JPS63246697A - Temperature-sensitive constant load spring - Google Patents

Temperature-sensitive constant load spring

Info

Publication number
JPS63246697A
JPS63246697A JP8184387A JP8184387A JPS63246697A JP S63246697 A JPS63246697 A JP S63246697A JP 8184387 A JP8184387 A JP 8184387A JP 8184387 A JP8184387 A JP 8184387A JP S63246697 A JPS63246697 A JP S63246697A
Authority
JP
Japan
Prior art keywords
temperature
curvature
spring
radius
constant force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8184387A
Other languages
Japanese (ja)
Inventor
保田 栄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA HEAT TREATMENT
OSAKA NETSU SHIYORI KK
Original Assignee
OSAKA HEAT TREATMENT
OSAKA NETSU SHIYORI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA HEAT TREATMENT, OSAKA NETSU SHIYORI KK filed Critical OSAKA HEAT TREATMENT
Priority to JP8184387A priority Critical patent/JPS63246697A/en
Publication of JPS63246697A publication Critical patent/JPS63246697A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Measuring And Other Instruments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 「産業上の利用分野j この発明は定荷重及び定出力を有するバネが、温度の変
化により、その温度差に比例して荷重P・出力Tが複合
帯の熱膨張率の相異により増減し変化後の温度において
は、その温度における定荷重・定出力を有するバネに関
するものである。
Detailed Description of the Invention: "Industrial Field of Application" This invention is a spring having a constant load and a constant output. It relates to a spring that has a constant load and constant output at a temperature that increases or decreases due to a difference in rate and changes at that temperature.

「従来の技術」 従来、第8図に示すように、温度計などに使用されてい
るバイメタル等利用の温度感応性バネ19は非接触の渦
巻バネで温度の変化によって生じ゛るバネの成形巻数の
微量な変化を利用したものでしかな(バネ性に乏しい又
、外力に対して容易にバネの形状は塑性的に変わり使用
不能となる欠点がある。
``Prior Art'' Conventionally, as shown in FIG. 8, a temperature-sensitive spring 19 using a bimetal or the like used in a thermometer is a non-contact spiral spring, and the number of turns of the spring changes due to changes in temperature. (It has the disadvantage that it has poor spring properties and easily changes its shape plastically due to external force, making it unusable.)

「発明が解決しようとする問題点」 本発明は以上の欠点を解決し、尚且つ定荷重・定出力を
有するバネで、温度変化にともない、その温度差に比例
し荷重P・出力Tが複合帯の熱膨張率の差により増減し
、変化後の温度においてはその温度における定荷重・定
出力を有する事を目的とする。
"Problems to be Solved by the Invention" The present invention solves the above-mentioned drawbacks and is a spring with constant load and constant output.As the temperature changes, the load P and output T are compounded in proportion to the temperature difference. The purpose is to increase or decrease depending on the difference in the thermal expansion coefficient of the band, and to have a constant load and constant output at the temperature after the change.

r問題を解決するための手段」 (イ)バネ性を有する金属帯1と熱膨張率の低い金属帯
2を複合させ、1つの複合帯とする。
Means for Solving the r Problem (a) A metal band 1 having spring properties and a metal band 2 having a low coefficient of thermal expansion are combined into one composite band.

(ロ)この複合帯に一定または段階的な曲率半径Rnを
持つように塑性加工を施す。
(b) This composite band is subjected to plastic working so that it has a constant or stepwise radius of curvature Rn.

本発明は以上の加工を施したものである。The present invention has undergone the above processing.

「作用」 第9図で示すように、公知であるところの定荷重バネ1
5はバネ性を有する金属帯の長さ方向に第9図(イ)で
示すように、ある一定の曲率半径Rn、または第9図(
ロ)のように段階的な曲率半径Rnを持つよう塑性加工
を施すことにより定荷重・定出力又は異荷重・異出力を
生み出している。  その荷重は1式で示される。
"Function" As shown in Fig. 9, a known constant force spring 1
5 is a certain radius of curvature Rn in the length direction of the metal strip having spring properties, as shown in FIG.
As shown in b), constant load and constant output or different loads and different outputs are produced by performing plastic working to have a stepwise radius of curvature Rn. The load is expressed by one equation.

