JPS63246818A - Charged particle beam lithography and device therefor - Google Patents

Charged particle beam lithography and device therefor

Info

Publication number
JPS63246818A
JPS63246818A JP7960387A JP7960387A JPS63246818A JP S63246818 A JPS63246818 A JP S63246818A JP 7960387 A JP7960387 A JP 7960387A JP 7960387 A JP7960387 A JP 7960387A JP S63246818 A JPS63246818 A JP S63246818A
Authority
JP
Japan
Prior art keywords
lithography
temperature
resist
time
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7960387A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kawamura
川村 佳博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7960387A priority Critical patent/JPS63246818A/en
Publication of JPS63246818A publication Critical patent/JPS63246818A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To perform lithography at high speed under critical conditions not to cause uneven ness in the lithography due to a temperature rise of a resist so as to grasp conditions of a wafer surface in real time at the time of lithography, by mounting an infrared temperature detector on the charged particle beam lithography device for detecting a temperature of the sample surface during the lithography. CONSTITUTION:A lithography control circuit 17 performs a movement of a sample table 10 and control of a beam by the lithography data sent from a computer to lithograph a pattern on a sample while an infrared temperature detector 9 constantly measures a resist temperature of the sample for sending a temperature signal to the lithography control circuit 17. An upper limit of a resist temperature which enables lithography is set at the prescribed value in the lithography control circuit 17 according to resist sensitivity characteristics and the value of temperature rise of an irradiation part. The lithography control circuit stops lithography when a temperature signal attains the prescribed value and reopens the lithography when the temperature signal becomes under the prescribed value. Otherwise, the lithography is changed over to the lithography method having low temperature rise even it takes time. In this way, a measurement according to temperature rise of the resist is taken by detecting temperature in real time thus enabling the lithography having a little loss time and a short lithography time while preventing uneven sensitiveness due to temperature rise.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は荷電ビーム描画において、描画中の温度上昇に
伴って発生するレジストの変形等による現像のむらが防
止可能な荷電ビーム描画方法及びその装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention provides a charged beam lithography system that can prevent uneven development due to resist deformation caused by temperature rise during lithography. The present invention relates to a drawing method and an apparatus thereof.

(従来技術) 荷電ビーム描画装置はレジスト(感光剤)を塗布した基
板上に荷電ビームを照射して集積回路のパターンを描画
する装置である。最近、描画時間の短縮と分解能の向上
のためビーム電流を多くし、加速電圧を高くした高ドー
ズの装置が開発された。
(Prior Art) A charged beam drawing device is a device that draws a pattern of an integrated circuit by irradiating a charged beam onto a substrate coated with a resist (photosensitive agent). Recently, high-dose devices with increased beam current and accelerating voltage have been developed to shorten writing time and improve resolution.

所が高ドーズによるレジスト温度上昇により感度むらが
発生し、現像後の描画パターンにむらが出る不良が起っ
た。今までレジストの温度上昇を抑えるためドーズ量を
減したシビームの照射を間欠に行ない放熱時間を与えた
シした。従来、これらの対策で試し描画をし、現像して
むらが無いことを確認して、本描画を行なっていた。
However, due to the resist temperature rising due to the high dose, sensitivity unevenness occurred, resulting in a defect in which the drawn pattern became uneven after development. Until now, in order to suppress the temperature rise of the resist, irradiation with a reduced dose of beam was performed intermittently to allow time for heat dissipation. Conventionally, trial drawing was performed using these measures, and after confirming that there was no unevenness after development, actual drawing was performed.

また、以前のデータから描画条件を決め温度上昇を防止
する場合も安全率を見込んだ設定にする場合が多くロス
タイムが多かった。また描画パターンは疎密があシ、疎
の部分は高速で描いても感度むらになるまでレジストの
温度が上らないが、従来は一様にドーズ量の削減や放熱
時間を与える対策が取られていた。他に、描画位置によ
る違いもある。
Furthermore, even when drawing conditions are determined from previous data to prevent temperature rise, the settings are often made with a safety factor in mind, resulting in a lot of lost time. In addition, the drawing pattern is dense and sparse, and even if drawn at high speed in the sparse areas, the temperature of the resist does not rise to the point where sensitivity becomes uneven. Conventionally, countermeasures have been taken to uniformly reduce the dose and provide heat dissipation time. was. There are also other differences depending on the drawing position.

