JPS632458B2 - - Google Patents

Info

Publication number
JPS632458B2
JPS632458B2 JP12629881A JP12629881A JPS632458B2 JP S632458 B2 JPS632458 B2 JP S632458B2 JP 12629881 A JP12629881 A JP 12629881A JP 12629881 A JP12629881 A JP 12629881A JP S632458 B2 JPS632458 B2 JP S632458B2
Authority
JP
Japan
Prior art keywords
pressure
pipeline
liquid
change
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12629881A
Other languages
Japanese (ja)
Other versions
JPS5827041A (en
Inventor
Yasuaki Nagai
Kazumi Nishino
Norio Iwasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKURIKU DENRYOKU KK
NITSUKI KK
Original Assignee
HOKURIKU DENRYOKU KK
NITSUKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKURIKU DENRYOKU KK, NITSUKI KK filed Critical HOKURIKU DENRYOKU KK
Priority to JP12629881A priority Critical patent/JPS5827041A/en
Publication of JPS5827041A publication Critical patent/JPS5827041A/en
Publication of JPS632458B2 publication Critical patent/JPS632458B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/28Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
    • G01M3/2807Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes
    • G01M3/2815Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes using pressure measurements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)

Description

【発明の詳細な説明】 本発明はパイプライン内の被輸送液体の漏洩検
知方法に関し、詳しくは、被輸送液体を収容して
パイプラインを締切り、運転休止状態にして漏洩
を検知する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting a leak of a liquid to be transported in a pipeline, and more particularly to a method for detecting a leak by accommodating a liquid to be transported, shutting off the pipeline, and suspending operation.

周知の通り、石油類、化学製品類等の液体をパ
イプ輸送する場合には主として地中に埋設したパ
イプラインを利用するのが通常であるが、そのよ
うなパイプラインからの漏洩は被輸送液体の損失
を招くばかりでなく引火の危険も伴ない、さらに
は地下水を汚染するおそれもあるためパイプライ
ンからの漏洩を早期に発見することが漏洩を未然
に防止することと共に是非とも必要とされてい
る。
As is well known, pipelines buried underground are usually used to transport liquids such as petroleum and chemical products through pipes, but leaks from such pipelines can cause damage to the transported liquid. Not only does it cause a loss of water, but it also poses the risk of ignition, and there is also the risk of contaminating groundwater. Therefore, early detection of leaks from pipelines is essential as well as prevention of leaks. There is.

パイプラインにおいては定められた間隔毎に緊
急遮断弁を設置することがある。この場合、各遮
断弁を閉鎖して各区間のパイプライン内の圧力測
定を行ない、一定時間後の圧力変化の有無を調べ
て漏洩を検知する方法が従来行なわれている。
In pipelines, emergency shutoff valves may be installed at specified intervals. In this case, the conventional method is to close each shutoff valve, measure the pressure inside the pipeline in each section, and check for a change in pressure after a certain period of time to detect a leak.

即ち、圧力変化は漏洩によるもののほか、外部
温度とパイプライン内の液体温度との差によつて
生ずるパイプライン内の液体温度の変化に左右さ
れるので、パイプライン内液体の温度変化による
圧力変化率の最大値を予想し、その最大値以上の
圧力変化率が現われたとき漏洩と判断する方法で
ある。しかし、基準となる温度変化による圧力変
化率の範囲を正確に定めるのが困難なため漏洩検
知精度がきわめて悪かつた。
In other words, pressure changes are affected not only by leaks but also by changes in the temperature of the liquid in the pipeline caused by the difference between the outside temperature and the temperature of the liquid in the pipeline. This method predicts the maximum value of the pressure change rate and determines that there is a leak when the rate of pressure change exceeds the maximum value. However, because it is difficult to accurately determine the range of the rate of pressure change due to temperature change, which serves as a reference, the accuracy of leak detection is extremely poor.

一方、逆に、パイプライン内の圧力を一定に保
つように被輸送液体の一部を出し入れし、出入り
の流量を各々測定して、温度変化に対応する量以
上の液がパイプラインに流入した場合をもつて漏
洩とみなす方法がある(特公昭55−23365)。この
場合にも温度変化に対応する量を正確にとらえる
ことの困難さがあるものの、加熱パイプラインの
ようにパイプライン内の液体温度を人為的に変化
させうる場合には同一温度の2時点での流量を比
較することによつて精度よく漏洩を検知すること
ができる。しかし、同一温度の状態を再現するに
は実際上10時間程度の時間を要するという欠点が
ある。
On the other hand, on the other hand, some of the liquid to be transported is taken in and taken out so as to keep the pressure inside the pipeline constant, and the flow rate of each inflow and outflow is measured, and it is determined that the amount of liquid flowing into the pipeline is greater than the amount corresponding to the temperature change. There is a way to consider some cases as leakage (Special Publication No. 55-23365). In this case as well, it is difficult to accurately measure the amount corresponding to the temperature change, but in cases where the temperature of the liquid in the pipeline can be artificially changed, such as in a heating pipeline, two points at the same temperature can be used. By comparing the flow rates, leaks can be detected with high accuracy. However, the drawback is that it actually takes about 10 hours to reproduce the same temperature state.