P=E −b 、t’/26゜4−Rn2・・・・〈1
式) %式% す二金属帯の巾  t:金属帯の厚さ Rn:塑性加工後の曲率半径 複合帯でない一寸法の金属帯において、金属帯びの巾b
・厚さtが一定であるので、荷重Pを支配するのは曲率
半径Rnである。尚、曲率半径Rnは公知の定荷重バネ
15では半永久的に保持されるので、温度変化によって
荷重Pは、縦弾性係数Eが150℃程度まで一定である
とみなした場合、はとんど変動しない。
P=E −b, t'/26°4-Rn2...<1
Formula) % Formula % Width of the metal band t: Thickness of the metal band Rn: Width b of the metal band in a one-dimensional metal band that is not a complex radius of curvature band after plastic working
- Since the thickness t is constant, the radius of curvature Rn controls the load P. Incidentally, since the radius of curvature Rn is maintained semi-permanently in the known constant load spring 15, the load P changes due to temperature changes, assuming that the longitudinal elastic modulus E is constant up to about 150°C. do not.

本発明の温度感応性定荷重バネ3・4はバネ性を有する
金属帯1と熱膨張率の低い金属帯2と複合させた複合帯
を一定または段階的な曲率半径Rnを持つように塑性加
工したものである。
The temperature-sensitive constant force springs 3 and 4 of the present invention are made by plastic processing a composite band made of a metal band 1 having spring properties and a metal band 2 having a low coefficient of thermal expansion so as to have a constant or stepwise radius of curvature Rn. This is what I did.

故に、第6[3で示すようにバネ性を有する金属帯lと
熱膨張率の低い金属帯2とを複合させた複合帯を定盤に
固定し、加熱するとバネ性を有する金属帯1の熱膨張に
よる長さの増加Xと、熱膨張率の低い金属帯の熱膨張に
よる長さの増加yとの関係はx)yとなり、複合帯はA
方向にそる。
Therefore, as shown in No. 6 [3], when a composite band consisting of a metal band l having spring properties and a metal band 2 having a low coefficient of thermal expansion is fixed to a surface plate and heated, the metal band 1 having spring properties will The relationship between the increase in length X due to thermal expansion and the increase y in length due to thermal expansion of a metal band with a low coefficient of thermal expansion is x)y, and the composite band is A
swerve in the direction.

第7図(イ)に示すような曲率半径Rnを持った温度感
応性定荷重バネ3は、加熱すると上記の作用により第7
図(ロ)のように曲率半径Rnが小さくなる。
When the temperature-sensitive constant force spring 3 having the radius of curvature Rn as shown in FIG. 7(a) is heated, the seventh
As shown in the figure (b), the radius of curvature Rn becomes smaller.

故に、1式で示した曲率半径Rnの値が小さくなったこ
とにより荷重Pはその2乗分の1に比例するので荷重P
は一層大きくなる。
Therefore, since the value of the radius of curvature Rn shown in equation 1 has become smaller, the load P is proportional to 1/2 of the radius of curvature Rn, so the load P
becomes even larger.

第1図に示すように熱膨張率の低い金属帯2を曲率の内
側にくるように塑性加工を施した温度域応性定荷重バネ
3は温度上昇にともないバネ性な有する金属帯のp!A
B張による長さ増加は熱膨張率の低い金属帯の熱膨張に
よる長さ増加より大であるので曲率半径Rnは小さくな
り、1式で示す通り荷重Pが太き(なる。
As shown in FIG. 1, a temperature range responsive constant force spring 3 in which a metal band 2 with a low coefficient of thermal expansion is plastically worked so as to be on the inside of the curvature, has a springy property as the temperature increases. A
Since the increase in length due to B tension is larger than the increase in length due to thermal expansion of a metal band with a low coefficient of thermal expansion, the radius of curvature Rn becomes small, and the load P becomes thick (as shown in equation 1).