描画範囲は5インチ角根度の大きさのため、描画開始の
部分と中央部および描画終了間近の部分では同じパター
ンでも基板の表面温度が違うし、放熱の状況も変わるの
で感度むらの対策を取る量も違うはずであるが従来、描
画中の状況を把握する手段が無く一様の補正で済してい
た。そのためロス時間が出たシ一部でむらが発生してし
まう場合が起った@ すなわちレジストの温度上昇は第8図に示すように、A
XBはビームが偏向できる範囲、CxDは最大ビーム寸
法である。整形ビーム、ベクタースキャン方式の描画装
置はAxB内で照射の必要な所にビームを任意に偏向し
描画できる。しかし実際はパターンデータが端から順に
出力されるため第8図の矢印の様に描画される。よって
斜線部分の温度上昇が高くなシ、反応速度が高まシ同じ
ドース量で描画してもムラが発生する。第8図に斜線で
示した部分の感光が強く、現像後レジストが溶解し飛ん
でしまっている(レジストはポジ形のPMMA)。
Since the drawing range is a 5-inch angular radius, the surface temperature of the board will be different even for the same pattern at the start of drawing, the center, and the area near the end of drawing, and the heat dissipation situation will also change, so take measures to prevent uneven sensitivity. The amount taken should be different, but in the past, there was no way to grasp the situation during drawing, so a uniform correction was sufficient. As a result, there was a loss of time and unevenness occurred in some parts. In other words, the temperature rise of the resist was
XB is the range in which the beam can be deflected, and CxD is the maximum beam dimension. A shaped beam and vector scan type drawing device can arbitrarily deflect the beam to a desired location within AxB to perform drawing. However, in reality, the pattern data is output sequentially from the end, so it is drawn as shown by the arrow in FIG. Therefore, if the temperature rise in the shaded area is high or the reaction rate is high, unevenness will occur even if the same dose is used. The shaded areas in FIG. 8 were highly sensitive to light, and the resist was dissolved and blown off after development (the resist was positive type PMMA).

(発明が解決しようとする問題点) 本発明はレジストの温度上昇による描画むらを発生させ
ない限界の条件で、高速に描画でき、描画時のウェハー
表面をリアルタイムに把握できる方法及び装置を提供す
るものである。
(Problems to be Solved by the Invention) The present invention provides a method and apparatus that can perform high-speed writing and grasp the wafer surface during writing in real time under the limit conditions that do not cause uneven writing due to resist temperature rise. It is.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明の一つの構成は荷電ビーム描画装置において描画
中の試料表面の温度を検出する赤外線温度検出器を取り
付けたことである。第1図は本発明の構成例である。描
画中の試料表面α〔の近くに赤外線温度検出器(9)を
取υ付ける。赤外線温度検出器(9)は光学系(レンズ
等)と赤外線検出素子(例えばフォトダイオード)等か
ら成り、描画中の試料であるレジストa■の表面から発
せられる赤外線を電気信号に変換する。電気信号は信号
線により試料室αυの外に導びかれ、増幅器やバンドパ
スフィルター(ll19で必要な信号を増幅し、検出部
の温度を電気信号として出力する。第2図は検出部の構
成例である。レンズαaで試料ao上の一部から発生す
る赤外線を集め赤外線検出素子a9に当て電気信号に変
換する。レンズ(14)の前またはレンズα肴と検出素
子(151の間にフィルターを付けても良い。
(Means for Solving the Problems) One configuration of the present invention is that an infrared temperature detector for detecting the temperature of the surface of a sample during drawing is attached to a charged beam drawing apparatus. FIG. 1 shows an example of the configuration of the present invention. An infrared temperature detector (9) is attached near the sample surface α [being drawn. The infrared temperature detector (9) consists of an optical system (lens, etc.), an infrared detection element (for example, a photodiode), etc., and converts the infrared rays emitted from the surface of the resist a2, which is the sample being drawn, into an electrical signal. The electrical signal is led out of the sample chamber αυ by a signal line, and the necessary signal is amplified by an amplifier or bandpass filter (119), and the temperature of the detection section is output as an electrical signal. Figure 2 shows the configuration of the detection section. For example, the infrared rays generated from a part of the sample ao are collected by the lens αa and applied to the infrared detection element a9 to be converted into an electrical signal.The filter You can also add .

