JPS63247582A - Low-temperature separating method of carbon monoxide - Google Patents

Low-temperature separating method of carbon monoxide

Info

Publication number
JPS63247582A
JPS63247582A JP62080330A JP8033087A JPS63247582A JP S63247582 A JPS63247582 A JP S63247582A JP 62080330 A JP62080330 A JP 62080330A JP 8033087 A JP8033087 A JP 8033087A JP S63247582 A JPS63247582 A JP S63247582A
Authority
JP
Japan
Prior art keywords
gas
carbon monoxide
liquid
nitrogen
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62080330A
Other languages
Japanese (ja)
Inventor
富阪 泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP62080330A priority Critical patent/JPS63247582A/en
Publication of JPS63247582A publication Critical patent/JPS63247582A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0261Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0223H2/CO mixtures, i.e. synthesis gas; Water gas or shifted synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/40Processes or apparatus using other separation and/or other processing means using hybrid system, i.e. combining cryogenic and non-cryogenic separation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/66Regenerating the adsorption vessel, e.g. kind of reactivation gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/80Processes or apparatus using other separation and/or other processing means using membrane, i.e. including a permeation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/904External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、一酸化炭素と水素とを1成分とする混合ガ
スから一酸化炭素を分離する一酸化炭素の深冷分離装置
に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) This invention relates to a cryogenic separation device for carbon monoxide that separates carbon monoxide from a mixed gas containing carbon monoxide and hydrogen as one component. .

(従来技術) まず、従来の処理方法を第7図によって説明する。原料
ガスは通常一酸化炭素が30〜70%、メタンなどの炭
化水素が数%以下、炭酸ガスおよび水分が微澄含まれて
おり、20〜50 k(1/ Cm29の圧力で分離プ
ロセスに供給される。供給された原料ガスはそのまま、
または5℃程度にまで冷却された後、吸着精製器1へ導
かれ、ここでガス中の水分および炭酸ガスが吸着除去さ
れる。
(Prior Art) First, a conventional processing method will be explained with reference to FIG. The raw material gas usually contains 30 to 70% carbon monoxide, a few percent or less of hydrocarbons such as methane, and a fine amount of carbon dioxide and water, and is supplied to the separation process at a pressure of 20 to 50 k (1/Cm29). The supplied raw material gas remains as it is.
Alternatively, after being cooled to about 5° C., the gas is guided to the adsorption purifier 1, where water and carbon dioxide in the gas are adsorbed and removed.

精製された原料ガスは、導管21を通してコールドボッ
クス18中に設けられた深冷部に送られる。導管21か
らのガスは主熱交換器4に導かれ、ここでその液化温度
(圧力および組成によって変る)付近まで冷却される。
The purified raw material gas is sent through the conduit 21 to a deep cooling section provided in the cold box 18 . The gas from conduit 21 is led to main heat exchanger 4 where it is cooled to around its liquefaction temperature (which varies depending on pressure and composition).

なお、冷却を助けるために、冷凍磯3が付設されること
もある。
Note that a frozen rocky shore 3 may be attached to assist cooling.

液化温度まで冷却された原料ガスは、導管22を通して
蒸溜塔6の底部に設けられた凝縮−蒸発器13に導かれ
、ここで原料ガス中の一酸化炭素の一部は液化する。つ
いで気−液分離器7で液化留分を除去された後、ガスは
導管23を通して窒素冷却器9に導かれ、減圧下の液体
窒素により−190〜−200°Cまで冷却され、ガス
中に含有される一酸化炭素の大部分は液化される。そし
て気−液分離器10に送られて液化留分を除去された後
、その大部分が水素であるガス留分は導管24を通して
液体CO過冷却器12から主熱交換器4に送られ、主熱
交換器4において加熱されて系外に排出される。この水
素ガス中には一酸化炭素が7〜10%含有されており、
この一酸化炭素は無駄に廃棄されることになる。また上
記水素ガスの濃度をできるだけ高めるため、窒素冷却器
9での充分な冷却が必要であり、ここで大酒の液体窒素
が必要となる。
The raw material gas cooled to the liquefaction temperature is led through the conduit 22 to the condenser-evaporator 13 provided at the bottom of the distillation column 6, where a portion of the carbon monoxide in the raw material gas is liquefied. After the liquefied fraction is removed in the gas-liquid separator 7, the gas is led through the conduit 23 to the nitrogen cooler 9, where it is cooled to -190 to -200°C with liquid nitrogen under reduced pressure. Most of the carbon monoxide contained is liquefied. After being sent to the gas-liquid separator 10 to remove the liquefied fraction, the gaseous fraction, the majority of which is hydrogen, is sent from the liquid CO subcooler 12 to the main heat exchanger 4 through conduit 24. It is heated in the main heat exchanger 4 and discharged outside the system. This hydrogen gas contains 7 to 10% carbon monoxide,
This carbon monoxide will be wasted. Further, in order to increase the concentration of the hydrogen gas as much as possible, sufficient cooling with a nitrogen cooler 9 is required, and a large amount of liquid nitrogen is required here.