温度下降の場合には曲率半径Rnが大きくなり荷重Pが
小さくなる。但しそれら個々の温度での曲率半径Rnは
不変であるので荷重Pはその温度における定荷重となる
When the temperature decreases, the radius of curvature Rn increases and the load P decreases. However, since the radius of curvature Rn at each temperature remains unchanged, the load P becomes a constant load at that temperature.

また第2図で示すように、熱膨張率の低い金属2を曲率
の外側にくるように塑性加工を施した温度感応性定荷重
バネ4は温度上昇にともない曲率半径Rnが大きくなる
ので荷重Pは小さくなり、温度が下降した場合には曲率
半径Rnが小さくなるので荷重Pは大きくなる。
In addition, as shown in FIG. 2, the temperature-sensitive constant force spring 4, which is made by plastically working the metal 2 with a low coefficient of thermal expansion so that it is on the outside of the curvature, has a radius of curvature Rn that increases as the temperature rises, so the load P becomes smaller, and when the temperature decreases, the radius of curvature Rn becomes smaller, so the load P becomes larger.

但し、この場合にもその個々の温度に対する曲率半径R
nは不変であるので荷重Pは定荷重である。
However, in this case as well, the radius of curvature R for each temperature is
Since n remains unchanged, the load P is a constant load.

「応用例」 第3図で示すところの巻き取りドラム5と錘6を紐7で
連結し、その巻き取りドラム5と径の大きなドラム10
を回転軸8で連絡し、そして温度感応性定荷重バネ3を
小さなドラム11に曲率の向きを保持した状態で設ける
。そして、外側にでている温度感応性定荷重バネ3の一
端を径の大きなドラム10に曲率に逆らって巻き付ける
ように接続する。そうすると荷重Pは2式で示すように
一層大きくなる。又、出力Tは3式で表される。
"Application example" The winding drum 5 and the weight 6 shown in FIG. 3 are connected with a string 7, and the winding drum 5 and the large diameter drum 10 are
are connected by a rotating shaft 8, and a temperature-sensitive constant force spring 3 is provided on a small drum 11 with the direction of curvature maintained. Then, one end of the temperature-sensitive constant force spring 3 protruding outside is connected to the drum 10 having a large diameter so as to be wound against the curvature. In this case, the load P becomes even larger as shown in equation 2. Further, the output T is expressed by the following three equations.

P=E−b・t3t (1/Rn)+ (1/R2) l ”/24・・(2式)%式%) <  1  /Rff)  1 2/2 4  ・ ・
  く 3式 )T:出力(トルク) P:荷重 E:縦弾性係数   b=二金属帯巾 t:金属帯の厚さ  R3:大きいドラムの径  Rn
:小さいドラムの径及び塑性加工後の金属帯の曲率半径 この時ある温度で錘6によって生じる回転出力と温度感
応性定荷重バネ3の出力Tが釣り合っているとする。こ
こで温度が上昇すると温度感応性定荷重バネ3は熱膨張
率の低い金属帯2を曲率の内側になるよう塑性加工を施
しているので、その曲率半径Rnは一層小さくなって荷
重P・出力Tを増し、径の大きなドラム10は時計回り
に回転を始め、錘6を上昇させる。
P=E-b・t3t (1/Rn)+ (1/R2) l ”/24...(2 formula)% formula%) < 1/Rff) 1 2/2 4 ・ ・
(3) T: Output (torque) P: Load E: Modulus of longitudinal elasticity b = Width of two metal bands t: Thickness of metal band R3: Diameter of large drum Rn
: Small diameter of the drum and radius of curvature of the metal strip after plastic working At this time, it is assumed that the rotational output generated by the weight 6 and the output T of the temperature-sensitive constant force spring 3 are balanced at a certain temperature. When the temperature rises, the temperature-sensitive constant-load spring 3 has the metal strip 2 with a low coefficient of thermal expansion plastically worked to be on the inside of the curvature, so the radius of curvature Rn becomes smaller and the load P/output T is increased, the drum 10 with a large diameter begins to rotate clockwise, and the weight 6 is raised.