検出素子αSの出力は試料室外の増幅器やフィルター等
の回路αeで温度信号に変換され出力される。
The output of the detection element αS is converted into a temperature signal by a circuit αe such as an amplifier and a filter outside the sample chamber, and is output.

更に上記のレジストの過熱に伴なう赤外線を検出し、こ
れを電気信号に変換してこれを処理するための手段とし
て次に示す。第5図はその1例を示すもので、(なおこ
の1部回路は半導体リングラフィ技術 産業図書■ 鳳
絃一部著 P2S5から引用)描画データは一度高速大
容量パッファメモリalに留見られ、高速データ転送コ
ントローラ(イ)を通して高速データコントローラシ4
にそのまま送られるのが従来の構成であった。本発明で
はその間にデータセレクト・バッファ回路四を設けた。
Further, a means for detecting infrared rays caused by the overheating of the resist, converting the infrared rays into electric signals, and processing the signals will be described below. Figure 5 shows an example of this (this part of the circuit is quoted from Sangyo Tosho ■ P2S5, authored by Otori Gen), where the drawing data is once stored in the high-speed large-capacity puffer memory AL. High-speed data controller system 4 through high-speed data transfer controller (a)
The conventional configuration was to send the data as is. In the present invention, a data select buffer circuit 4 is provided between them.

データセレクトバッファ回路は描画位置にょシデータを
分類するセレクタと分類された描画位置毎にデータバッ
ファ(メモリ)を持っている描画方法である。
The data select buffer circuit is a drawing method that has a selector that sorts data by drawing position and a data buffer (memory) for each classified drawing position.

(作用) 本発明装置において、第3図に温度とレジスト感度の1
例を示す。この例では150℃を超すと急に感度が上昇
している。室温から13C位までは感度の変化がゆるや
かで実用上問題ない。よって、レジストの温度が以前に
照射した発熱、その場所に照射した発熱、その後に照射
した発熱で130℃を超えないように制御すればレジス
トの温度上昇による感度むらは防げる。(従来の荷電ビ
ーム描画装置は試料上のレジスト温度を測定する手段が
無かった。そのため試し描画を種々行ない、現像してむ
らの発生がない条件を確認した後に本描画する手段を取
っていた。) すなわち試料上の描画位置の温度を検出する温度検出器
を付け、これによりビーム照射前後の温度変化がリアル
タイムに測定できる。例えば今までの照射で100CI
で上昇したレジストが次の照射で、その部分は130℃
に達する等の測定ができる。また、描画中に試料面が1
10℃に達したら、温度が下るまで描画を停止したシ、
温度が100℃以下の分部を探査して描画を分部的に繰
返し行なうことによりレジストの破損限界温度以下を保
持しながら効率的に行なうことが可能である。
(Function) In the apparatus of the present invention, temperature and resist sensitivity are shown in Figure 3.
Give an example. In this example, the sensitivity suddenly increases when the temperature exceeds 150°C. The sensitivity changes slowly from room temperature to about 13C, and there is no problem in practical use. Therefore, if the temperature of the resist is controlled so that it does not exceed 130° C. due to the heat generated by the previous irradiation, the heat generated by irradiation to that location, and the heat generated by subsequent irradiation, uneven sensitivity due to a rise in resist temperature can be prevented. (Conventional charged beam lithography equipment did not have a means to measure the temperature of the resist on the sample. Therefore, various trial lithography was performed, and after developing and confirming conditions that no unevenness would occur, the actual lithography was performed. ) That is, a temperature detector is attached to detect the temperature at the drawing position on the sample, and this allows real-time measurement of temperature changes before and after beam irradiation. For example, the previous irradiation was 100CI.
In the next irradiation, the resist that rose at 130°C
It is possible to measure things such as reaching . Also, during drawing, the sample surface
When the temperature reached 10℃, drawing was stopped until the temperature dropped.
By searching the portions where the temperature is 100° C. or lower and repeatedly performing the writing on the portions, it is possible to perform the writing efficiently while maintaining the temperature below the damage limit of the resist.