上記気−液分Ill器7で分離された液化留分は、導管
25を通して液体CO過冷却器12に送られて冷却され
た後、2〜3klj/Cm’ (lまで減圧され、気−
液分離器8に入り、ここで液中に1〜3%の割合で溶解
していた水素弁を放出した後、蒸溜塔6に入る。蒸溜塔
6の操作圧力は通常、大気圧よりもわずかに高い0.1
〜0.3kg/Cm2gである。
The liquefied fraction separated in the gas-liquid fraction Ill 7 is sent to the liquid CO supercooler 12 through the conduit 25 and cooled, and then the pressure is reduced to 2 to 3 klj/Cm' (l, and the gas-liquid fraction is
The liquid enters the liquid separator 8, where the hydrogen valve dissolved in the liquid at a ratio of 1 to 3% is discharged, and then enters the distillation column 6. The operating pressure of the distillation column 6 is usually 0.1 slightly higher than atmospheric pressure.
~0.3 kg/Cm2g.

また気−液分離器10の液化留分は同様に減圧され、気
−液分離器11で水素を放出した後、蒸溜塔6へ入る。
Further, the liquefied fraction in the gas-liquid separator 10 is similarly reduced in pressure, and after releasing hydrogen in the gas-liquid separator 11, it enters the distillation column 6.

気−液分離器8および11より排出されるフラッシュガ
スは、約0.2kO/cm2aまで減圧された後導管2
6で合流し、液体CO過冷却器12、主熱交換器4を通
って加熱された後、系外へ廃ガスとして排出される。
The flash gas discharged from the gas-liquid separators 8 and 11 is depressurized to approximately 0.2 kO/cm2a and then passed through the conduit 2.
6, and after being heated through the liquid CO subcooler 12 and the main heat exchanger 4, it is discharged outside the system as waste gas.

蒸溜塔6へ導かれた液化留分はここで精製され、頂部か
らは高純度の一酸化炭素が導管27を通して取出され、
また底部からはメタンを含有する液体一酸化炭素が導管
28を通して排出され、これらのガスおよび液体はそれ
ぞれ主熱交換器4で加熱され、前者は製品一酸化炭素と
して、また後者はメタンリッチガスとして系外へ排出さ
れる。
The liquefied fraction led to the distillation column 6 is purified here, and high-purity carbon monoxide is taken out from the top through the conduit 27.
Liquid carbon monoxide containing methane is also discharged from the bottom through conduit 28, and these gases and liquids are heated in the main heat exchanger 4, respectively, the former as product carbon monoxide and the latter as methane-rich gas in the system. Expelled outside.

装置全体の冷却は、併設された窒素循環サイクルによっ
て行なわれる。すなわち、循環窒素ガスはまず圧縮機1
4で5〜25 ko/ cm2 gまで圧縮された後、
第1窒素熱交換器15により−100〜−150℃まで
冷却されて導管31を通して送り出され、その一部はw
II116aを通って断熱的に膨脹し、−180〜−1
95℃程度まで温度が低下して第2窒素熱交換器16に
送られる。そして導管31から第2窒素熱交換器16に
送られた残部の高圧窒素を冷却液化する。液化された残
部の窒素ガスは膨脹弁5を通って窒素冷却ia9に供給
される。
Cooling of the entire device is provided by an attached nitrogen circulation cycle. That is, the circulating nitrogen gas first passes through the compressor 1.
After being compressed to 5-25 ko/cm2 g in 4
It is cooled to -100 to -150°C by the first nitrogen heat exchanger 15 and sent out through the conduit 31, and a part of it is
expands adiabatically through II116a, -180 to -1
The temperature drops to about 95° C. and the nitrogen is sent to the second nitrogen heat exchanger 16. The remaining high-pressure nitrogen sent from the conduit 31 to the second nitrogen heat exchanger 16 is cooled and liquefied. The remaining liquefied nitrogen gas is supplied to the nitrogen cooling IA9 through the expansion valve 5.