逆に熱膨張率の低い金属帯2を曲率の外側にくるよう塑
性加工を施した温度感応性定荷重バネ4を使用すると温
度上昇にともない、その曲率半径Rnは大きくなって荷
重P及び出力Tは小さくなり径の大きなドラム10は反
時計回りに回転を始め、錘6は降下する。
On the other hand, if a temperature-sensitive constant force spring 4 in which the metal band 2 with a low coefficient of thermal expansion is plastically worked so as to be placed on the outside of the curvature, the radius of curvature Rn increases as the temperature rises, causing the load P and output T to increase. becomes smaller, the drum 10 with a larger diameter begins to rotate counterclockwise, and the weight 6 descends.

第4図は熱膨張率の低い金属帯2を曲率の内側にくるよ
う塑性加工した温度域応性定荷重バネ3と、熱膨張率の
低い金属帯2を曲率の外側にくるよう塑性加工した温度
感応性定荷重バネ4を組み合わせた機構である0例とし
て、上部に温度感応性定荷重バネ3、下部に温度感応性
定荷重バネ4を用いたとする。そして、ある温度T’C
でこの2種のバネ出力Tが釣り合って回転軸8は静止し
ているとすると、温度がΔT℃上・昇すると、温度感応
性定荷重バネ3の曲率半径Rnが小さくなろうとするの
で、径の小さなドラム11に巻き戻ろうとする力、言い
換えれば、回転軸8を時計回りに回転させようとする力
Aは、温度感応性定荷重バネ4の曲率半径Rnが大きく
なるので、下部の径の小さなドラム11に巻き戻ろうと
回転軸8を反時計回りに回転させようとする力Bより大
きくなるので、回転軸8は時計回りに回転する。
Figure 4 shows a temperature-responsive constant force spring 3 in which the metal strip 2 with a low coefficient of thermal expansion is plastically worked so that it is on the inside of the curvature, and a temperature range responsive constant load spring 3 in which the metal band 2 with a low coefficient of thermal expansion is plastically worked so that it is on the outside of the curvature. As an example of a mechanism combining sensitive constant force springs 4, it is assumed that the temperature sensitive constant force spring 3 is used in the upper part and the temperature sensitive constant force spring 4 is used in the lower part. And a certain temperature T'C
Assuming that these two types of spring outputs T are balanced and the rotating shaft 8 is stationary, as the temperature rises by ΔT°C, the radius of curvature Rn of the temperature-sensitive constant force spring 3 tends to become smaller, so the radius In other words, the force A that tries to rotate the rotating shaft 8 clockwise is reduced by the diameter of the lower part because the radius of curvature Rn of the temperature-sensitive constant force spring 4 increases. The rotation shaft 8 rotates clockwise because it becomes larger than the force B that rotates the rotation shaft 8 counterclockwise in order to rewind it onto the small drum 11.

又、温度がT”CよりΔT”C降下すると、AとBの関
係はA<Bとなり、回転軸8は反時計回りに回転する。
Further, when the temperature drops from T"C by ΔT"C, the relationship between A and B becomes A<B, and the rotating shaft 8 rotates counterclockwise.

逆に、温度感応性定荷重バネ3を下部に、温度感応性定
荷重バネ4を上部に設けると、温度が上昇すると上記と
逆に回転軸8は反時計回りに、温度が降下すると回転軸
8は時計回りに回転する。
Conversely, if the temperature-sensitive constant force spring 3 is provided at the bottom and the temperature-sensitive constant force spring 4 is provided at the top, when the temperature rises, the rotating shaft 8 rotates counterclockwise, contrary to the above, and when the temperature falls, the rotating shaft 8 rotates counterclockwise. 8 rotates clockwise.

このように、温度差により右または左に回転をするとこ
ろの回転機構となる。
In this way, the rotating mechanism rotates to the right or left depending on the temperature difference.

