JPS63245904A - Ferromagnetic powder and manufacture thereof - Google Patents

Ferromagnetic powder and manufacture thereof

Info

Publication number
JPS63245904A
JPS63245904A JP62080722A JP8072287A JPS63245904A JP S63245904 A JPS63245904 A JP S63245904A JP 62080722 A JP62080722 A JP 62080722A JP 8072287 A JP8072287 A JP 8072287A JP S63245904 A JPS63245904 A JP S63245904A
Authority
JP
Japan
Prior art keywords
powder
magnetic
oxide
copper
magnetic metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62080722A
Other languages
Japanese (ja)
Inventor
Tetsuya Nakazumi
中住 哲也
Mikio Kishimoto
幹雄 岸本
Nanao Kawai
河合 七雄
Tomoji Kawai
知二 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP62080722A priority Critical patent/JPS63245904A/en
Publication of JPS63245904A publication Critical patent/JPS63245904A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To increase the quantity of coating of a magnetic metallic layer by forming the magnetic metallic layers containing copper onto the surfaces of oxide magnetic metallic powder particles. CONSTITUTION:Copper is attached onto the surfaces of the oxide magnetic metallic powder of gammaFe2O3, etc., and magnetic metallic layers mainly comprising cobalt, etc., are shaped by reducing and precipitating magnetic metallic ions, thus forming ferromagnetic powder. The efficiency of precipitation is improved remarkably in the presence of copper having high oxidation-reduction potential to the cobalt, etc., thus increasing the quantity of coating of the magnetic metallic layer. Accordingly, ferromagnetic powder having comparatively low coercive force and high saturation magnetization and being adapted for a high- performance magnetic record medium, etc., is manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、磁気テープや磁気ディスクの如き磁気記録
媒体における磁気記録素子として有用な強磁性粉末とそ
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ferromagnetic powder useful as a magnetic recording element in a magnetic recording medium such as a magnetic tape or a magnetic disk, and a method for producing the same.

〔従来の技術〕[Conventional technology]

近年、磁気記録媒体の出力特性などの高性能化に伴い、
その磁気記録素子として使用される磁性粉末の保磁力お
よび飽和磁化をともに大きくする試みがなされている。
In recent years, with the improvement in performance such as the output characteristics of magnetic recording media,
Attempts have been made to increase both the coercive force and saturation magnetization of the magnetic powder used as the magnetic recording element.

たとえば、γ−F8203などの磁性酸化鉄粉末の粒子
表面にコバルトを含む酸化物層を形成したコバルト含有
酸化鉄磁性粉末は、コバルトの含有量を多くすることに
よって高密度化に対応し得る大きな保磁力が得られる。
For example, cobalt-containing iron oxide magnetic powder, such as γ-F8203, which has a cobalt-containing oxide layer formed on the particle surface, has a high retention capacity that can be used for high density by increasing the cobalt content. Magnetic force is obtained.

ところが、このようなコバルト含有酸化鉄磁性粉末にお
いても、その飽和磁化はせいぜい80emu/g程度で
あって、これ以上のものは得られておらず、磁気記録媒
体の出力向上には不充分である。
However, even in such a cobalt-containing iron oxide magnetic powder, the saturation magnetization is at most about 80 emu/g, and higher magnetization has not been obtained, which is insufficient for improving the output of magnetic recording media. .

また、大きな飽和磁化を示す磁性粉末としてFe、co
、Niやこれらの合金からなる金属磁性粉末が知られる
が、これらは保磁力があまりに高すぎることから、消去
特性などの面より用途的に大きな制約がある(文献不詳
)。
In addition, Fe, co
Metal magnetic powders made of , Ni, and alloys thereof are known, but these have too high coercive force, so there are major restrictions in terms of use due to erase characteristics (unspecified literature).

一方、この発明者らは、先に特願昭59−141033
号(特開昭61−20302号公報)などで、酸化物系
磁性粉末の粒子表面に金属コバルトやコバルト−ニッケ
ル合金などからなる磁性金属層を形成した強磁性粉末を
提案している。
On the other hand, the inventors had previously applied for patent application No. 59-141033.
(Japanese Unexamined Patent Publication No. 61-20302) proposes a ferromagnetic powder in which a magnetic metal layer made of metal cobalt, a cobalt-nickel alloy, or the like is formed on the particle surface of an oxide-based magnetic powder.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記提案に係る強磁性粉末は、前記のコ
バルトを含む酸化物層を有するコバルト含有酸化鉄磁性
粉末に比べて高い飽和磁化を示すが、その製法上から磁
性金属層の被着量を大きくできないことなどから飽和磁
化の向上に限界があり、近年における磁気記録媒体の高
出力化の要望には必ずしも充分に対処できるものとは言
えなかった。
However, the ferromagnetic powder according to the above proposal exhibits higher saturation magnetization than the cobalt-containing iron oxide magnetic powder having the oxide layer containing cobalt, but due to its manufacturing method, the amount of the magnetic metal layer deposited is large. There is a limit to the improvement of saturation magnetization due to the fact that it is not possible to improve the saturation magnetization, and it has not always been possible to sufficiently meet the demand for higher output of magnetic recording media in recent years.