窒素冷却器9は通常減圧下で操作され、液体窒素は−1
95〜−200℃で蒸発する。この蒸発窒素は導管33
を通って液体CO過冷却器12に送られ、ついで第1窒
素熱交換器15を通って加熱され、真空ブロワ17によ
り昇圧され、低圧の窒素と合流した後、圧縮f!j、1
4へ導かれ、循環する。
The nitrogen cooler 9 is normally operated under reduced pressure, with liquid nitrogen at −1
Evaporates at 95 to -200°C. This vaporized nitrogen is transferred to conduit 33.
through the liquid CO subcooler 12, then heated through the first nitrogen heat exchanger 15, boosted by the vacuum blower 17, and after combining with low pressure nitrogen, compressed f! j, 1
It is led to 4 and circulates.

これらの装置全体を冷却するのに必要な全寒冷量は、主
熱交換器4および第1窒素熱交換器15の高温端におけ
る人熱く系へ入ってくる全ガスの保有熱漬)と出熱(系
外へ排出する全ガスの保有熱量)の差と、コールドボッ
クス18を通って系内へ侵入する熱暑の和に等しく、こ
れらの熱は冷凍113および膨脹fi16aにより糸外
へ取出されている。
The total amount of refrigeration required to cool all of these devices is determined by the amount of heat retained by the hot end of the main heat exchanger 4 and the first nitrogen heat exchanger 15 (heat soaking) of all the gas entering the system, and the heat output. It is equal to the sum of the difference in the amount of heat held by all the gases discharged to the outside of the system and the heat that enters the system through the cold box 18, and this heat is taken out of the yarn by the refrigeration 113 and the expansion fi 16a. There is.

熱交換器の高温端における出入熱差は高温端における温
度、温度差および圧力差と組成によって変るジュール・
トムソン効果によって変り、またコールドボックス18
からの熱侵入量はコールドボックス18の断熱方式によ
って変ってくる。
The heat difference between the input and output at the high temperature end of the heat exchanger is the joule, which varies depending on the temperature, temperature difference, pressure difference, and composition at the high temperature end.
Changed by the Thomson effect, and cold box 18
The amount of heat intrusion from the cold box 18 changes depending on the insulation method of the cold box 18.

上記方法では、深冷部における冷却を充分に行なうため
に液体窒素用の膨1[を具備しており、このため装置が
複雑で高価になるという問題がある。
The above method has a problem in that it is equipped with an expansion chamber 1 for liquid nitrogen in order to perform sufficient cooling in the deep cooling section, which makes the apparatus complicated and expensive.

(発明の目的) この発明はこのような従来の欠点を解消するためになさ
れたものであり、深冷部に膨i機を使用せず、したがっ
て簡単な装置で一酸化炭素を高収率で分離、精製するこ
とができる深冷分離方法を提供するものである。
(Purpose of the Invention) This invention was made in order to eliminate such conventional drawbacks, and it does not use an expansion machine in the cryogenic section, and therefore can produce carbon monoxide in high yield with a simple device. The present invention provides a cryogenic separation method that enables separation and purification.

(発明の構成) この発明は、一酸化炭素と水素とを主成分とする混合ガ
スより一酸化炭素を回収する深冷分離方法であって、吸
着精製器で原料ガス中の二酸化炭素および水分を除去し
た後、原料ガスを気体膜分離器へ導き、ここで水素ガス
を除去することにより一酸化炭素の濃度を高め、このガ
スを深冷部へ供給して深冷分離を行なうようにしたもの
である。
(Structure of the Invention) The present invention is a cryogenic separation method for recovering carbon monoxide from a mixed gas whose main components are carbon monoxide and hydrogen, in which carbon dioxide and moisture in the raw gas are removed by an adsorption purifier. After removal, the raw material gas is led to a gas membrane separator, where hydrogen gas is removed to increase the concentration of carbon monoxide, and this gas is supplied to a cryogenic section for cryogenic separation. It is.