第5図の機構は上下に、温度感応性定荷重バ′ネ3と温
度3応性定荷重バネ4を径の大きなドラム10ないし径
の小さなドラム9に巻き込み、支持板12につける、そ
してそれらを連絡軸13で連結し錘6と連絡軸13を紐
7でつないだものである0例とし、上部に温度感応性定
荷重バネ3・下部に温度3応性定荷重バネ4を設けたと
する。
In the mechanism shown in FIG. 5, a temperature-sensitive constant force spring 3 and a temperature-responsive constant force spring 4 are wound around a large diameter drum 10 or a small diameter drum 9, attached to a support plate 12, and then Assume that the weight 6 and the communication shaft 13 are connected by a connecting shaft 13, and a temperature-sensitive constant force spring 3 is provided at the upper part, and a temperature-responsive constant force spring 4 is provided at the lower part.

そして、ある温度T”Cで温度感応性定荷重バネ3が錘
6を持ち上げようとする力Aと温度感応性定荷重バネ4
が錘6を引き下げようする力Bとの合力であるところの
バネ出力と錘6との重さが同一で錘6が一定の所で静止
しているとする。
Then, at a certain temperature T"C, the temperature-sensitive constant-load spring 3 tries to lift the weight 6, and the force A and the temperature-sensitive constant-load spring 4
It is assumed that the spring output, which is the resultant force of the force B which pulls down the weight 6, and the weight of the weight 6 are the same, and the weight 6 is stationary at a fixed place.

この時ΔT’Cだけ温度上昇したとすると、温度感応性
定荷重バネ3の曲率半径Rnは小さくなりその力Aは大
きくなる。温度感応性定荷重バネ4の曲率半径Rnは大
きくなるので、出力は小さくなり、rA>B+錘6の重
さ」、となるので錘6は上に昇る。
If the temperature rises by ΔT'C at this time, the radius of curvature Rn of the temperature-sensitive constant force spring 3 becomes smaller and its force A becomes larger. Since the radius of curvature Rn of the temperature-sensitive constant force spring 4 becomes larger, the output becomes smaller, and the weight 6 rises because rA>B+weight of the weight 6.

又、ΔT”C温度が降下すると温度感応性定荷重バネ3
の曲率半径Rnは大きくなり力Aは小さくなる。温度感
応性定荷重バネ4の曲率半径Rnは小さくなるので力B
は大きくなり、rA<B+錘6の重さ」となるので錘6
は下にさがる。
Also, when the temperature ΔT”C decreases, the temperature-sensitive constant force spring 3
The radius of curvature Rn becomes larger and the force A becomes smaller. Since the radius of curvature Rn of the temperature-sensitive constant force spring 4 becomes smaller, the force B
becomes larger, and rA < B + weight of weight 6, so weight 6
goes down.

逆に、上部に温度感応性定荷重バネ4を、下部に温度感
応性定荷重バネ3を設けると、温度上昇時には錘6はさ
がり、温度降下時にはあがる。
Conversely, if the temperature sensitive constant force spring 4 is provided in the upper part and the temperature sensitive constant force spring 3 is provided in the lower part, the weight 6 lowers when the temperature rises and rises when the temperature falls.

このような機構にすると直動機構となる。Such a mechanism becomes a linear motion mechanism.

これら2種の機構の応用例として、第10図から第14
図までに示す。
As an application example of these two types of mechanisms, Figures 10 to 14 show
Shown in the figure.

第1O図は、空調設備の空気吹き出し口のフィーダー回
転装置である。冬期に熱風が回転装置にあたると熱膨張
率の低い金属を曲率の外側にくるように塑性加工した温
度感応性定荷重バネ′4は曲率半径Rnが大きくなるの
で、その出力Aは、熱膨張率の低い金属を曲率の内側に
くるように塑性加工した温度感応性定荷重バネ3の曲率
半径Rnが小さくなるのでその出力Bとの関係は、BA
Aとなりフィーダー14は時計回転をし、第10図で示
すようにストッパーにあたり垂直になる。
FIG. 1O shows a feeder rotating device for an air outlet of an air conditioner. When hot air hits the rotating device in winter, the temperature-sensitive constant force spring '4, which is made of a metal with a low coefficient of thermal expansion and is plastically worked so that it is on the outside of the curvature, increases the radius of curvature Rn, so its output A is equal to the coefficient of thermal expansion. Since the radius of curvature Rn of the temperature-sensitive constant force spring 3, which is made of a metal with a low curvature and is plastically processed so that it is on the inside of the curvature, is small, its relationship with the output B is BA
A, the feeder 14 rotates clockwise and hits the stopper and becomes vertical as shown in FIG.