そこで、この発明は、用途的に制約を受けない比較的低
保磁力でかつ上記提案に係る強磁性粉末よりもさらに大
きな飽和磁化を示す強磁性粉末とその製造方法を提供し
、もって磁気記録媒体の出力特性などの高性能化に貢献
することを目的としている。
Therefore, the present invention provides a ferromagnetic powder that has a relatively low coercive force that is not subject to any restrictions in terms of use and exhibits a larger saturation magnetization than the ferromagnetic powder according to the above proposal, and a method for producing the same, thereby providing a magnetic recording medium. The aim is to contribute to higher performance such as output characteristics.

〔問題点を解決するための手段〕[Means for solving problems]

この発明者らは、上記目的を達成するために鋭意検討を
重ねた結果、酸化物系磁性粉末の粒子表面に磁性金属層
を備えた強磁性粉末が特定の非磁性金属を含むものであ
る場合、上記磁性金属層を磁性金属イオンより還元析出
させて形成させる際の析出効率が著しく向上し、該磁性
金属層の被着量を大きくでき、これによって非常に高い
飽和磁化が達成されることを見い出し、この発明をなす
に至った。
As a result of intensive studies to achieve the above object, the inventors found that when a ferromagnetic powder having a magnetic metal layer on the particle surface of an oxide-based magnetic powder contains a specific non-magnetic metal, the above-mentioned It has been discovered that the deposition efficiency when forming a magnetic metal layer by reduction precipitation from magnetic metal ions is significantly improved, the amount of the magnetic metal layer deposited can be increased, and as a result, extremely high saturation magnetization can be achieved. This invention has been made.

すなわち、この発明の第1は、酸化物系磁性粉末の粒子
表面に磁性金属層を備えるとともに銅を含有してなる強
磁性粉末に係る。また、この発明の第2は、磁性金属イ
オンおよび還元剤を含む液媒体中に酸化物系磁性粉末を
分散させ、該粉末の粒子表面に磁性金属を還元析出させ
て磁性金属層を形成するにあたり、上記酸化物系磁性粉
末として予め粒子表面に銅を被着させるか、もしくは上
記液媒体中に銅イオンを存在させることにより、酸化物
系磁性粉末の粒子表面に磁性金属層を備えるとともに銅
を含有する強磁性粉末を得ることを特徴とする強磁性粉
末の製造方法に係る。
That is, the first aspect of the present invention relates to a ferromagnetic powder comprising a magnetic metal layer on the particle surface of an oxide-based magnetic powder and containing copper. The second aspect of the present invention is to form a magnetic metal layer by dispersing an oxide-based magnetic powder in a liquid medium containing magnetic metal ions and a reducing agent, and reducing and depositing a magnetic metal on the particle surface of the powder. By depositing copper on the particle surface of the oxide magnetic powder in advance or by making copper ions exist in the liquid medium, a magnetic metal layer is provided on the particle surface of the oxide magnetic powder and copper is added to the particle surface. It relates to a method for producing ferromagnetic powder characterized by obtaining ferromagnetic powder containing the present invention.

(発明の構成・作用〕 この発明の強磁性粉末は、前記の如く酸化物系磁性粉末
の粒子表面に磁性金属層を備えてかつ内部に非磁性金属
である銅を含有することを特徴としており、たとえば上
記酸化物系磁性粉末としてγ−Feto*粉末を用いた
場合の飽和磁化が、後述する比較例の銅を含有しない強
磁性粉末において86emu/g程度であるのに対し、
後述するこの発明の実施例1.2.3.4の強磁性粉末
ではいずれも90emu/g以上であるように、これを
用いた磁気記録媒体の高出力化を可能とする極めて高い
飽和磁化を示す一方、保磁力は核となる酸化物系磁性粉
末の特質が現われて用途的に制約を受けない比較的低い
値を示す。
(Structure and operation of the invention) As described above, the ferromagnetic powder of the present invention is characterized by having a magnetic metal layer on the particle surface of the oxide-based magnetic powder and containing copper, which is a non-magnetic metal, inside. For example, when γ-Feto* powder is used as the oxide-based magnetic powder, the saturation magnetization is about 86 emu/g in the copper-free ferromagnetic powder of the comparative example described below.
The ferromagnetic powders of Examples 1.2.3.4 of the present invention, which will be described later, all have an extremely high saturation magnetization of 90 emu/g or more, which makes it possible to increase the output of magnetic recording media using the same. On the other hand, the coercive force exhibits the characteristics of the core oxide-based magnetic powder and exhibits a relatively low value that is not subject to any restrictions in terms of use.