本発明は上記実情に鑑みてなされたもので、液
体温度変化の影響を受けることなく締切られたパ
イプライン内液体の漏洩を短時間でかつ正確に検
知することができるパイプラインの漏洩検知方法
を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and provides a pipeline leakage detection method that can quickly and accurately detect leakage of liquid in a closed pipeline without being affected by changes in liquid temperature. The purpose is to provide.

この発明によれば、被輸送液体を収容してパイ
プラインを締切り、該パイプラインから流体の一
部を抜き出すかあるいはパイプラインに液体を更
に注入することによつてパイプラインの内部圧力
を強制的に変化させ、少なくとも2つの異なるパ
イプライン内圧力を始点とする時間変化に伴なう
各圧力変化率をそれぞれ検出し、この検出した各
圧力変化率の比較に基づいて前記パイプラインか
らの漏洩を検知するようにしている。
According to the invention, the internal pressure of the pipeline is forcibly reduced by accommodating the liquid to be transported and closing off the pipeline, and by withdrawing a portion of the fluid from the pipeline or by injecting more liquid into the pipeline. and detecting each rate of pressure change over time starting from at least two different pipeline internal pressures, and detecting leakage from the pipeline based on a comparison of the detected pressure change rates. I'm trying to detect it.

以下本発明を添付図面を参照して詳細に説明す
る。
The present invention will now be described in detail with reference to the accompanying drawings.

まず、第1図に示す時間と圧力との関係を示す
グラフを用いて本発明を原理的に説明する。第1
図aはパイプライン内液体の温度がパイプライン
外部の温度よりも高い場合において、時間τに伴
なつて変化する温度変化による圧力変化を示した
ものである。この場合の圧力変化は、少くとも数
時間の間は直線的(変化率一定)であり、例えば
時間τ1における圧力変化率ΔP〓/Δτ1と時間τ2
おける圧力変化率ΔP〓/Δτ2とは等しい。また、
第1図bはパイプライン内液体の温度が変化しな
い場合におけるパイプライン内液体の漏洩による
圧力変化を示したものである。
First, the present invention will be explained in principle using a graph showing the relationship between time and pressure shown in FIG. 1st
Figure a shows pressure changes due to temperature changes that change over time τ when the temperature of the liquid inside the pipeline is higher than the temperature outside the pipeline. The pressure change in this case is linear (constant rate of change) for at least several hours, and for example, the pressure change rate ΔP〓/Δτ 1 at time τ 1 and the pressure change rate ΔP〓/Δτ 2 at time τ 2. is equal to Also,
FIG. 1b shows pressure changes due to leakage of the liquid in the pipeline when the temperature of the liquid in the pipeline does not change.

一般にパイプラインからの漏洩量は次式、 Q=K√INOUT ……(1) で表わされる。ここで、Qは漏洩流量、PINは管
内圧力、POUTは管外圧力であり、Kは漏洩孔の面
積、管内流体の物性値等に基づく定数である。上
式からも明らかなように、漏洩量は管の内部と外
部との圧力差の平方根に比例するので、漏洩が生
じている場合は、管内圧力が低い時よりも高い時
の方が漏洩流量が大きい。
Generally, the amount of leakage from a pipeline is expressed by the following equation: Q=K√ INOUT (1). Here, Q is the leakage flow rate, P IN is the pressure inside the pipe, P OUT is the pressure outside the pipe, and K is a constant based on the area of the leak hole, the physical property value of the fluid inside the pipe, etc. As is clear from the above equation, the amount of leakage is proportional to the square root of the pressure difference between the inside and outside of the pipe, so when a leak occurs, the leakage flow rate is higher when the pressure inside the pipe is high than when it is low. is large.