上記深冷部へ供給されたガスをその中に含まれる一酸化
炭木のジュール・トムソン膨脹による寒冷、冷凍機より
供給される寒冷および液体窒素の供給により補助的に供
給される寒冷により冷却、分離精製することができる。
The gas supplied to the deep cooling section is cooled by the Joule-Thomson expansion of carbon monoxide contained therein, by the cold supplied by the refrigerator, and by the cold supplemented by the supply of liquid nitrogen. Can be separated and purified.

上記構成では、混合ガス中の水素ガスを予め気体膜分離
器で除去して、深冷分離を行うようにしており、深冷分
離の段階では水素の除去はわずかな吊となるために、深
冷設備が簡単になり、また水素の除去に伴う一酸化炭素
の随伴も少なく、一酸化炭素の収率を向上させることが
できる。
In the above configuration, hydrogen gas in the mixed gas is removed in advance by a gas membrane separator and cryogenic separation is performed. The cooling equipment becomes simple, and less carbon monoxide is accompanied by hydrogen removal, making it possible to improve the yield of carbon monoxide.

(実施例) 第1図において、原料ガスは、その圧力が従来プロセス
よりも相対的に低い10ka/cm2 g以上で供給さ
れることを除いては、上記第7図に示す従来法と同様の
ものを用いる。また吸着精製器で炭酸ガスおよび水分が
除去される点も上記従来法と同じである。
(Example) In FIG. 1, the raw material gas is the same as the conventional method shown in FIG. use something Also, it is the same as the above conventional method in that carbon dioxide gas and water are removed by an adsorption purifier.

この発明では気体膜分離器2を使用し、吸着精製器1を
出た原料ガスは気体膜分離器2へ導かれるようにしてい
る。気体膜分離器2は原料ガス中の水素を選択的に透過
し、これを水素リッチガスと粗COガスに分離する。気
体膜としては、酢酸セルロース系、ポリイミド系、ポリ
スルホン系、多孔質ガラスなど数多くのものが知られて
いるが、これらのいずれも適用可能であり、また膜形式
も中空糸形、平膜形などいずれの形式であっても適用可
能である。気体膜分離器2は、その透過した水素リッチ
ガスが、水素純度95%以上、圧力は吸@精製器1の加
熱再生に必要な圧力以上に保持されるように操業される
In this invention, a gas membrane separator 2 is used, and the raw material gas exiting the adsorption purifier 1 is guided to the gas membrane separator 2. The gas membrane separator 2 selectively permeates hydrogen in the raw material gas and separates it into hydrogen-rich gas and crude CO gas. Many gas membranes are known, including cellulose acetate, polyimide, polysulfone, and porous glass, but any of these can be applied, and the membrane format can also be hollow fiber, flat membrane, etc. Any format is applicable. The gas membrane separator 2 is operated so that the permeated hydrogen-rich gas is maintained at a hydrogen purity of 95% or higher and at a pressure higher than that required for heating regeneration of the suction purifier 1.

非透過側の粗COガス中の一酸化炭素濃度は、原料ガス
中の一酸化炭素濃度によっても変るが、80%以上を維
持するように操業されることが好ましい。その調整は透
過ガス側の圧力調整によって行なう。
The carbon monoxide concentration in the crude CO gas on the non-permeate side varies depending on the carbon monoxide concentration in the raw material gas, but it is preferable to operate so as to maintain it at 80% or more. This adjustment is performed by adjusting the pressure on the permeate gas side.

第4図に示すように、−m化炭素の圧力の上昇に伴って
ジュール・トムソン効果も上界し、また第5図に示すよ
うに原料ガス中のCO濃度の上昇に伴ってジュール・ト
ムソン効果も向上するので、粗COガス中のCOガス分
圧を向上させることが好ましい。また第6図に示すよう
に、COガスの温度が高いほどジュール・トムソン効果
が小さいことがわかる。
As shown in Figure 4, the Joule-Thomson effect also reaches its upper limit as the pressure of -m carbon increases, and as shown in Figure 5, the Joule-Thomson effect increases as the CO concentration in the raw material gas increases. Since the effect is also improved, it is preferable to improve the CO gas partial pressure in the crude CO gas. Furthermore, as shown in FIG. 6, it can be seen that the higher the temperature of the CO gas, the smaller the Joule-Thompson effect.

