JPS63247623A - Gamma-ray level gauge - Google Patents

Gamma-ray level gauge

Info

Publication number
JPS63247623A
JPS63247623A JP8097287A JP8097287A JPS63247623A JP S63247623 A JPS63247623 A JP S63247623A JP 8097287 A JP8097287 A JP 8097287A JP 8097287 A JP8097287 A JP 8097287A JP S63247623 A JPS63247623 A JP S63247623A
Authority
JP
Japan
Prior art keywords
gamma
level
detectors
measured
ray source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8097287A
Other languages
Japanese (ja)
Inventor
Yoshihiro Sase
佐瀬 義広
Mitsuo Kubota
三雄 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8097287A priority Critical patent/JPS63247623A/en
Publication of JPS63247623A publication Critical patent/JPS63247623A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PURPOSE:To accurately correct concentration by a single ray source by arranging two detectors which detect gamma rays emitted by the single gamma-ray source at a specific three-dimensional angle so that the gamma rays detected by them differ in transmission distance in a body to be measured. CONSTITUTION:The gamma-ray source 10 is put in a shielded container 12 and arranged so as to emit gamma rays slantingly to the varying direction of the level of the body 16 to be measured in a vessel 14. Then the two detectors 20A and 20B are positioned in a spread 18 of the gamma-ray beam so that the gamma rays differ in transmission distance in the body 16. Signals from those detectors 20A and 20B are converted by electronic circuit parts 22A and 22B into DC currents, which are converted logarithmically by logarithmic converters 24A and 24B. Those signals are inputted to a computing element 26, which outputs a level value after concentration correction using a transmission expression and the relational expression between the transmission distance and level.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は化学プラントなどにおいてベッセル内の流体の
レベルを測定するγ線レベル計に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gamma ray level meter for measuring the level of fluid in a vessel in a chemical plant or the like.

〔従来の技術〕[Conventional technology]

γ線レベル計は、実開昭58−92628号公報に示さ
れているように、一対のγ線源と検知器とを被測定物に
対して斜めに相対するように配置している。被測定物の
レベルが変化すると、検知器に到達するγ線の強度が劣
化するから、これを検知してレベル測定を行なう。γ線
の透過式は(1)式で表わされる。
As shown in Japanese Utility Model Application Publication No. 58-92628, a gamma ray level meter has a pair of gamma ray source and a detector arranged diagonally opposite to an object to be measured. When the level of the object to be measured changes, the intensity of the gamma rays reaching the detector deteriorates, so this is detected and the level is measured. The γ-ray transmission equation is expressed by equation (1).

1=Ioe″″μmpx          、−a)
ここで、工 :透過比$1xのときのγ線強度Io:x
=Oのときのγ線強度 μm:質量吸収係数 ρ :被測定物の密度 X :被測定物のγ線透過距離 ところで、一般には密度ρは一定値ではなく、ある範囲
で変化することが多い。密度ρが変化すると、同じγ線
透過距離に対して検知されるγ線強度が変化するため補
正が必要である。
1=Ioe″″μmpx, -a)
Here, E: γ-ray intensity Io when the transmission ratio is $1x: x
γ-ray intensity μm when = O: Mass absorption coefficient ρ: Density of the object to be measured . When the density ρ changes, the gamma ray intensity detected for the same gamma ray transmission distance changes, so correction is necessary.

このため、密度補正のための別個の一対のγ線源と検出
器を用いることが行われている。
For this reason, a separate pair of gamma ray source and detector for density correction is used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、線源と検出器をそれぞれ二個必要とす
ると共に、レベルと密度の測定場所が異なり正確な密度
補正ができないという問題を有している。
The above-mentioned conventional technology requires two radiation sources and two detectors, and has the problem that the measurement locations for level and density are different and accurate density correction cannot be performed.

本発明の目的は、単一の線源を用いて正確な密度補正が
行えるγ線レベル計を提供することにある。
An object of the present invention is to provide a gamma ray level meter that can perform accurate density correction using a single radiation source.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、単一のγ線源から所定の立体角で放出され
るγ線を検知する二つの検知器を、二つの検知器によっ
て検知されるγ線の被測定物の透過距離が異なるように
配置することによって達成される。
The above purpose is to use two detectors that detect gamma rays emitted from a single gamma ray source at a predetermined solid angle, so that the gamma rays detected by the two detectors have different transmission distances through the measured object. This is achieved by placing the

〔作用〕[Effect]

すなわち、γ線の被測定物の透過距離XI、 XZを異
ならしめると、線源は一個、γ線は一本ではあるが二つ
の透過式が得られることになる。しかし、未知数は密度
ρ、透過距離Xlt Xi2と三つ存在しているため、
このままではρ、xi、XZを求めることはできない。
That is, if the transmission distances XI and XZ of the gamma ray through the object to be measured are made different, two transmission formulas are obtained, although there is one radiation source and one gamma ray. However, since there are three unknowns: density ρ and transmission distance Xlt Xi2,
In this state, ρ, xi, and XZ cannot be determined.

