 is connected through a flow meter 7 and a needle valve 8 to a terminal 4b of the pipeline 4 and the UV rays are projected to this air to cause the bacteria in the air sample to emit excited fluorescence. The fluorescent spectra from the bacteria are condensed by a condenser lens 10 and are introduced to a spectroscope 11. The spectra are further converted to an electric signal by a photomultiplier 12. The electric signal is inputted through an amplifier 13 to a wave analyzer 14. The number of pulses, pulse crest value, and pulse width are simultaneously measured in the analyzer 14 and the bacteria in the sample air are measured in real time from the measured value.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、空気中に浮遊する細菌のh↑測方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring h↑ of bacteria floating in the air.

[従来の技術] 従来、空気中に浮″f1″gる細菌を測定する手段とし
ては、例えばスリットナンプラー、アンダーセン瞥ナン
プラー等があり、それ等は吸引採取した空気を培養基を
入れたシャーレに吹付けて、サンプル空気中の細菌を培
養し、培養した細菌のコロニー数を測定するものである
[Prior Art] Conventionally, as a means of measuring bacteria floating in the air, there are, for example, a slit sample plate and an Andersen plate sample plate, which blow collected air into a petri dish containing a culture medium. It is used to culture bacteria in sample air and measure the number of colonies of cultured bacteria.

[発明が解決しようとする問題点] ところで、前記従来の如く採取したサンプル空気中の細
菌を培養するためには、24時間〜48時間を要し、細
菌のコロニー数を測定するまでに時間がかかりすぎると
いう問題点があり、このことは環境改善のための対応措
置を直ちに行なうことができないということになる。
[Problems to be Solved by the Invention] By the way, it takes 24 to 48 hours to culture the bacteria in the air sample collected in the conventional manner, and it takes a long time to measure the number of bacterial colonies. The problem is that it takes too long, which means that immediate action cannot be taken to improve the environment.

[問題点を解決するための手段] 本発明は、前記従来の問題点を解決すべくなされたもの
であって、その要旨とするところは、所定の吸引量にて
採取中のナンプル空気に紫外線を照射して、サンプル空
気中の細菌を励起蛍光発光させ、このときの蛍光スペク
トルを電気信号に変換し、この変換された電気信号にお
けるパルス数と、パルス波高値と、パルス幅とから、サ
ンプル空気中の細菌を計測することにある。
[Means for Solving the Problems] The present invention has been made to solve the above-mentioned conventional problems, and the gist thereof is to apply ultraviolet rays to the sample air being collected at a predetermined suction amount. The bacteria in the sample air are irradiated to excite the bacteria to emit fluorescence, and the fluorescence spectrum at this time is converted into an electrical signal.The number of pulses, pulse height value, and pulse width of the converted electrical signal are used to determine the sample size. The purpose is to measure bacteria in the air.

し作用] 細菌は主成分がほとんど蛋白質であって、代謝反応をも
った有は物であり、本発明は紫外線を照射したときの物
質の残光特性と、蛍光スペクトル分析とによって一義的
に定まるパルス数と、パルス波高値と、パルス幅とから
、サンプル空気中の細菌数をリアルタイムに胴側できる
Bacteria are creatures whose main components are mostly proteins and have metabolic reactions, and the present invention is uniquely determined by the afterglow characteristics of substances when irradiated with ultraviolet rays and fluorescence spectrum analysis. The number of bacteria in the sample air can be determined in real time from the pulse number, pulse height value, and pulse width.

[実施例] 次に本発明方法の実施例を図面に基づいて説明する。[Example] Next, an embodiment of the method of the present invention will be described based on the drawings.

第1図に示す如く、超高圧水銀灯1からの光を集光レン
ズ2にて集光すると共に、励起フィルター3を介して、
サンプル空気導入管路4の中心線と直交するように、サ
ンプル空気導入管路4中における紫外線励起部5へ焦点
を合わせる。なお、6は光トラップである。
As illustrated in FIG.
The ultraviolet ray excitation section 5 in the sample air introduction pipe 4 is focused so as to be perpendicular to the center line of the sample air introduction pipe 4. Note that 6 is an optical trap.

一方、前記ナンプル空気導入管路4の管路端末4bに、
流lHf7、ニードルバルブ8を介して吸引ポンプ9を
連結し、サンプル空気導入管路4の′す”ンプル空気導
入口4aから前記紫外線励起部5内へ、外部、例えば室
内の空気を吸引し、この吸引したサンプル空気に紫外線
を照射して、サンプル空気中の細菌を励起蛍光発光させ
る。
On the other hand, at the pipe terminal 4b of the Nampuru air introduction pipe 4,
A suction pump 9 is connected to the flow lHf7 through a needle valve 8, and external, for example, indoor air is sucked into the ultraviolet excitation unit 5 from the sample air introduction port 4a of the sample air introduction conduit 4. The sucked sample air is irradiated with ultraviolet light to excite bacteria in the sample air to cause them to emit fluorescence.