粗COガスは主熱交換器4によりその液化開始温度付近
まで冷却された後、蒸溜塔6の底部に設けられた凝縮蒸
発器13に導かれ、ここで一酸化炭素の大部分は液化す
る。そして気−液分離器7で液留分を分離された後、ガ
スは窒素冷却器9に送られてさらに冷却され、一酸化炭
素の大部分は液化する。ついで気−液分離器10で液留
分を除去されたガスは導管24を通して送られ、液体C
O過冷却器12、主熱交換器4を通って系外へ排出され
る。
After the crude CO gas is cooled by the main heat exchanger 4 to around its liquefaction start temperature, it is led to the condensing evaporator 13 provided at the bottom of the distillation column 6, where most of the carbon monoxide is liquefied. After the liquid fraction is separated in the gas-liquid separator 7, the gas is sent to the nitrogen cooler 9 where it is further cooled, and most of the carbon monoxide is liquefied. The gas from which the liquid fraction has been removed in the gas-liquid separator 10 is then sent through conduit 24 to form liquid C.
It passes through the O subcooler 12 and the main heat exchanger 4 and is discharged to the outside of the system.

なお、上記窒素冷却器9に送られるガスは、予め気体膜
分離器2を通して水素が除去されているため、窒素冷却
器9中での冷却では、従来法におけるような大量の液体
窒素の使用は必要ではない。
Note that since hydrogen has been removed from the gas sent to the nitrogen cooler 9 through the gas membrane separator 2 in advance, cooling in the nitrogen cooler 9 does not require the use of a large amount of liquid nitrogen as in the conventional method. Not necessary.

上記気体膜分離器7で分離された液化一酸化炭素は、液
体CO過冷却器12を通って冷却された後、2〜3 k
g/ co+2 gまで減圧されて気−液分離器8に入
り、水素弁を放出した後、蒸溜塔6に入る。また気−液
分離器10で分離された液留分は気−液分離器11を通
され、ここで水素を放出した後、蒸溜塔6に入る。蒸溜
塔6に導かれた液化留分(液体Co)は、ここで精製さ
れ、すなわち上記液体COに対して塔内を上昇してくる
メタンを含有する一酸化炭素ガスが接触し、メタン分は
液中に溶解し、ガスは高純度に精製される。そして頂部
からは高純度の一酸化炭素、底部からはメタンを含有す
る液体一酸化炭素として排出され、これらのガスおよび
液体はそれぞれ主熱交換器4で加熱され、前者は製品一
酸化炭素として、また後者はメタンリッチガスとして系
外に排出される。
The liquefied carbon monoxide separated by the gas membrane separator 7 passes through the liquid CO subcooler 12 and is cooled, and then cools down to 2 to 3 k
The pressure is reduced to g/co+2 g, the gas enters the gas-liquid separator 8, and after discharging the hydrogen valve, it enters the distillation column 6. The liquid fraction separated by the gas-liquid separator 10 is passed through the gas-liquid separator 11, where hydrogen is released, and then enters the distillation column 6. The liquefied fraction (liquid Co) led to the distillation column 6 is purified here. That is, the liquid CO is brought into contact with the carbon monoxide gas containing methane rising in the column, and the methane content is removed. The gas is dissolved in the liquid and purified to high purity. Then, high-purity carbon monoxide is discharged from the top, and liquid carbon monoxide containing methane is discharged from the bottom. These gases and liquids are respectively heated in the main heat exchanger 4, and the former is discharged as product carbon monoxide. The latter is also discharged outside the system as methane-rich gas.

装置全体の冷却は、原料ガスの減圧によるジュール・ト
ムソン効果、冷凍機3および膨脹弁14を通って窒素冷
却器9へ供給される液体窒素により行なわれる。この液
体窒素は、不足する寒冷を補うためのわずかなはだけ供
給される。
The entire apparatus is cooled by the Joule-Thomson effect due to reduced pressure of the raw material gas, and by liquid nitrogen supplied to the nitrogen cooler 9 through the refrigerator 3 and the expansion valve 14. This liquid nitrogen is only supplied in small quantities to make up for the lack of cold.