夏期に冷風が回1装置にあたるとA>B’となりフィー
ダー14は反時計回転をし斜め方向に傾くこれら作用に
より冬期の熱風は真下に夏期の冷風1よ斜めに各法れを
変換する事できる。
When cold air hits the unit 1 in the summer, A>B' and the feeder 14 rotates counterclockwise and tilts diagonally.By these actions, the hot air in the winter can be converted diagonally to the cool air 1 in the summer. .

又、温度感応性定荷重バネ3のがわりに公知の定荷重バ
ネ15を用いても、フィーダー14は冬期には垂直にな
り、夏期には斜め方向になる。
Furthermore, even if a known constant force spring 15 is used instead of the temperature sensitive constant force spring 3, the feeder 14 will be vertical in the winter and oblique in the summer.

又、温度感応性定荷重バネ3のかわりに公知の渦巻バネ
17を用いてもよい。
Further, a known spiral spring 17 may be used instead of the temperature-sensitive constant force spring 3.

この場合には第14図で示すように組み立てをおこなう
時点で、このフィーダー回転装置の作動温度、言い換え
れば20℃を境にして、それ以上の温度ではフィーダー
14が垂直に、それ以下の温度ではフィーダー14が斜
め方向になるようにするためは、20℃の雰囲気におい
て、っまみ16で巻き締め回転を調整することによって
温度感応性定荷重バネ3の出力と同じになるようにした
公知の渦巻バネ17をこの装置内に設けると上記と同じ
作動をする。
In this case, as shown in FIG. 14, at the time of assembly, the operating temperature of this feeder rotating device, in other words, the feeder 14 will be vertical when the temperature is higher than 20°C, and the feeder 14 will be vertical when the temperature is lower than that. In order to make the feeder 14 in an oblique direction, a known spiral is used in which the output of the temperature-sensitive constant force spring 3 is made equal to the output of the temperature-sensitive constant force spring 3 by adjusting the tightening rotation with the knob 16 in an atmosphere of 20°C. When a spring 17 is provided in this device, it operates in the same manner as described above.

第11図はボイラーと風呂との間に設ける水流切り替え
装置である8回転の作動方法及び各バネの組み合わせは
上記と同様のものである。
FIG. 11 shows a water flow switching device installed between the boiler and the bath, and the operating method of the eight rotations and the combination of each spring are the same as described above.

ずイラーからの流水の温度が入浴適温より高くなるとバ
ルブ18が第11図の位置より時計回転をし、風呂から
のパイプとボイラーへ行くパイプとを直結し、水流は風
呂に)ボイラーに)水流切り替え装置に)風呂中ボイラ
ーとなる。入浴適温より低くなると第11図の位置にバ
ルブ18が反時計回転して戻り、水流を水流切り替え装
置に)ボイラーに)水流切り替え装置φボイラーの循環
に変える。
When the temperature of the water flowing from the boiler becomes higher than the appropriate temperature for bathing, the valve 18 rotates clockwise from the position shown in Fig. 11, directly connecting the pipe from the bath to the pipe going to the boiler, and the water flow to the bath (to the boiler). Switching device) becomes a boiler in the bath. When the bathing temperature becomes lower than the appropriate temperature, the valve 18 rotates counterclockwise and returns to the position shown in FIG. 11, changing the water flow to the water flow switching device) to the boiler) to the water flow switching device φ boiler circulation.

故に冬期における湯舟の湯温低下を人の手を経ないで自
動的におこなう事ができる。
Therefore, the temperature of the bathtub can be lowered automatically in winter without human intervention.