そして、第2図に示す如く、前記紫外線励起部5におけ
る光軸上の焦点位置と直角な、散乱光の影響を受けない
位置に設置された集光レンズ10によって、前記励起蛍
光発光された細菌からの蛍光スペクトルを集光すると共
に、分光器11に導入して分光し、更にフォトマルチプ
ライヤ−12により電気信号に変換し、この変換された
電気信号を増幅器13を介して波形分析器14へ入力さ
け、この波形分析器14によりパルス数と、パルス波高
値と、パルス幅とを同時に測定し、これ等パルス数と、
パルス波高値と、パルス幅との測定値から、サンプル空
気中の細菌をバ゛1測する。
As shown in FIG. 2, the bacteria emitted from the excited fluorescent light are detected by a condenser lens 10 installed at a position not affected by scattered light and perpendicular to the focal position on the optical axis of the ultraviolet excitation unit 5. At the same time, the fluorescence spectra from Upon input, the waveform analyzer 14 simultaneously measures the number of pulses, the pulse height value, and the pulse width, and calculates the number of pulses and the pulse width.
Bacteria in the sample air are determined from the pulse height and pulse width measurements.

実験例 試験的大腸菌発生源(3,0x108個/d>から大腸
菌を閉空間に粒子として発生させ、この大腸菌の粒子を
含む空気をアンダーセンサンプラ−(吸引量28.3℃
/―)とスリットリンプラー(吸引量33.3℃/―)
で採取し、細菌数を測定したところ、67個/100f
l〜1025個/1004!であった。
Experimental Example Escherichia coli was generated as particles in a closed space from a test source of Escherichia coli (3,0 x 108 particles/d), and the air containing the Escherichia coli particles was collected using an Andersen sampler (suction volume 28.3°C).
/-) and slit rinser (suction amount 33.3℃/-)
When the number of bacteria was measured, it was 67/100f.
l~1025 pieces/1004! Met.

同一の大腸菌発生源(3,0XIO8個/d)から本発
明方法の実施例におけるサンプル空気導入管路へ大腸菌
(生菌)を吸引12527分にて導入し、超高圧水銀灯
(250W>の光により大腸菌を励起蛍光発光させ、フ
ォトマルチプライヤ−の印加電圧を一400Vにし、波
形分析器(オシロスコープ)にて1分間のパルス数を目
視により胴側したところ、約50〜60パルスであった
Escherichia coli (live bacteria) was sucked into the sample air introduction conduit in the example of the method of the present invention from the same source of Escherichia coli (3,0XIO8 pieces/d) for 12,527 minutes, and then exposed to light from an ultra-high pressure mercury lamp (250 W). E. coli was excited to emit fluorescence, the voltage applied to the photomultiplier was set to 1,400 V, and the number of pulses per minute was visually measured using a waveform analyzer (oscilloscope), and the number was approximately 50 to 60 pulses.

このパルス数を100ft中の大腸菌数に換算すると、
約200個/100λ〜240個/1002となり、前
記アンダーセンサンプラー、スリットサンプラーによる
場合の測定値内にあることが確認された。
Converting this number of pulses to the number of E. coli in 100ft is:
It was confirmed that the value was about 200 pieces/100λ to 240 pieces/1002, which was within the measurement values obtained using the Andersen sampler and slit sampler.

「発明の効果] 以上述べた如く、本発明に係る浮遊細菌の計測方法にJ
:れば、採取したサンプル空気中の細菌数をリアルタイ
ムに計測できるので、環境改善のための対応措置を直ち
に行なうことができる。
“Effects of the Invention” As stated above, the method for measuring airborne bacteria according to the present invention
: Since the number of bacteria in the sampled air can be measured in real time, countermeasures can be taken immediately to improve the environment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施例を示す正面図的ブロック図
、第2図は同上の平面図的ブロック図である。 1・・・・・・・・・超高圧水銀灯、2・・・・・・・
・・集光レンズ、訃・・・・・・・・励起フィルター、 4・・・・・・・・・サンプル空気導入管路、5・・・
・・・・・・紫外線励起部、6・・・・・・・・・光ト
ラップ、7・・・・・・・・・流量計、 8・・・・・
・・・・ニードルバルブ、9・・・・・・・・・吸引ポ
ンプ、 10・・・・・・集光レンズ、11・・・・・
・分光器、 12・・・・・・フォトマルチプライヤー、13・・・
・・・増幅器、 14・・・・・・波形分析器昭和62
年 4月 2日
FIG. 1 is a front block diagram showing an embodiment of the method of the present invention, and FIG. 2 is a plan block diagram of the same. 1・・・・・・・・・Ultra high pressure mercury lamp, 2・・・・・・・・・
...Condensing lens, Excitation filter, 4... Sample air introduction pipe, 5...
......Ultraviolet excitation section, 6......Light trap, 7...Flowmeter, 8...
...Needle valve, 9...Suction pump, 10...Condensing lens, 11...
・Spectrometer, 12...Photomultiplier, 13...
...Amplifier, 14...Waveform analyzer 1982
April 2nd