上述の如くこの発明の強磁性粉末が極めて高い飽和磁化
を示すものとなる理由はつぎのように推測される。すな
わち、上記磁性金属層は一般に磁性金属イオンの還元析
出にて形成されるが、この析出時に磁性金属であるコバ
ルト、ニッケル、鉄などに対して酸化還元電位の高い銅
が存在していることにより、磁性金属の析出効率が著し
く向上し、その結果として個々の粒子表面の磁性金属層
の被着量が大きくなり、これに伴って高い飽和磁化が達
成されるものと考えられる。
The reason why the ferromagnetic powder of the present invention exhibits extremely high saturation magnetization as described above is presumed to be as follows. In other words, the above-mentioned magnetic metal layer is generally formed by reduction precipitation of magnetic metal ions, but due to the presence of copper, which has a high redox potential compared to magnetic metals such as cobalt, nickel, and iron during this precipitation, It is considered that the precipitation efficiency of the magnetic metal is significantly improved, and as a result, the amount of the magnetic metal layer deposited on the surface of each particle increases, and a high saturation magnetization is achieved accordingly.

このように強磁性粉末に銅を含有させるには、使用する
酸化物系磁性粉末の粒子表面に予め適宜の手段で銅を被
着させる方法、もしくは磁性金属層の還元析出に使用す
る液媒体中に銅イオンを存在させて磁性金属と同時に還
元析出させる方法を採用すればよく、とくに前者の方法
による磁性金属の析出効率の向上効果が大きい。
In this way, copper can be incorporated into the ferromagnetic powder by depositing copper on the particle surface of the oxide-based magnetic powder to be used in advance by an appropriate means, or by depositing copper in the liquid medium used for reductive precipitation of the magnetic metal layer. It is sufficient to employ a method in which copper ions are present in the magnetic metal and the magnetic metal is reduced and precipitated at the same time, and the former method is particularly effective in improving the precipitation efficiency of the magnetic metal.

そして、強磁性粉末中の銅含有量は、これが増大するほ
ど磁性金属の析出効率が上昇するが、あまりに多くなる
と強磁性粉末全体として非磁性成分の割合が大きくなっ
て却って飽和磁化が低下することになり、またあまりに
少なすぎるとその効果が充分に発揮されないため、強磁
性粉末全体の0、1〜10重量%を占める範囲とするの
がよく、とくに1.0〜8.0重量%が最適である。
As the copper content in the ferromagnetic powder increases, the precipitation efficiency of magnetic metal increases, but if it increases too much, the proportion of non-magnetic components in the ferromagnetic powder as a whole increases, and the saturation magnetization decreases. If the amount is too small, the effect will not be fully exhibited, so it is best to set it in a range that accounts for 0.1 to 10% by weight of the entire ferromagnetic powder, and 1.0 to 8.0% by weight is particularly optimal. It is.

磁性金属層の構成金属としては、コバルト、ニッケル、
鉄およびこれらの合金などの種々の磁性金属を用いうる
が、とくにコバルトを主体とする磁性金属つまりコバル
ト単独もしくはコバルトを主体としてニッケルなどの他
の磁性金属を含む合金が好適である。そして、この磁性
金属層の被着量は、この層を有する強磁性粉末全体の5
〜50重景%、とくに好ましくは10〜40ffi量%
を占める範囲とするのがよい。この被着量が少なすぎる
と充分な磁気特性とくに飽和磁化の向上が認められす、
逆に多すぎると磁性粉末の形状が著しく変化してしまい
、磁気記録媒体に使用する場合に磁性層のバインダに対
する分散性および配向性が低下する。
The constituent metals of the magnetic metal layer include cobalt, nickel,
Although various magnetic metals such as iron and alloys thereof can be used, a magnetic metal mainly composed of cobalt, that is, cobalt alone or an alloy mainly composed of cobalt and containing another magnetic metal such as nickel, is particularly suitable. The amount of this magnetic metal layer deposited is 5% of the total ferromagnetic powder having this layer.
~50 weight%, particularly preferably 10~40ffi amount%
It is best to set the range to cover . If the amount of this coating is too small, sufficient magnetic properties, especially improvement in saturation magnetization, will be observed.
On the other hand, if the amount is too large, the shape of the magnetic powder will change significantly, and when used in a magnetic recording medium, the dispersibility and orientation of the magnetic layer in the binder will deteriorate.