本発明描画方法において、レジストの温度上昇による感
度むらはショット毎に起る少量の発熱が蓄積し、全体と
して除々に温度が上昇することに起因するむらが起って
いることから言える。(後半では前半の熱が蓄積される
) 本発明は描画域を4つに分は短冊状の描画域とした第2
図。描画順はbとdの短冊内描画を交互に行ない、終了
後aとCの短冊内を交互に描画する。この様な描画によ
り次のメリットが得られる。
In the drawing method of the present invention, it can be said that the sensitivity unevenness due to the rise in temperature of the resist is caused by the accumulation of a small amount of heat generated from each shot, and the unevenness caused by the gradual rise in temperature as a whole. (In the second half, the heat of the first half is accumulated.) The present invention has a second drawing area in which the drawing area is divided into four rectangular drawing areas.
figure. The drawing order is to alternately draw within the strips b and d, and after completion, draw within the strips a and C alternately. This kind of drawing provides the following advantages.

1、短冊状で面積が少ないので、熱の蓄積が少ない。1. Since it is strip-shaped and has a small area, there is little heat accumulation.

2 描画は短冊を1本置きに行ない、短冊の巾を狭くす
ることで、両側に放熱され温度上昇が避けられる。
2. Drawing is done on every other strip, and by making the width of the strip narrower, heat is dissipated to both sides and temperature rise can be avoided.

3.2本の短冊を交互に描画するので、前の照射から隣
シの照射までの間に別の短冊を照射している時間だけあ
きが出来るのでその間を放熱時間として活用出来る。
3. Since the two strips are drawn alternately, there is a gap between the irradiation of the previous strip and the irradiation of the adjacent strip, which is the time during which another strip is irradiated, and this time can be used as heat dissipation time.

(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

第1図の試料台(IGには第3図に示した温度−感度特
性を示すレジストを塗布した試料(マスク等)が乗せら
れているものとする。描画するパターンの形状およびド
ーズ(ビームの照射i)から照射部の温度上昇は30℃
あると算出されているとする。計算機から送られて来た
描画データにより描画制御回路住ηは試料台α〔の移動
やビームの制御を行ないパターンを試料上に描いていく
。試料のレジスト温度を赤外線温度検出器(9)は常時
測定し温度信号を描画制御回路(1?)へ送る。描画制
御回路にはレジストの感度特性第3図と照射部の温度上
昇30℃よシ描画可能レジスト温度上限を100℃と設
定しである。描画制御回路は温度信号が100℃になる
と描画を停止する。温度信号が100℃以下になるのを
待って描画を再開する。もしくは時間がかかっても温度
上昇が低い描画方法(例えばビーム電流を下げ照射時間
を長くする)に切換え描画する。このようにリアルタイ
ムで温度を検出することで、レジストの温度上昇に応じ
た対策が取れるので、ロスタイムの少ないつt、b描画
時間の短かい描画ができ、温度上昇による感度むらを防
止できる。
It is assumed that the sample stage (IG) in Figure 1 is loaded with a sample (mask, etc.) coated with a resist showing the temperature-sensitivity characteristics shown in Figure 3.The shape of the pattern to be drawn and the dose (beam The temperature rise in the irradiated part from irradiation i) is 30℃
Suppose that it is calculated that there is. Based on the drawing data sent from the computer, the drawing control circuit η moves the sample stage α and controls the beam to draw a pattern on the sample. An infrared temperature detector (9) constantly measures the resist temperature of the sample and sends a temperature signal to the drawing control circuit (1?). In the drawing control circuit, the resist sensitivity characteristic shown in FIG. 3 and the temperature rise of the irradiation part are set at 30° C., and the upper limit of the temperature of the resist that can be written is set at 100° C. The drawing control circuit stops drawing when the temperature signal reaches 100°C. Drawing is restarted after waiting for the temperature signal to become 100 degrees Celsius or less. Alternatively, the lithography may be performed by switching to a lithography method (for example, lowering the beam current and lengthening the irradiation time) that causes a lower temperature rise even though it takes more time. By detecting the temperature in real time in this way, countermeasures can be taken in accordance with the temperature rise of the resist, so writing can be performed with less loss time and short writing time, and unevenness in sensitivity due to temperature rise can be prevented.