第12図は浴室用の船のおもちゃであるが、湯舟に入れ
たときにはスクリューが時計回転し、船は前進する。逆
に水に入れたときにはスクリューが反時計回転し、船は
後退する。その操り返しによって遊ぶおもちやである。
Figure 12 shows a toy boat for the bathroom. When the boat is placed in a bathtub, the screw rotates clockwise and the boat moves forward. Conversely, when placed in water, the screw rotates counterclockwise and the ship moves backwards. It is a toy that can be played with by manipulating it.

第13図は第1O図と同じ空調設備の空気吹き出し口の
フィーダー回転装置であるが、この場合には直動I!横
を利用したものである6冬期に熱風がフィーダー回転装
置にあたると曲率半径Rnが大きくなる温度感応性定荷
重バネ4のコイル状になろうとする力Aと曲率半径Rn
が小さくなる温度感応性定荷重バネ3のコイル状になろ
うとする力Bの関係は、A<Bとなりフィーダー14は
垂直になり、夏期に冷風があたるとA〉Bとなりフィー
ダー14は斜め方向に傾く。
Figure 13 shows the same feeder rotation device for the air outlet of the air conditioning equipment as in Figure 1O, but in this case, the direct-acting I! 6. When hot air hits the feeder rotating device in winter, the radius of curvature Rn increases. Force A and radius of curvature Rn of the temperature-sensitive constant force spring 4 to form a coil shape.
The relationship between the force B that causes the temperature-sensitive constant force spring 3 to become coiled is A<B, and the feeder 14 is vertical, and when cold air hits in the summer, A>B, and the feeder 14 is tilted diagonally. Lean.

故に夏期の冷風は斜めに、冬期の熱風は真下に流れる。Therefore, cold air in the summer flows diagonally, and hot air in the winter flows straight down.

「発明の効果j 本発明は、温度変化を利用した回転機構・直動機構を簡
単なfi横とし、メンテナンス・製造の面でも時間・経
費が軽減できる。又、高温にさらされた時に防爆性を必
要とする回転装置・直動装置には特に便宜がある。
``Effects of the invention j The present invention uses a simple fi side rotating mechanism and linear motion mechanism that utilizes temperature changes, reducing time and costs in terms of maintenance and manufacturing.In addition, it is explosion-proof when exposed to high temperatures. This is particularly advantageous for rotary and linear motion devices that require

【図面の簡単な説明】[Brief explanation of drawings]

第1図は温度感応性定荷重バネ3の断面図。 第2図は温度感応性定荷重バネ4の断面図。 第3図は釣り合いI!横の斜視図、 第4図は回転機構
の側視図、第5図は直動機構の斜視図。 第6図・第7図は温度感応性定荷重バネ3の原理を示し
た正面図。 第8図はバイメタル等を利用した温度感応性バネの非接
触バネの正面図、。 第9図は定荷重バネの断面図。 第10図・第11図・第12図・第13図・第14図は
応用例の斜視図。 1はバネ性を有する金属、2は熱膨張率の低い金属、3
・4は温度悪巧性定荷重バネ、5は巻き取りドラム、6
は錘、7は紐、8は回転軸、9は固定軸、10は径の大
きなドラム、11径の小さなドラム、12は支持板、1
3は発条連絡軸。 14はフィーダー、15は定荷重バネ、16はつまみ、
17は渦巻バネ、18はバルブ。 特許出願人   大阪熱処理株式会社 図S ヤ                     さ寸 オ6m ?r1色 (イ) (Oン 孝Δ目 第12菌
FIG. 1 is a cross-sectional view of the temperature-sensitive constant force spring 3. FIG. 2 is a cross-sectional view of the temperature-sensitive constant force spring 4. Figure 3 shows equilibrium I! 4 is a side view of the rotating mechanism, and FIG. 5 is a perspective view of the linear motion mechanism. FIGS. 6 and 7 are front views showing the principle of the temperature-sensitive constant force spring 3. FIG. 8 is a front view of a non-contact temperature-sensitive spring using bimetal or the like. FIG. 9 is a sectional view of a constant force spring. 10, 11, 12, 13, and 14 are perspective views of application examples. 1 is a metal with spring properties, 2 is a metal with a low coefficient of thermal expansion, 3 is a metal with a low coefficient of thermal expansion.
・4 is a temperature-sensitive constant force spring, 5 is a winding drum, 6
1 is a weight, 7 is a string, 8 is a rotating shaft, 9 is a fixed shaft, 10 is a drum with a large diameter, 11 is a drum with a small diameter, 12 is a support plate, 1
3 is the spring communication axis. 14 is a feeder, 15 is a constant force spring, 16 is a knob,
17 is a spiral spring, and 18 is a valve. Patent applicant: Osaka Heat Treatment Co., Ltd. r1 color (A) (Order Δorder 12)