Claims (1)

【特許請求の範囲】[Claims] 所定の吸引量にて採取中のサンプル空気に紫外線を照射
して、サンプル空気中の細菌を励起蛍光発光させ、この
ときの蛍光スペクトルを電気信号に変換し、この変換さ
れた電気信号におけるパルス数と、パルス波高値と、パ
ルス幅とから、サンプル空気中の細菌を計測することを
特徴とする浮遊細菌の計測方法。
The sample air being collected is irradiated with ultraviolet rays at a predetermined amount of suction, the bacteria in the sample air are excited and emit fluorescence, the fluorescence spectrum at this time is converted into an electrical signal, and the number of pulses in this converted electrical signal is calculated. A method for measuring airborne bacteria, characterized by measuring bacteria in sample air from pulse wave height values and pulse widths.
JP62079788A 1987-04-02 1987-04-02 Method for measuring suspended bacteria Pending JPS63247643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62079788A JPS63247643A (en) 1987-04-02 1987-04-02 Method for measuring suspended bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62079788A JPS63247643A (en) 1987-04-02 1987-04-02 Method for measuring suspended bacteria

Publications (1)

Publication Number Publication Date
JPS63247643A true JPS63247643A (en) 1988-10-14

Family

ID=13699952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62079788A Pending JPS63247643A (en) 1987-04-02 1987-04-02 Method for measuring suspended bacteria

Country Status (1)

Country Link
JP (1) JPS63247643A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2378752A (en) * 2001-05-02 2003-02-19 Univ Hertfordshire Optical detection of the individual airborne biological particles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5766342A (en) * 1980-04-28 1982-04-22 Agency Of Ind Science & Technol Optical measuring method for suspension particles in medium
JPS60230040A (en) * 1984-04-27 1985-11-15 Mitsubishi Electric Corp Method for measuring number of mathane bacteria and methane forming activity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5766342A (en) * 1980-04-28 1982-04-22 Agency Of Ind Science & Technol Optical measuring method for suspension particles in medium
JPS60230040A (en) * 1984-04-27 1985-11-15 Mitsubishi Electric Corp Method for measuring number of mathane bacteria and methane forming activity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2378752A (en) * 2001-05-02 2003-02-19 Univ Hertfordshire Optical detection of the individual airborne biological particles

Similar Documents

Publication Publication Date Title
Ahlquist et al. A new instrument for evaluating the visual quality of air
US20120315666A1 (en) Detection apparatus and method for detecting airborne biological particles
CN105911032A (en) Apparatus and method for detecting SO2 in SF6 electrical equipment based on ultraviolet fluorescence
Kawaguchi et al. Investigation of airborne particles by inductively coupled plasma emission spectrometry calibrated with monodisperse aerosols
JPS63233351A (en) Instantaneous measuring device for content of gas in aerosol
US2551542A (en) Fluorophotometer
CN104568690A (en) PM2.5 dust detection device and PM2.5 dust detection system of wet-type electric dust collector
Apatin et al. Automated laser excited atomic fluorescence spectrometer for determination of trace concentrations of elements
JPS63247643A (en) Method for measuring suspended bacteria
CN114459965A (en) Aerosol monitoring system and method
CN214408698U (en) Raman spectrum and ion mobility spectrum combined detection device
CN108802009A (en) A method of detecting heavy metal using plasma atomic emission spectrometer
WO2023231385A1 (en) Enrichment detection method and apparatus for trace heavy metal elements in liquid
Pazdur et al. Comparison of the radiocarbon dating methods used in the Gliwice Radiocarbon Laboratory
JP4792611B2 (en) Particle measuring device
CN100593116C (en) X fluorescent multi-element analyser
CN204613063U (en) A kind of wet electrical dust precipitator PM2.5 dust investigating
CN2886561Y (en) Multi-element analyzer
CN208921622U (en) A kind of on-line measuring device of atmosphere pollution mercury and its isotope
WO2019048322A3 (en) Aerosol particle measuring device for determining materials in real time by means of fluorescence lifetime measurement in the frequency range
JP2003215021A (en) Method for measuring suspended particulate matter in atmosphere
CN110085505A (en) The analysis method of particle mobility mass spectrograph and particle
Marton et al. Automatic instrument for electron scattering measurements
Nakayama et al. Exoelectron measurement apparatus incorporated in a scanning electron microscope
CN219590237U (en) Tandem type environment compensation type high-field asymmetric waveform ion mobility spectrometry detection device