磁性金属層を形成する酸化物系磁性粉末としては、従来
より磁気記録媒体の磁気記録素子として知られる種々の
酸化物系粉末をいずれも使用できるが、とくに7  F
 ez 03 、F ex Os 、これらの中間的酸
化物の如き酸化鉄磁性粉末、Co含有r−Fe!Ox 
、Co含有Fe、O,の如き粒子表面にコバルトを含む
酸化物層を備えたコバルト含有酸化鉄磁性粉末、バリウ
ムフェライト磁性粉末、酸化クロム磁性粉末などが好適
である。
As the oxide-based magnetic powder forming the magnetic metal layer, any of various oxide-based powders conventionally known as magnetic recording elements of magnetic recording media can be used, but 7F is particularly suitable.
Iron oxide magnetic powders such as ez 03 , F ex Os , intermediate oxides thereof, Co-containing r-Fe! Ox
Cobalt-containing iron oxide magnetic powder, barium ferrite magnetic powder, chromium oxide magnetic powder, etc., which have a cobalt-containing oxide layer on the particle surface, such as Co-containing Fe, O, etc., are suitable.

磁性金属層を形成するには、磁性金属イオンおよび還元
剤を含む液媒体中に上記の酸化物系磁性粉末を分散させ
、該粉末の粒子表面に磁性金属を還元析出させればよい
。そして、この発明方法では、既述のように、上記の還
元析出を行うにあたり、酸化物系磁性粉末として予め粒
子表面に銅を被着させたものを使用するか、もしくは上
記液媒体中に銅イオンを存在させることにより、磁性金
属の析出効率を著しく向上させてその被着量を大きくで
きるのである。
In order to form the magnetic metal layer, the above oxide-based magnetic powder may be dispersed in a liquid medium containing magnetic metal ions and a reducing agent, and the magnetic metal may be reduced and precipitated on the particle surface of the powder. In the method of the present invention, as mentioned above, when carrying out the above-mentioned reduction precipitation, oxide-based magnetic powder that has been coated with copper on the particle surface in advance is used, or copper is deposited in the liquid medium. The presence of ions makes it possible to significantly improve the efficiency of magnetic metal deposition and increase the amount of magnetic metal deposited.

ここで、上述のように磁性金属を還元析出させる具体的
手段としては、無電解メッキ法などの金属層を形成する
ための一般的な手法を任意に採用できるが、とくに特願
昭59−141033号で詳述されるような光触媒反応
を利用する方法が最も好適である。すなわち、光触媒反
応によれば、酸化物系磁性粉末の粒子表面にその粒子形
状を損うことなく非常に均一な磁性金属層を形成できる
ことから、磁気特性上でとくに望ましい強磁性粉末が得
られる。
Here, as a specific means for reducing and precipitating the magnetic metal as described above, any general method for forming a metal layer such as electroless plating can be adopted, but in particular, Japanese Patent Application No. 59-141033 The most suitable method is one that utilizes a photocatalytic reaction, as detailed in the above issue. That is, according to the photocatalytic reaction, a very uniform magnetic metal layer can be formed on the particle surface of the oxide-based magnetic powder without damaging the particle shape, so that a ferromagnetic powder with particularly desirable magnetic properties can be obtained.

この光触媒反応を利用する方法とは、酸化物系磁性粉末
が半導体特性を有していることから、この半導体特性を
利用して、その表面に所望の金属を還元析出させる方法
である。具体的には、まず、磁性金属塩を溶解させた水
その他の液媒体中に適当な還元剤、たとえば次亜リン酸
ナトリウム、ヒドラジン、ホルマリン、エタノール、ギ
酸、ギ酸ナトリウムなどを溶解し、これに酸化物系磁性
粉末を分散させる。
This method of utilizing photocatalytic reaction is a method of reducing and depositing a desired metal on the surface of the oxide-based magnetic powder by utilizing this semiconductor property since it has semiconductor properties. Specifically, first, a suitable reducing agent such as sodium hypophosphite, hydrazine, formalin, ethanol, formic acid, sodium formate, etc. is dissolved in water or other liquid medium in which a magnetic metal salt is dissolved, and then a suitable reducing agent is dissolved in water or other liquid medium in which a magnetic metal salt is dissolved. Disperse oxide magnetic powder.