他に、レジストの温度による描画のコントロールを行な
わずに、描画条件を色々に変えた場合のレジスト表面の
温度データを取るのに有効な構成である。
In addition, this configuration is effective for obtaining temperature data on the resist surface when the drawing conditions are variously changed without controlling the drawing based on the temperature of the resist.

第1図の温度検出器を赤外線温度イメージスキャナに変
えれば、描画直後の部分は温度が高いのでパターン形状
が見られる。
If the temperature detector shown in FIG. 1 is replaced with an infrared temperature image scanner, the pattern shape can be seen in the area immediately after drawing because the temperature is high.

変形例として 第4図に示す様にライトガイドαaで試料室αυの外へ
赤外線を導びき、試料室外の赤外線検出器(15で検出
してもよい。ライトガイドα樽の代わシに鏡の反射によ
多試料室外へ赤外線を導びいても良い。
As a modified example, as shown in Fig. 4, infrared rays may be guided outside the sample chamber αυ by a light guide αa, and detected by an infrared detector (15) outside the sample chamber.Instead of the light guide α barrel, a mirror may be used. Infrared rays may be guided outside the sample chamber by reflection.

第2図の赤外線検出器の例は単色式であるが、二つの異
った波長帯のエネルギー比率を測る2色式でも良い。
Although the example of the infrared detector shown in FIG. 2 is a monochromatic type, it may also be a two-color type that measures the energy ratio of two different wavelength bands.

描画方法の実施例において、荷電ビーム描画装置第5図
の高速データ転送コントローラ(至)と高速データコン
トローラ四の間にデータセレクトバッファ回路CDを設
け、描画域(第6図AxB)を短冊状にa、b、c、d
の4つに分け、データセレクトバッファ回路でa、b、
c、dの各領域に入るデータに分類しメモリへ蓄える。
In an embodiment of the drawing method, a data select buffer circuit CD is provided between the high-speed data transfer controller (to) and the high-speed data controller 4 of the charged beam drawing device in FIG. 5, and the drawing area (AxB in FIG. 6) is shaped like a strip. a, b, c, d
The data select buffer circuit is divided into four parts: a, b,
The data is classified into areas c and d and stored in memory.

高速データコントローラ囚はデータセレクトバッファ回
路のメモリからa、b、c、dの領域で必要なデータを
読み出し短冊状の1つの領域と1つ隔てた領域(例えば
第2図のbとd)とを交互に描画する。
The high-speed data controller reads the necessary data from the memory of the data select buffer circuit in areas a, b, c, and d, and reads the necessary data from one strip-shaped area and another area (for example, b and d in Figure 2). Draw alternately.

この様な描画方式により短冊状の区間では2行毎に別の
区間の描画となるため交互に休みが入りレジストの放熱
に役立つ。
With such a drawing method, in a strip-shaped section, a different section is drawn every two lines, so there are alternating breaks, which is useful for heat dissipation of the resist.

本発明は前述の描画方式を実現するため第5図に示す通
り従来の構成の高速データコントローラの前にデータセ
レクト・バッファ回路Qυを設けた。
In order to realize the above-described drawing method, the present invention provides a data select buffer circuit Qυ in front of a high-speed data controller having a conventional configuration, as shown in FIG.

この回路の構成を第7図に示す。セレクタ儲は第6図の
基準位置に対する描画位置によりデータをa、b、c、
dの領域に分類し、メモリへ送る。
The configuration of this circuit is shown in FIG. The selector selects data a, b, c, depending on the drawing position relative to the reference position in Figure 6.
It is classified into areas d and sent to memory.

メモリ@、(ハ)、@、(ロ)へデータが入るとEMP
信号が@0”となシ描画スタート信号が出る。メモリに
はFIFO等を用いる。メモリのどれかが一杯になると
FLLの信号が出てセレクタ[有]が止まる。
EMP occurs when data enters memory @, (c), @, (b)
When the signal is @0, a drawing start signal is output. FIFO or the like is used as the memory. When any of the memories becomes full, an FLL signal is output and the selector [with] stops.