一方、透過距離Xi、XZとレベルhとの関係について
考慮してみると、両者は対応関係を有しており、透過距
離xl、X2はレベルhの関数として表わすことができ
る。したがって、上記二つの透過式と透過距離とレベル
との関係式を用いることにより、密度の補正されたレベ
ル値を得ることができる。しかも、γ線によって測定し
ている場所がほぼ同一であるため、正確な密度補正を行
うことができる。
On the other hand, when considering the relationship between the transmission distances Xi, XZ and the level h, the two have a corresponding relationship, and the transmission distances xl, X2 can be expressed as functions of the level h. Therefore, by using the above two transmission equations and the relational expression between the transmission distance and the level, it is possible to obtain a density-corrected level value. Moreover, since the locations measured by γ-rays are almost the same, accurate density correction can be performed.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面に基づいて説明する。 Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図において、γ線源10はしやへい容器12に収納
されており、ベッセル14内の被測定物16のレベルの
変化方向に対しγ線を斜めに放出するiうに配置されて
いる。γ線ビーム広がり18中に位置すると共に、γ線
の被測定物16中の透過距離が異なるように二つの検知
器20A。
In FIG. 1, a gamma ray source 10 is housed in a sealed container 12, and is arranged so as to emit gamma rays obliquely with respect to the direction of change in the level of an object 16 to be measured within a vessel 14. Two detectors 20A are located in the gamma ray beam spread 18 and are arranged such that the gamma rays have different transmission distances through the object 16.

20Bが設置されている。検出器20A、20Bからの
信号は、電子回路部22A、22Bで直流電流に変換さ
れ、対数変換器24A、24Bで対数変換される。この
信号は演算器26に入力され。
20B is installed. Signals from the detectors 20A, 20B are converted into direct current by electronic circuit units 22A, 22B, and logarithmically converted by logarithmic converters 24A, 24B. This signal is input to the calculator 26.

密度補正の行なわれたレベル値が出力される。The density-corrected level value is output.

次に密度補正について、第2図を用いて説明する。Next, density correction will be explained using FIG. 2.

γ線の被測定物16の透過距離をXl、Xlとすると、
各々の検出器2OA、20Bに到達するγ線の透過式は
次式になる。
If the transmission distance of the gamma ray through the measured object 16 is Xl, Xl,
The transmission formula of the γ-rays reaching each of the detectors 2OA and 20B is as follows.

工z=I。、−pl″ρ8”         ・・・
(2)Iz=Ioze−”ρXZ         、
、、(3)すなわち、線源は一個、γ線ビームは一本で
はあるが透過式が二つ得られる。しかし、未知数は密度
ρ、透過距離Xl、X2と三つ存在するため。
Engineering z=I. , -pl″ρ8″ ・・・
(2) Iz=Ioze−”ρXZ,
,, (3) That is, although there is one radiation source and one gamma ray beam, two transmission systems can be obtained. However, there are three unknowns: density ρ, transmission distances Xl, and X2.

二つの透過式からは次式のρX1.ρx2が得られるだ
けでρ、Xl、X2を各々求めることはできない。
From the two transmission equations, the following equation ρX1. It is not possible to obtain each of ρ, Xl, and X2 only by obtaining ρx2.

p x1=   n n  (Ioz/ Il)   
   −(4)μm p Xl:   Q n  (Ioz/ It)   
   −(5)μm しかるに、Xl、Xlは第2図の幾何条件が定まればレ
ベルh関数として表わすことができるから、これを(4
) 、 (5)式に代入するとρとhを求めることがで
きる。検出器20A、20Bに対するγ線の照射角変を
θ工、θ2とすると sinθ1 sinθ2 となる、ここで、aはベッセル14とγ線源10の距離
、hは液面とγ線源10の距離である。
p x1= n n (Ioz/Il)
-(4) μm p Xl: Q n (Ioz/It)
-(5) μm However, since Xl and Xl can be expressed as a level h function if the geometric conditions shown in Fig. 2 are determined, this can be expressed as (4
), ρ and h can be found by substituting into equation (5). If the change in the irradiation angle of γ-rays for the detectors 20A and 20B is θ and θ2, then sin θ1 sin θ2 is obtained, where a is the distance between the vessel 14 and the γ-ray source 10, and h is the distance between the liquid level and the γ-ray source 10. It is.

(2)式は次から導入される。Equation (2) will be introduced as follows.

b :  (b+x1) =C: h h−cb であるから、  Xi” であるからこれらを代入すると(6)式が得られる。(
7)式についても同様である。
Since b: (b+x1) = C: h h-cb, and Xi'', by substituting these, formula (6) is obtained. (
The same applies to equation 7).