つぎに、この分散液に上記磁性粉末の価電子帯から伝導
帯までのバンドギャップのエネルギーより大きなエネル
ギーを有する光を照射すると、伝導体に電子を、価電子
帯に正孔を生じ、これら電子および正孔は粒子の中で直
ちに拡散して粒子表面に達するが、そのうちの正孔は分
散液中の還元剤と反応して消滅し、電子のみが蓄積され
ていく。
Next, when this dispersion is irradiated with light having an energy greater than the energy of the band gap from the valence band to the conduction band of the magnetic powder, electrons are generated in the conductor and holes are generated in the valence band. The holes immediately diffuse within the particles and reach the particle surface, but the holes react with the reducing agent in the dispersion and disappear, leaving only electrons to accumulate.

そして、蓄積電子により負に帯電した酸化物系磁性粉末
が正の電荷を有する磁性金属イオンを強く引き寄せ、引
き寄せられた金属イオンは上記磁性粉末の粒子表面で電
子を得て金属に還元され、該粒子表面に析出する。
Then, the oxide-based magnetic powder, which is negatively charged by the accumulated electrons, strongly attracts the positively charged magnetic metal ions, and the attracted metal ions obtain electrons on the particle surface of the magnetic powder and are reduced to the metal. Precipitates on particle surfaces.

ここで、上記の析出効率は、既述の如く酸化物系磁性粉
末の粒子表面に銅が被着されているか、もしくは分散液
中に存在させた銅イオンが先に上記粒子表面に還元析出
することによって、飛躍的に向上する。また、上記光触
媒反応において、酸化物系磁性粉末に対する磁性金属塩
の量、反応分散液の温度、光照射の時間などを適当に設
定することにより、上記磁性粉末の粒子表面に磁性金属
あるいはこれと銅を含む金属層が非常に均一に形成され
る。
Here, the above precipitation efficiency is due to the fact that copper is deposited on the particle surface of the oxide-based magnetic powder as described above, or the copper ions present in the dispersion are first reduced and precipitated on the particle surface. By doing so, it will improve dramatically. In addition, in the photocatalytic reaction, by appropriately setting the amount of magnetic metal salt relative to the oxide-based magnetic powder, the temperature of the reaction dispersion, the time of light irradiation, etc., it is possible to coat the particle surface of the magnetic powder with magnetic metal or the like. A metal layer containing copper is formed very uniformly.

分散液の温度としては、90℃以下、とくに好適には1
0〜60℃とするのが望ましい。光照射時間は磁性金属
層の種類や組成によって異なるが、一般に0.5〜50
時間程度である。なお、分散液中には、酸化物系磁性粉
末、金属塩および還元剤のほかに、金属の安定な析出を
補助するためのクエン酸ナトリウム、酒石酸ナトリウム
などの錯化剤を含ませてもよく、また分散液のPHを適
当なものにするためのホウ酸、硫酸アンモニウム、水酸
化ナトリウム、水酸化カリウム、アンモニアなどのPH
調整剤を含ませるようにしてもよい。分散液のPHとし
ては、6.0〜1).0、好適には7゜0〜10.0の
範囲にあるのが望ましい。
The temperature of the dispersion liquid is 90°C or less, particularly preferably 1
It is desirable to set it as 0-60 degreeC. The light irradiation time varies depending on the type and composition of the magnetic metal layer, but is generally 0.5 to 50
It takes about an hour. In addition, in addition to the oxide magnetic powder, metal salt, and reducing agent, the dispersion liquid may contain a complexing agent such as sodium citrate or sodium tartrate to assist in stable precipitation of the metal. , and pH of boric acid, ammonium sulfate, sodium hydroxide, potassium hydroxide, ammonia, etc. to adjust the pH of the dispersion to an appropriate value.
A regulating agent may also be included. The pH of the dispersion is 6.0 to 1). 0, preferably in the range of 7°0 to 10.0.

光触媒反応を行わせるための光は、酸化物系磁性粉末の
バンドギャップのエネルギーより大きいエネルギーを有
するものであるが、一般には20θ〜800nmの波長
を有する光が適している。
The light for carrying out the photocatalytic reaction has energy greater than the energy of the band gap of the oxide-based magnetic powder, and generally light having a wavelength of 20θ to 800 nm is suitable.

また照射光は単色光である必要はとくになく、キセノン
ランプまたは水銀ランプを光源とした多色光を適用する
ことができる。
Further, the irradiation light does not need to be monochromatic light, and polychromatic light using a xenon lamp or a mercury lamp as a light source can be applied.