描画スタート信号は高速データコントロータ@に送られ
る。高速データコントローラは描画データ1と描画デー
タ2を交互に読み出し描画を行なう。bメモリとdメモ
リが空になj5EMP信号が出ると切変え回路が動作し
、CメモリとCメモリが高速データコントローラに接続
される。a 、 b。
The drawing start signal is sent to the high speed data controller@. The high-speed data controller alternately reads drawing data 1 and drawing data 2 and performs drawing. When the b memory and the d memory become empty and the j5EMP signal is output, the switching circuit is activated and the C memory and the C memory are connected to the high speed data controller. a, b.

c、dメモリが空になるとCメモリとCメモリからもE
MP信号が出る。この信号でセレクタをスタートさせ描
画データをa、b、c、dメモリへ書き込む。なお第7
図ではメモリの書き込み、読み出し信号は省略した。
When c and d memories become empty, E is also sent from C memory and C memory.
MP signal is output. This signal starts the selector and writes the drawing data to the a, b, c, and d memories. Furthermore, the seventh
In the figure, memory write and read signals are omitted.

描画順について説明する。第6図で基準位置1にて描画
する場合、領域すの■から描画を始めdに移6、bへ戻
シを繰り返し、下まで行くとbからaの上へ移シ、次に
a、cを繰シ返す。つまシ、bとdを始めに書いて次に
aとCを書くことになる。
The drawing order will be explained. When drawing at reference position 1 in Fig. 6, start drawing from area 2, move to d, return to b, repeat, and when you reach the bottom, move from b to above a, then a, Repeat c. First, write b and d first, then a and C.

aとCを始めに書いて次にす、!:dを書く順にすると
、基準位置1のdを書いた後に基準位置2のaを書くこ
とになシ、書いた隣にすぐ誉くことになってしまうので
好ましくない。
Write a and C first, then! :If you write the d in the order, it is not desirable to write the d in the reference position 1 and then write the a in the reference position 2, which is not preferable because it will be written next to the letter d.

変形例 上記実施例ではハードで描画域と描画順をコントロール
する方式について説明したがハードは変更せずに描画デ
ータを短冊状の領域で交互に出て来るように変更しても
良い。
Modified Example In the above embodiment, a method was explained in which the drawing area and the drawing order are controlled by hardware, but the drawing data may be changed so that it appears alternately in strip-shaped areas without changing the hardware.

実施例では描画域を4つに分けたが、4つに限定される
ものではない。実施例ではデータセレクトバッファ回路
を1つとしたが2つ並列に設け、1つがデータセレクト
とメモリへ書き込んでいる時もう1つは前に書き込んだ
データを高速データコントローラへ送シ出す様に交互に
用いれば、データセレクトのための待ち時間が無くなる
Although the drawing area is divided into four in the embodiment, it is not limited to four. In the embodiment, one data select buffer circuit was used, but two are provided in parallel, so that when one is selecting data and writing to memory, the other is alternately sending previously written data to the high-speed data controller. If used, the waiting time for data selection is eliminated.

〔発明の効果〕〔Effect of the invention〕

上記本発明において描画中のレジスト表面温度を測定す
ることにより次の効果が得られる。
In the present invention, the following effects can be obtained by measuring the resist surface temperature during drawing.

a 描画中のレジスト表面温度をリアルタイムに知るこ
とができる。
a) The resist surface temperature during drawing can be known in real time.

b 描画中のレジスト表面温度から、感度が大きく変化
する前に描画を制御し、温度を一定以下に保つことがで
きる。よって現像むらが防止できる。
b. Drawing can be controlled based on the resist surface temperature during writing before the sensitivity changes significantly, and the temperature can be kept below a certain level. Therefore, uneven development can be prevented.

C赤外線イメージセンサでレジスト表面の温度を見れば
描画状況を監視できる。
The drawing status can be monitored by observing the temperature of the resist surface with a C infrared image sensor.