なお、原料ガス圧が充分高く、装置容量が大きく、しか
もコールドボックス18が積層真空断熱方式を用いるな
どで断熱性能が充分高い場合には液体窒素の供給を必要
としない場合もある。この場合には、液体窒素は装置の
起動時にのみ供給し、定常運転時には供給を停止する。
Note that if the raw material gas pressure is sufficiently high, the device capacity is large, and the cold box 18 has sufficiently high insulation performance, such as by using a laminated vacuum insulation method, the supply of liquid nitrogen may not be necessary. In this case, liquid nitrogen is supplied only when the apparatus is started up, and the supply is stopped during steady operation.

この場合、窒素冷却器9および気−液分離器10.11
の各機器は実質的にその機能を停止するが、とくに高純
度の一酸化炭素を要求される場合以外は、とくに支障は
ない。
In this case, nitrogen cooler 9 and gas-liquid separator 10.11
The equipment will essentially cease to function, but this will not cause any problems unless particularly high-purity carbon monoxide is required.

また高純度一酸化炭素を要求される場合には、第2図に
示すS!置を用いればよい。同図において、気−液分離
器9の液化留分は導管29を通して窒素冷却器9に送る
ようにしている。すなわら、気−液分離器8の圧力は2
〜3 kg/ cm2 gであり、この底部から出る液
体一酸化炭素の一部を液体窒素の供給が停止された窒素
冷却器9に、はぼ大気圧まで減圧して供給する。一酸化
炭素の沸点は液体窒素のそれよりもわずかに(例えば、
3.8℃)高いだけであり、還流液を作るのに充分低い
蒸発温度を有している。
In addition, when high purity carbon monoxide is required, S! You can use the position. In the figure, the liquefied fraction from the gas-liquid separator 9 is sent to the nitrogen cooler 9 through a conduit 29. That is, the pressure of the gas-liquid separator 8 is 2
~3 kg/cm2 g, and a portion of the liquid carbon monoxide coming out from the bottom is depressurized to almost atmospheric pressure and supplied to the nitrogen cooler 9 to which the supply of liquid nitrogen has been stopped. The boiling point of carbon monoxide is slightly lower than that of liquid nitrogen (e.g.
3.8° C.) and has a low enough evaporation temperature to produce reflux.

窒素冷却器9で蒸発した一酸化炭素は蒸溜塔6の頂部よ
り排出される高純度一酸化炭素と合流し、回収される。
The carbon monoxide evaporated in the nitrogen cooler 9 joins with high-purity carbon monoxide discharged from the top of the distillation column 6 and is recovered.

なお、窒素冷却器9でより充分な熱交換をさせる必要が
ある場合(原料ガス中のメタン濃度が相対的に高い場合
)には蒸溜塔6の圧力を0.2〜0.3kg/cm2高
く保つか、あるいは窒素ガスの排出ラインに真空ブロワ
を設け、窒素冷却器9に液体一酸化炭素が供給されたと
きは、真空ブロワを稼働させ、窒素冷却器内を大気圧以
下に保ち、熱交換量を増強させるなどの方法も採用可能
である。
In addition, if it is necessary to perform more sufficient heat exchange with the nitrogen cooler 9 (when the methane concentration in the raw material gas is relatively high), the pressure of the distillation column 6 can be increased by 0.2 to 0.3 kg/cm2. Alternatively, a vacuum blower is installed in the nitrogen gas discharge line, and when liquid carbon monoxide is supplied to the nitrogen cooler 9, the vacuum blower is operated to maintain the inside of the nitrogen cooler at below atmospheric pressure and perform heat exchange. Methods such as increasing the amount can also be adopted.

また、第3図に示すように、窒素冷却器9で蒸発した一
酸化炭素を導管29を通して系外に導き、真空ブロワ1
9で大気圧以下に減圧することにより窒素冷部器9内で
の蒸発温度を低下させ、これによって冷却をより効果的
に行うようにすれば、一酸化炭素の収率を向上させるこ
とができる。
In addition, as shown in FIG. 3, carbon monoxide evaporated in the nitrogen cooler 9 is led out of the system through a conduit 29,
The yield of carbon monoxide can be improved by lowering the evaporation temperature in the nitrogen cooler 9 by reducing the pressure to below atmospheric pressure in step 9, thereby making cooling more effective. .