なお、この発明方法において、酸化物系磁性粉末の粒子
表面に予め銅を被着させる場合の被着手段は、とくに限
定されず、無電解メッキ法などの一般的な金属層形成の
手段を採用できるが、最も好適には上述と同様の光触媒
反応を利用する方法が推奨される。この場合の光触媒反
応の条件は、上述した磁性金属層形成時と同様である。
In addition, in the method of this invention, when depositing copper on the particle surface of the oxide-based magnetic powder in advance, the deposition means is not particularly limited, and general metal layer forming means such as electroless plating method may be employed. However, most preferably, a method using a photocatalytic reaction similar to that described above is recommended. The conditions for the photocatalytic reaction in this case are the same as those for forming the magnetic metal layer described above.

〔発明の効果〕〔Effect of the invention〕

この発明の強磁性粉末は、酸化物系磁性粉末の粒子表面
に磁性金属層を備えるとともに銅を含有するものである
ため、酸化物系磁性粉末の特質である比較的低い保磁力
を有してかつ極めて高い飽和磁化を示し、金属磁性粉末
の如き用途的な制約を受けず、これを磁気記録素子とし
て用いた磁気記録媒体にすぐれた電磁変換特性、とくに
高い出力特性をもたらすものである。また、この発明方
法によれば、上記のすぐれた強磁性粉末を容易かつ確実
に得ることができる。
The ferromagnetic powder of the present invention has a magnetic metal layer on the particle surface of the oxide-based magnetic powder and contains copper, so it has a relatively low coercive force, which is a characteristic of the oxide-based magnetic powder. Moreover, it exhibits extremely high saturation magnetization, is not subject to the limitations of use as with metal magnetic powders, and provides excellent electromagnetic conversion characteristics, particularly high output characteristics, to magnetic recording media using it as a magnetic recording element. Further, according to the method of the present invention, the excellent ferromagnetic powder described above can be obtained easily and reliably.

〔実施例〕〔Example〕

以下、この発明の実施例に基づいて具体的に説明する。 Hereinafter, the present invention will be specifically explained based on embodiments.

実施例1 水1(lに硫酸銅20g1エチレンジアミンテトラアセ
チツクアシツド(EDTA)80 gおよびホルマリン
100mlを混合し、水酸化ナトリウムを適量加えて液
のPHを12に調整し、この溶液(A液)に保磁力32
3エルステツド、飽和磁化? 2.3 emu/ g、
角型0.44、平均長軸径0.3μm、平均軸比8の針
状粒子からなるγ−Fe。
Example 1 1 (l) of water was mixed with 20 g of copper sulfate, 80 g of ethylene diamine tetraacetyl acid (EDTA) and 100 ml of formalin, and an appropriate amount of sodium hydroxide was added to adjust the pH of the liquid to 12. ) has a coercive force of 32
3 oersted, saturation magnetization? 2.3 emu/g,
γ-Fe consisting of acicular particles having a square shape of 0.44 mm, an average major axis diameter of 0.3 μm, and an average axial ratio of 8.

03粉末100gを添加し、よく分散させた。続いて、
この分散液を撹拌しながら、液温を40℃に維持して出
力LKWのキセノンランプ(中足電機社製)を用いて6
時間光照射したのち、ろ過。
03 powder was added and well dispersed. continue,
While stirring this dispersion, the liquid temperature was maintained at 40°C and a xenon lamp (manufactured by Nakatashi Denki) with an output of LKW was used to
After irradiation with light for a period of time, filter.

水洗することにより、γ−Fet02の粒子表面に銅が
均一に被着した磁性粉末を得た。
By washing with water, magnetic powder was obtained in which copper was uniformly adhered to the particle surface of γ-Fet02.

つぎに、この磁性粉末を、水1(lに硫酸コバルト25
0 g、次亜リン酸ナトリウム200 g。
Next, add this magnetic powder to 1 liter of water (25 liters of cobalt sulfate).
0 g, sodium hypophosphite 200 g.

クエン酸三ナトリウム450gおよびホウ酸250gを
混合して水酸化ナトリウムを適量加えてPHを9.0に
調整してなる溶液(B液)によく分散させた。そして、
この分散液を撹拌しながら、液温を50℃に維持して出
力lKWのキセノンランプ(前出)を用いて5時間光照
射したのち、水洗。
450 g of trisodium citrate and 250 g of boric acid were mixed and well dispersed in a solution (solution B) prepared by adding an appropriate amount of sodium hydroxide to adjust the pH to 9.0. and,
While stirring the dispersion, the temperature of the dispersion was maintained at 50° C., and the dispersion was irradiated with light for 5 hours using a xenon lamp (described above) with an output of 1 KW, and then washed with water.

ろ過、乾燥することにより、粒子表面にコバルトからな
る磁性金属層を備えた強磁性粉末を得た。
By filtering and drying, a ferromagnetic powder having a magnetic metal layer made of cobalt on the particle surface was obtained.