又上記本発明により次の効果が得られる。Moreover, the following effects can be obtained by the above-mentioned present invention.

d 放熱のため時間間隔を置いて描画する方式と比べ、
描画していない時間が無いので描画時間が長くならない
d Compared to the method of drawing at time intervals for heat dissipation,
There is no time when you are not drawing, so the drawing time does not increase.

e ハード(回路)で描画域と描画順を制御すれば、従
来の描画データがそのまま使える。
e If the drawing area and drawing order are controlled using hardware (circuits), conventional drawing data can be used as is.

f 従来の装置に1部回路を追加するだけで、変更が容
易である。特開昭61−14720号の方式はシ冒ット
の間隔により照射量を計算する複雑な計算回路が必要で
、計算時間も必要と思われる。
f. It is easy to change the conventional device by just adding one part of the circuit. The method disclosed in Japanese Patent Application Laid-Open No. 14720/1983 requires a complicated calculation circuit for calculating the irradiation amount based on the interval between shots, and also seems to require a lot of calculation time.

g データセレクト回路はコンパレータにより構成でき
、処理時間が早い。
g The data selection circuit can be configured with a comparator and the processing time is fast.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明描画装置の実施例の断面図、第2図は第
1図の要部を示す1部を断面した説明図、第3図はレジ
スト温度の説明図、第4図は他の実施例の要部断面図、
第5図乃至第、、7図は本発明描画方式の実施例を説明
するもので第5図は回路構成図、第6図は描画手順を説
明する説明図、第7図は第5図の要部回路図、第8図は
従来の描画手段で描画したレジスト面を説明するだめの
拡大図である。 1:電子銃、2:イオンポンプ、3:センタリングコイ
ル、4:glレンズ、5ニブランキング板、6:第2レ
ンズ、7:走査用偏向コイル、8:投影レンズ、9:赤
外線温度センサ、10:試料台、11:試料室、12:
イオンポンプ、13:拡散ポンプ、14:レンズ、15
:赤外線センサ、16:信号処理回路、17:描画制御
回路、18ニライトガイド、19:バッファメモリ、2
0:転送コントローラ、21:データセレクトパックア
回路、22:測速データコントローラ、23:セレクタ
、24,25,26,27:メモリ。 代理人 弁理士 則 近 憲 佑 代埋入 弁理士 松山光之 第1図 第2図 第3図 第4図 第6図 第7図
FIG. 1 is a cross-sectional view of an embodiment of the drawing apparatus of the present invention, FIG. 2 is an explanatory view showing a main part of FIG. A sectional view of the main parts of the embodiment,
Figures 5 to 7 are for explaining an embodiment of the drawing method of the present invention. Figure 5 is a circuit configuration diagram, Figure 6 is an explanatory diagram for explaining the writing procedure, and Figure 7 is the same as that shown in Figure 5. The main circuit diagram, FIG. 8, is an enlarged view for explaining the resist surface drawn by a conventional drawing means. 1: Electron gun, 2: Ion pump, 3: Centering coil, 4: GL lens, 5 Ni blanking plate, 6: Second lens, 7: Scanning deflection coil, 8: Projection lens, 9: Infrared temperature sensor, 10 : Sample stage, 11: Sample chamber, 12:
Ion pump, 13: Diffusion pump, 14: Lens, 15
: infrared sensor, 16: signal processing circuit, 17: drawing control circuit, 18 light guide, 19: buffer memory, 2
0: Transfer controller, 21: Data select packer circuit, 22: Speed measurement data controller, 23: Selector, 24, 25, 26, 27: Memory. Agent Patent Attorney Nori Chika Yushiro Patent Attorney Mitsuyuki Matsuyama Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 Figure 7

Claims (6)