(発明の効果) 以上説明したように、この発明では気体膜分岨器を利用
して予め水素を除去して深冷処理を行うようにしており
、このため深冷部に膨服機を使用する必要はなく、装置
を簡単にすることができるとともに、一酸化炭素の収率
を向上させることができる。
(Effects of the Invention) As explained above, in this invention, hydrogen is removed in advance using a gas membrane divider to perform deep cooling treatment, and for this purpose an expansion machine is used in the deep cooling section. It is not necessary to do so, and the apparatus can be simplified and the yield of carbon monoxide can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例を示す装置の全体配置図、第
2図は他の実施例を示す装置の部分配置図、第3図はさ
らに別の実施例を示す部分配置図、第4図はジュール・
トムソン効果と圧力との関係図、第5図はジュール・ト
ムソン効果とCOx度との関係図、第6図はジュール・
トムソン効果と温度との関係図、第7図は従来の深冷分
画装置の全体配置図である。 1・・・吸着精製器、2・・・気体膜分離鼎、3・・・
冷凍機、4・・・主熱交換器、5・・・膨脹弁、6・・
・蒸溜塔、7.8.10.11・・・気−液分離器、9
・・・窒素冷却器、12・・・液体CO過冷却器、13
・・・凝縮蒸発器。 特許出願人      株式会社神戸製鋼所代 理 人
      弁理士  小谷悦司同        弁
理士  長1)正向        弁理士  板谷康
夫第  4  図 第  6  図 第  5  図
FIG. 1 is an overall layout diagram of the device showing an embodiment of the invention, FIG. 2 is a partial layout diagram of the device showing another embodiment, FIG. 3 is a partial layout diagram showing yet another embodiment, and FIG. The figure is Joule
Figure 5 is a diagram of the relationship between the Thomson effect and pressure, Figure 5 is a diagram of the relationship between the Joule-Thomson effect and COx degree, and Figure 6 is the diagram of the relationship between the Joule-Thomson effect and COx degree.
FIG. 7, which is a diagram showing the relationship between the Thomson effect and temperature, is an overall layout diagram of a conventional cryogenic fractionation apparatus. 1... Adsorption purifier, 2... Gas membrane separation device, 3...
Refrigerator, 4... Main heat exchanger, 5... Expansion valve, 6...
・Distillation column, 7.8.10.11... Gas-liquid separator, 9
...Nitrogen cooler, 12...Liquid CO supercooler, 13
...Condensing evaporator. Patent Applicant Kobe Steel, Ltd. Agent Patent Attorney Etsushi Kotani Patent Attorney Chief 1) Masayuki Patent Attorney Yasuo Itaya Figure 4 Figure 6 Figure 5

Claims (1)

【特許請求の範囲】 1、一酸化炭素と水素とを主成分とする混合ガスより一
酸化炭素を回収する深冷分離方法であつて、吸着精製器
で原料ガス中の二酸化炭素および水分を除去した後、原
料ガスを気体膜分離器へ導き、ここで水素ガスを除去す
ることにより一酸化炭素の濃度を高め、このガスを深冷
部へ供給して深冷分離を行なうことを特徴とする一酸化
炭素の深冷分離方法。 2、深冷部へ供給されたガスをその中に含まれる一酸化
炭素のジュール・トムソン膨脹による寒冷、冷凍機より
供給される寒冷および液体窒素の供給により補助的に供
給される寒冷により冷却、分離精製することを特徴とす
る特許請求の範囲第1項記載の一酸化炭素の深冷分離方
法。 3、深冷部で生じた液体一酸化炭素の一部を窒素冷却器
へ供給して蒸発させることにより処理ガスを冷却するこ
とを特徴とする特許請求の範囲第1項記載の一酸化炭素
の深冷分離方法。
[Claims] 1. A cryogenic separation method for recovering carbon monoxide from a mixed gas mainly composed of carbon monoxide and hydrogen, which removes carbon dioxide and moisture from the raw gas using an adsorption purifier. After that, the raw material gas is led to a gas membrane separator, where hydrogen gas is removed to increase the concentration of carbon monoxide, and this gas is supplied to a cryogenic section for cryogenic separation. Cryogenic separation method for carbon monoxide. 2. Cooling the gas supplied to the deep cold section by Joule-Thomson expansion of carbon monoxide contained therein, cooling supplied by a refrigerator, and cooling supplemented by the supply of liquid nitrogen; A method for cryogenic separation of carbon monoxide according to claim 1, characterized in that carbon monoxide is separated and purified. 3. Part of the liquid carbon monoxide generated in the deep cooling section is supplied to a nitrogen cooler and evaporated to cool the process gas. Cryogenic separation method.
JP62080330A 1987-03-31 1987-03-31 Low-temperature separating method of carbon monoxide Pending JPS63247582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62080330A JPS63247582A (en) 1987-03-31 1987-03-31 Low-temperature separating method of carbon monoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62080330A JPS63247582A (en) 1987-03-31 1987-03-31 Low-temperature separating method of carbon monoxide