実施例2 A液の硫酸銅を40g1エチレンジアミンテトラアセチ
ツクアシツドを120g、ホルマリンを200m1にそ
れぞれ変更した以外は、実施例1と同様にして強磁性粉
末を得た。
Example 2 A ferromagnetic powder was obtained in the same manner as in Example 1, except that the copper sulfate in solution A was changed to 40 g, the ethylenediamine tetraacetic acid was changed to 120 g, and the formalin was changed to 200 ml.

実施例3 B液の硫酸コバルトを200gに変更するとともに硫酸
ニッケル50gを追加した以外は、実施例1と同様にし
て粒子表面にコバルトとニッケルの合金からなる磁性金
属層を備えた強磁性粉末を得た。
Example 3 A ferromagnetic powder having a magnetic metal layer made of an alloy of cobalt and nickel on the particle surface was prepared in the same manner as in Example 1, except that the cobalt sulfate in liquid B was changed to 200 g and 50 g of nickel sulfate was added. Obtained.

実施例4 A液による銅の被着処理を行わず、かつB液に硫酸銅1
0gを追加した以外は、実施例1と同様にして強磁性粉
末を得た。
Example 4 No copper adhesion treatment with liquid A, and 1 part of copper sulfate was added to liquid B.
A ferromagnetic powder was obtained in the same manner as in Example 1 except that 0 g was added.

比較例 A液による銅の被着処理を行わなかった以外は、実施例
1と同様にして強磁性粉末を得た。
Comparative Example A ferromagnetic powder was obtained in the same manner as in Example 1, except that the copper deposition treatment using liquid A was not performed.

実施例5 γ−Fe、O,粉末に代えて保磁力530エルステツド
、飽和磁化53.5emu/g1角型0.44、平均粒
子径0.08μmの六角板状粒子からなるバリウムフェ
ライト粉末100gを使用した以外は、実施例1と同様
にして強磁性粉末を得た。
Example 5 100 g of barium ferrite powder consisting of hexagonal plate-shaped particles with a coercive force of 530 oersted, saturation magnetization of 53.5 emu/g, square shape of 0.44, and average particle size of 0.08 μm was used in place of γ-Fe, O, and powder. A ferromagnetic powder was obtained in the same manner as in Example 1 except for the following.

以上の実施例および比較例の強磁性粉末について、飽和
磁化および保磁力を測定した。その結果を、各磁性粉末
の銅および磁性金属(実施例3のみがCo +N L他
はCo)の被着量とともに下表に示す。なお、この被着
量は蛍光X線装置で分析して測定したものである。
The saturation magnetization and coercive force of the ferromagnetic powders of the above Examples and Comparative Examples were measured. The results are shown in the table below along with the amounts of copper and magnetic metal (Co + N L only in Example 3, Co in the others) of each magnetic powder. Note that this amount of adhesion was measured by analysis using a fluorescent X-ray device.

※;C0=31.5重量%、N i = 2.0重量%
上表から、この発明に係る強磁性粉末(実施例1〜5)
はいずれも磁性金属の被着量が大きく極めて高い飽和磁
化を示し、たとえば核となる酸化物系磁性粉末がγ−p
e2o3である場合の飽和磁化が90emu/g以上、
とくに上記酸化物系磁性粉末に予め銅を被着させたもの
(実施例1〜3)では同92emu/g以上となること
が明らかである。
*; C0 = 31.5% by weight, N i = 2.0% by weight
From the above table, ferromagnetic powders (Examples 1 to 5) according to the present invention
All of them have a large amount of magnetic metal deposited and exhibit extremely high saturation magnetization, for example, the core oxide magnetic powder is γ-p.
Saturation magnetization when e2o3 is 90 emu/g or more,
In particular, it is clear that in the case of the above oxide-based magnetic powder coated with copper in advance (Examples 1 to 3), it is 92 emu/g or more.

これに対して銅の被着を行わなかった強磁性粉末(比較
例)では、磁性金属層の形成条件が同一であるこの発明
の強磁性粉末(実施例1,2)に比べ、その被着量が少
なり、飽和磁化が大きく劣ることが判る。
On the other hand, the ferromagnetic powder (comparative example) in which copper was not deposited had a higher deposit than the ferromagnetic powder of the present invention (examples 1 and 2) under the same conditions for forming the magnetic metal layer. It can be seen that the amount is small and the saturation magnetization is greatly inferior.