(6) 、 (7)式を(4) 、 (5)式に代入し
てρを求ぬると、 μrn (h−atanθ1) μ1Il(h−atanθ2) (8) 、 (9)式からhを求めると・・・(10) 同様に(8) 、 (9)式からρを求めると・・・(
11) が得られる。(10) 、  (11)式においてa、
θ1゜θ2は幾何条件で与えられる値であるから、γ線
強度II、I2を測定することによりレベルh、密度ρ
を求めることができる。ただし、レベル計としての測定
範囲はXl:Oとなるレベルを0%、 Xiが最大にな
るレベルを100%とする。したがって、レベル計とし
ては H=h−C・・・(12) を出力する。すなわち、必要な測定範囲が得られるよう
に幾何条件を定めらばよい。
Substituting equations (6) and (7) into equations (4) and (5) to find ρ, we get μrn (h-atanθ1) μ1Il (h-atanθ2) (8) From equations (9), we get h. If we find it...(10) Similarly, if we find ρ from equations (8) and (9)...(
11) is obtained. In equations (10) and (11), a,
Since θ1゜θ2 are values given by geometric conditions, the level h and density ρ can be determined by measuring the γ-ray intensities II and I2.
can be found. However, the measurement range of the level meter is 0% for the level where Xl:O is achieved and 100% for the level where Xi is maximum. Therefore, the level meter outputs H=h-C (12). That is, the geometric conditions may be determined so as to obtain the necessary measurement range.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、液体のレベル、密度が同時に変化して
も単一の線源を用いて測定することができる。しかも、
γ線径路がほぼ同一であるため、正確な密度補正を行う
ことができる。
According to the present invention, simultaneous changes in liquid level and density can be measured using a single radiation source. Moreover,
Since the γ-ray paths are almost the same, accurate density correction can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロック図、第2図は
本発明を説明する原理図である。
FIG. 1 is a block diagram showing one embodiment of the invention, and FIG. 2 is a principle diagram explaining the invention.

Claims (1)

【特許請求の範囲】[Claims] 1、単一のγ線源と二つの検知器とを有し、前記単一の
γ線源と二つの検知器とを被測定物に対して斜めに相対
すると共に、前記二つの検知器によつて検知されるγ線
の前記被測定物の透過距離が異なるように配置するよう
にしたことす特徴とするγ線レベル計。
1. It has a single gamma ray source and two detectors, and the single gamma ray source and the two detectors are diagonally opposed to the object to be measured, and the two detectors are A gamma ray level meter characterized in that the gamma ray level meter is arranged such that the distance through which the detected gamma rays pass through the object to be measured is different.
JP8097287A 1987-04-03 1987-04-03 Gamma-ray level gauge Pending JPS63247623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8097287A JPS63247623A (en) 1987-04-03 1987-04-03 Gamma-ray level gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8097287A JPS63247623A (en) 1987-04-03 1987-04-03 Gamma-ray level gauge

Publications (1)

Publication Number Publication Date
JPS63247623A true JPS63247623A (en) 1988-10-14

Family

ID=13733427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8097287A Pending JPS63247623A (en) 1987-04-03 1987-04-03 Gamma-ray level gauge

Country Status (1)

Country Link
JP (1) JPS63247623A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03181840A (en) * 1989-12-12 1991-08-07 Kenichi Hasegawa Method and apparatus for measuring density
US10215611B2 (en) 2014-10-10 2019-02-26 Johnson Matthey Public Limited Company Apparatus and method for determining a level of a fluid within a vessel
EP4019914A1 (en) * 2020-12-22 2022-06-29 BERTHOLD TECHNOLOGIES GmbH & Co. KG Limit switch, system and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03181840A (en) * 1989-12-12 1991-08-07 Kenichi Hasegawa Method and apparatus for measuring density
US10215611B2 (en) 2014-10-10 2019-02-26 Johnson Matthey Public Limited Company Apparatus and method for determining a level of a fluid within a vessel
EP4019914A1 (en) * 2020-12-22 2022-06-29 BERTHOLD TECHNOLOGIES GmbH & Co. KG Limit switch, system and method

Similar Documents

Publication Publication Date Title
US3581090A (en) Utilizing penetrating radiation
JPH0274890A (en) Coupling type scintillator
JP4214176B2 (en) Neutron measurement system
JPS63247623A (en) Gamma-ray level gauge
US4837442A (en) Neutron range spectrometer
CN107449789A (en) Sample concentration detection means and system
US6930311B1 (en) Lightweight neutron remmeter
Hankins Monitoring intermediate energy neutrons
SU739376A1 (en) Device for measuring size and count of aerosol particles
RU2128849C1 (en) Radioisotope altimeter
JPH0242311A (en) Detector for inclined angle
US4103148A (en) Dynamic pulse difference circuit
RU2061244C1 (en) Dosimeter-radiometer of ionizing radiation
US3483371A (en) Distance measuring between two points by the use of penetrative radiation
RU2359256C1 (en) Radioisotropic device for process parametres control
JPS61205886A (en) Detection of radiation dosage
Reginato et al. Temperature stabilization of gamma ray transmission equipment
SU678279A1 (en) Arrangement for measuring contact wire geometrical parameters
JPH052113B2 (en)
JPH03289519A (en) Density meter for gamma-ray level
JPS59114446A (en) Apparatus for measuring moisture content of particulate material
JPS5451576A (en) Concentration measurement method
US3416082A (en) Ratio computer
JPH02249960A (en) Method for measuring concentration of element
Crawford et al. Experimental calibration of semiconductor detector pulse-height response to protons