Publications (1)

Publication Number Publication Date
JPS63247582A true JPS63247582A (en) 1988-10-14

Family

ID=13715242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62080330A Pending JPS63247582A (en) 1987-03-31 1987-03-31 Low-temperature separating method of carbon monoxide

Country Status (1)

Country Link
JP (1) JPS63247582A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6161397A (en) * 1998-08-12 2000-12-19 Air Products And Chemicals, Inc. Integrated cryogenic and non-cryogenic gas mixture separation
US6568206B2 (en) 2001-07-18 2003-05-27 Air Products And Chemicals, Inc. Cryogenic hydrogen and carbon monoxide production with membrane permeate expander
EP1762294A2 (en) 2005-09-07 2007-03-14 The Boc Group, Inc. Gas purification
CN106931722A (en) * 2017-04-25 2017-07-07 浙江大学 A kind of synthesis gas componentses are separated and retracting device and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990613A (en) * 1982-07-29 1984-05-25 リンデ・アクチエンゲゼルシヤフト Method and apparatus for separating gaseous mixture
JPS59215576A (en) * 1983-05-19 1984-12-05 株式会社神戸製鋼所 Method of recovering co gas from converter gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990613A (en) * 1982-07-29 1984-05-25 リンデ・アクチエンゲゼルシヤフト Method and apparatus for separating gaseous mixture
JPS59215576A (en) * 1983-05-19 1984-12-05 株式会社神戸製鋼所 Method of recovering co gas from converter gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6161397A (en) * 1998-08-12 2000-12-19 Air Products And Chemicals, Inc. Integrated cryogenic and non-cryogenic gas mixture separation
US6568206B2 (en) 2001-07-18 2003-05-27 Air Products And Chemicals, Inc. Cryogenic hydrogen and carbon monoxide production with membrane permeate expander
EP1762294A2 (en) 2005-09-07 2007-03-14 The Boc Group, Inc. Gas purification
CN106931722A (en) * 2017-04-25 2017-07-07 浙江大学 A kind of synthesis gas componentses are separated and retracting device and method

Similar Documents

Publication Publication Date Title
US4639257A (en) Recovery of carbon dioxide from gas mixture
US4595405A (en) Process for the generation of gaseous and/or liquid nitrogen
EP0186843B1 (en) Integrated gas separation process
US5509271A (en) Process and installation for the separation of a gaseous mixture
EP0194795B1 (en) Purification of carbon dioxide for use in brewing
US5053067A (en) Process and apparatus for the recovery of the heaviest hydrocarbons from a gaseous mixture
US3373574A (en) Recovery of c hydrocarbons from gas mixtures containing hydrogen
US6173585B1 (en) Process for the production of carbon monoxide
US3319429A (en) Methods for separating mixtures of normally gaseous materials
US4749393A (en) Process for the recovery of hydrogen/heavy hydrocarbons from hydrogen-lean feed gases
US4834785A (en) Cryogenic nitrogen generator with nitrogen expander
US4659351A (en) Combined process to produce liquid helium, liquid nitrogen, and gaseous nitrogen from a crude helium feed
GB2174379A (en) Process for recovering carbon dioxide
US3126266A (en) Meisler
US2827775A (en) Process for separating a compressed gas mixture
US3599438A (en) Crude helium enrichment process
RU2069293C1 (en) Cryogenic method of producing nitrogen from air
JPS63247582A (en) Low-temperature separating method of carbon monoxide
US2411680A (en) Separation of the constituents of gaseous mixtures
US3331213A (en) Process for the separation of gaseous mixtures employing a product as refrigerant
US3333434A (en) Process for separating oxygen from air
US2213338A (en) Method and apparatus for fractionating gaseous mixtures
JP4520667B2 (en) Air separation method and apparatus
US5787730A (en) Thermal swing helium purifier and process
US3073093A (en) Process and apparatus for purifying gases