Claims (1)

【特許請求の範囲】 (イ)バネ性を有する金属帯1と熱膨張率の低い金属帯
2を複合させ、1つの複合帯とする。 (ロ)この複合帯に一定または段階的な曲率半径Rnを
持つように塑性加工を施す。 以上のごとく加工したバネ。
[Claims] (a) A metal band 1 having spring properties and a metal band 2 having a low coefficient of thermal expansion are combined into one composite band. (b) This composite band is subjected to plastic working so that it has a constant or stepwise radius of curvature Rn. The spring processed as described above.
JP8184387A 1987-04-01 1987-04-01 Temperature-sensitive constant load spring Pending JPS63246697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8184387A JPS63246697A (en) 1987-04-01 1987-04-01 Temperature-sensitive constant load spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8184387A JPS63246697A (en) 1987-04-01 1987-04-01 Temperature-sensitive constant load spring

Publications (1)

Publication Number Publication Date
JPS63246697A true JPS63246697A (en) 1988-10-13

Family

ID=13757754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8184387A Pending JPS63246697A (en) 1987-04-01 1987-04-01 Temperature-sensitive constant load spring

Country Status (1)

Country Link
JP (1) JPS63246697A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165217A (en) * 1999-12-07 2001-06-19 Masumi Atsukawa Close wind spring type extension/contraction actuator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847288A (en) * 1981-09-14 1983-03-18 株式会社東芝 Manufacture of bimetal member

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847288A (en) * 1981-09-14 1983-03-18 株式会社東芝 Manufacture of bimetal member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165217A (en) * 1999-12-07 2001-06-19 Masumi Atsukawa Close wind spring type extension/contraction actuator

Similar Documents

Publication Publication Date Title
US4531988A (en) Thermally actuated devices
JPS63246697A (en) Temperature-sensitive constant load spring
US2474369A (en) Air circulation control system
US5076709A (en) Shower flange thermometer
US3291474A (en) Heat-sensitive, non-cumulative force spiral spring and spring motor
US2523497A (en) Thermostatically controlled ventilator
US2601028A (en) Differential thermostat with opposing bimetallic coils and partition therebetween
Isawa et al. Human-body exergy consumption varying with the combination of room air and mean radiant temperatures.
JPS54106960A (en) Clothes drier
JPS6113141B2 (en)
JPS63279051A (en) Device for adjusting a degree of opening of air passage damper
US3803845A (en) Thermal engine
US2828920A (en) Plural situs temperature responsive controller
US1403963A (en) Thermostat
JPS6053677A (en) Seesaw type centroid-shiftable thermal engine
JPH0345896A (en) Heat exchanger
SU1032305A2 (en) Heat exchange device of rotating furnace
JPS59154515A (en) Thermal louver
SU1420407A1 (en) Thermoelectric pressure transducer
Gustafsson et al. A HIGH PERFORMANCE DUPLEX STAINLESS STEEL--THEORY AND PRACTICE
JPS59147882A (en) Thermal engine
JPS61140689A (en) Piping support structure
SU1688054A1 (en) Method for qualtitative control of heating capacity of building heating system
JPS59156900A (en) Thermal louver
RU93045186A (en) DEVICE FOR REGULATING TEMPERATURE