【特許請求の範囲】[Claims] (1)荷電ビームによりレジストを塗布したマスク、ウ
ェハー等基板上にパターンを描画する装置において、描
画領域を3つ以上の分割した区域に区切り、1つ以上の
区域を隔てた2つ以上の区域を交互に描画する荷電ビー
ム描画方法。
(1) In a device that draws a pattern on a substrate such as a mask or wafer coated with resist using a charged beam, the drawing area is divided into three or more divided areas, and two or more areas are separated by one or more areas. A charged beam drawing method that draws images alternately.
(2)特許請求の範囲1項記載の描画方法において分割
区域を短冊状にしたことを特徴とする荷電ビーム描画方
法。
(2) A charged beam drawing method according to claim 1, characterized in that the divided areas are formed into strips.
(3)特許請求の範囲1項もしくは2項記載の描画方法
において、データセレクタ回路とメモリ回路により制御
することを特徴とする荷電ビーム描画方法。
(3) A charged beam lithography method according to claim 1 or 2, characterized in that the lithography method is controlled by a data selector circuit and a memory circuit.
(4)荷電ビームを基板上に塗布したレジストに照射し
、パターンを描画する荷電ビーム描画装置において、描
画部分もしくは近傍のレジスト温度を検出する赤外線温
度検出器を付けたことを特徴とする荷電ビーム描画装置
(4) A charged beam lithography device that irradiates a resist coated on a substrate with a charged beam to draw a pattern, characterized in that it is equipped with an infrared temperature detector that detects the temperature of the resist at or near the drawing area. drawing device.
(5)特許請求の範囲第4項記載の荷電ビーム描画装置
において、赤外線温度検出器として赤外線温度イメージ
スキャナを用いたことを特徴とする荷電ビーム描画装置
(5) A charged beam lithography apparatus according to claim 4, characterized in that an infrared temperature image scanner is used as an infrared temperature detector.
(6)特許請求の範囲第4項または第5項記載の荷電ビ
ーム描画装置において、描画部分の温度を検出すること
により、描画の停止または描画の変更を行ないレジスト
の温度を制御することを特徴とする荷電ビーム描画装置
(6) The charged beam lithography apparatus according to claim 4 or 5, characterized in that the temperature of the resist is controlled by stopping or changing the lithography by detecting the temperature of the lithography area. Charged beam lithography equipment.
JP7960387A 1987-04-02 1987-04-02 Charged particle beam lithography and device therefor Pending JPS63246818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7960387A JPS63246818A (en) 1987-04-02 1987-04-02 Charged particle beam lithography and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7960387A JPS63246818A (en) 1987-04-02 1987-04-02 Charged particle beam lithography and device therefor

Publications (1)

Publication Number Publication Date
JPS63246818A true JPS63246818A (en) 1988-10-13

Family

ID=13694590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7960387A Pending JPS63246818A (en) 1987-04-02 1987-04-02 Charged particle beam lithography and device therefor

Country Status (1)

Country Link
JP (1) JPS63246818A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000079342A3 (en) * 1999-06-23 2001-03-22 Etec Systems Inc Pyrometric dose correction for proximity heating of resists during electron beam lithography

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000079342A3 (en) * 1999-06-23 2001-03-22 Etec Systems Inc Pyrometric dose correction for proximity heating of resists during electron beam lithography

Similar Documents

Publication Publication Date Title
JP5644850B2 (en) Electron beam adjustment method, charged particle optical system controller, and scanning electron microscope
US7242015B2 (en) Patterned wafer inspection method and apparatus therefor
JP2000357483A (en) Inspecting and measuring method based on changed particle beam image, device for the method, and charged particle beam device
JPH0349042B2 (en)
US6828571B1 (en) Apparatus and methods of controlling surface charge and focus
JPS62260335A (en) Method of inspecting pattern and apparatus therefor
US20200043698A1 (en) Electron optical system and multi-beam image acquiring apparatus
JP2006019301A (en) Electron beam adjusting method, charged particle optical system control device and scanning electron microscope
JPS63269445A (en) Electron beam head
JP3687243B2 (en) Pattern inspection device
US4937458A (en) Electron beam lithography apparatus including a beam blanking device utilizing a reference comparator
US4097740A (en) Method and apparatus for focusing the objective lens of a scanning transmission-type corpuscular-beam microscope
JP2005338096A (en) Pattern measuring method and charged particle beam device
US10775326B2 (en) Electron beam inspection apparatus and electron beam inspection method
JP3713864B2 (en) Pattern inspection device
JP3272820B2 (en) Electron beam exposure apparatus and method
JPS63246818A (en) Charged particle beam lithography and device therefor
JPH0236376A (en) Method and apparatus for inspecting latch up of cmos circuit
JP3420037B2 (en) Dimension measuring device and dimension measuring method
JPS62149127A (en) Device for charged beam exposure
JP3458481B2 (en) Automatic focusing device
JPH01120749A (en) Automatic focusing device for electron microscope
JPH04229939A (en) Electron beam device
JPS6231931A (en) Electron beam radiation device and test and measurement by said device
JPS6342432B2 (en)