Claims (5)

【特許請求の範囲】[Claims] (1)酸化物系磁性粉末の粒子表面に磁性金属層を備え
るとともに銅を含有してなる強磁性粉末。
(1) A ferromagnetic powder comprising a magnetic metal layer on the particle surface of an oxide-based magnetic powder and containing copper.
(2)銅の含有量が強磁性粉末全体の0.1〜10重量
%を占める範囲にある特許請求の範囲第(1)項記載の
強磁性粉末。
(2) The ferromagnetic powder according to claim (1), wherein the copper content is in a range of 0.1 to 10% by weight of the entire ferromagnetic powder.
(3)磁性金属層がコバルトを主体とするものである特
許請求の範囲第(1)項または第(2)項記載の強磁性
粉末。
(3) The ferromagnetic powder according to claim (1) or (2), wherein the magnetic metal layer is mainly composed of cobalt.
(4)磁性金属イオンおよび還元剤を含む液媒体中に酸
化物系磁性粉末を分散させ、該粉末の粒子表面に磁性金
属を還元析出させて磁性金属層を形成するにあたり、上
記酸化物系磁性粉末として予め粒子表面に銅を被着させ
たものを使用するか、もしくは上記液媒体中に銅イオン
を存在させることにより、酸化物系磁性粉末の粒子表面
に磁性金属層を備えるとともに銅を含有する強磁性粉末
を得ることを特徴とする強磁性粉末の製造方法。
(4) In forming a magnetic metal layer by dispersing an oxide-based magnetic powder in a liquid medium containing magnetic metal ions and a reducing agent and reducing and depositing a magnetic metal on the particle surface of the powder, the oxide-based magnetic By using a powder with copper already deposited on the particle surface or by making copper ions exist in the liquid medium, the particle surface of the oxide-based magnetic powder is provided with a magnetic metal layer and contains copper. A method for producing ferromagnetic powder, characterized by obtaining ferromagnetic powder.
(5)酸化物系磁性粉末の分散液に、この粉末の価電子
帯から伝導帯までのバンドギャップよりも大きなエネル
ギーを有する光を照射して磁性金属を還元析出させる特
許請求の範囲第(4)項記載の強磁性粉末の製造方法。
(5) A dispersion of oxide-based magnetic powder is irradiated with light having a larger energy than the band gap from the valence band to the conduction band of the powder to reduce and precipitate the magnetic metal. ) The method for producing the ferromagnetic powder described in item 2.
JP62080722A 1987-03-31 1987-03-31 Ferromagnetic powder and manufacture thereof Pending JPS63245904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62080722A JPS63245904A (en) 1987-03-31 1987-03-31 Ferromagnetic powder and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62080722A JPS63245904A (en) 1987-03-31 1987-03-31 Ferromagnetic powder and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS63245904A true JPS63245904A (en) 1988-10-13

Family

ID=13726255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62080722A Pending JPS63245904A (en) 1987-03-31 1987-03-31 Ferromagnetic powder and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS63245904A (en)

Similar Documents

Publication Publication Date Title
JP3693647B2 (en) Metal alloy fine particles and method for producing the same
US3494760A (en) Production of metal and alloy particles by chemical reduction
US3902888A (en) Process for preparing ferromagnetic alloy powder
JP2784794B2 (en) Magnetic iron oxide particle powder
US3977985A (en) Magnetic recording medium comprising cobalt or cobalt alloy coated particles of spicular magnetite
JP2007194402A (en) Magnetic multilayer nanoparticle, its manufacturing method, and magnetic material using the same
JP2004319923A (en) Iron nitride-based magnetic powder
JPS63245904A (en) Ferromagnetic powder and manufacture thereof
US4803132A (en) Magnetic recording medium
EP0167164B1 (en) Ferromagnetic powder and method for producing the same
JPS5835241B2 (en) Method for producing alloy magnetic powder mainly composed of iron and copper
JPH01235211A (en) Ferromagnetic powder and magnetic recording medium using it
US4664947A (en) Multi-layer process for cobalt treatment of ferromagnetic oxides
JPS62204B2 (en)
JP4469994B2 (en) Iron nitride magnetic powder with excellent weather resistance
JPS63157405A (en) Ferromagnetic powder and magnetic recording medium using the same
JPS6317505A (en) Ferromagnetic powder
JP2002050508A (en) Method of manufacturing magnetic powder
JPS62162314A (en) Magnetic recording medium
JPH0198201A (en) Ferromagnetic powder and manufacture thereof
JP2982859B2 (en) Magnetic iron oxide particle powder
JPS59143004A (en) Production of magnetic alloy powder
JP2945456B2 (en) Method for producing ferromagnetic iron oxide particles containing cobalt
JPS63287099A (en) Magnetic powder for magnetic shield
JP2583070B2 (en) Magnetic recording media