したがつて、パイプライン内液体の漏洩による
圧力変化は直線的でなく、第1図bに示すように
例えば時間τ1における圧力変化率ΔPl/Δτ1は時
間τ2における圧力変化率ΔPl/Δτ2よりも大きい。
Therefore, the pressure change due to leakage of liquid in the pipeline is not linear, and as shown in Figure 1b, for example, the pressure change rate ΔP l /Δτ 1 at time τ 1 is equal to the pressure change rate ΔP l /Δτ 1 at time τ 2 . /Δτ larger than 2 .

また、第1図cは上記第1図aおよび第1図b
のフラフを重畳したグラフ、即ちパイプライン内
液体の温度変化および漏洩による圧力変化を時間
τに関して示したものである。ここで、時間τ1
おける圧力変化率をΔP/Δτ1、時間τ2における圧
力変化率をΔP/Δτ2とすると、各圧力変化率
ΔP/Δτ1、ΔP/Δτ2はそれぞれ次式、 ΔP/Δτ1=ΔP〓/Δτ1+ΔPl/Δτ1……(2) ΔP/Δτ2=ΔP〓/Δτ2+ΔPl/Δτ2……(3) で表わすことができる。上記第(2)式および第(3)式
の圧力変化率を比較すると、 ΔP/Δτ1−ΔP/Δτ2=(ΔP〓/Δτ1+ΔPl/Δ
τ1)−(ΔP〓/Δτ2+ΔPl/Δτ2)=ΔPl/Δτ1
−ΔPl/Δτ2……(4) (∵ΔP〓/Δτ1=ΔP〓/Δτ2) と表わすことができる。すなわち、温度変化によ
る圧力変化率は除去され、漏洩による圧力変化率
のみを検出することができる。また、漏洩の判定
は、次式、 ΔPl/Δτ1−ΔPl/Δτ2≦e(漏洩なし) ΔPl/Δτ1−ΔPl/Δτ2>e(漏洩あり) によつて行なう。ただし、eは圧力計器誤差、測
定誤差、圧変化による物性の変化等による判断基
準(検知能)である。本発明は上記点に着目した
もので、短時間で漏洩を検知するために前記時間
τ1に対する圧力から時間τ2に対応する圧力に強制
的に変化させ、各圧力における圧力変化率の差に
基づいて漏洩を検知するようにしたものである。
In addition, Figure 1c is the above-mentioned Figure 1a and Figure 1b.
, which shows the temperature change of the liquid in the pipeline and the pressure change due to leakage with respect to time τ. Here, if the rate of pressure change at time τ 1 is ΔP/Δτ 1 and the rate of pressure change at time τ 2 is ΔP/Δτ 2 , then each rate of pressure change ΔP/Δτ 1 and ΔP/Δτ 2 is expressed by the following equation, ΔP /Δτ 1 =ΔP〓/Δτ 1 +ΔP l /Δτ 1 ...(2) ΔP/Δτ 2 = ΔP〓/Δτ 2 +ΔP l /Δτ 2 ...(3) Comparing the pressure change rates of equations (2) and (3) above, ΔP/Δτ 1 −ΔP/Δτ 2 = (ΔP〓/Δτ 1 +ΔP l
τ 1 ) − (ΔP〓 / Δτ 2 + ΔP l / Δτ 2 ) = ΔP l / Δτ 1
−ΔP l /Δτ 2 ...(4) (∵ΔP〓/Δτ 1 = ΔP〓/Δτ 2 ). That is, the rate of pressure change due to temperature change is removed, and only the rate of pressure change due to leakage can be detected. Further, the determination of leakage is performed using the following equation: ΔP l /Δτ 1 −ΔP l /Δτ 2 ≦e (no leakage) ΔP l /Δτ 1 −ΔP l /Δτ 2 >e (with leakage). However, e is a judgment standard (detection ability) based on pressure meter error, measurement error, change in physical properties due to pressure change, etc. The present invention focuses on the above point, and in order to detect leakage in a short time, the pressure for the time τ 1 is forcibly changed to the pressure corresponding to the time τ 2 , and the difference in the rate of pressure change at each pressure is This system is designed to detect leaks based on the following information.

次に、本発明を第2図および第3図に示す一実
施例に基づいて説明する。第2図においてパイプ
ライン1は締切弁2,3によつて所定区間を締切
ることができるようになつている。このパイプラ
イン内液体は流体輸送時においては締切弁2,3
が開放され主送液ポンプ(図示せず)の駆動によ
り送液側から受液側に流体が輸送され、本発明方
法の実施時においては流体輸送は停止され締切弁
2,3が締切られ、締切られたパイプライン1の
区間内に被輸送液体が所定圧力で封入される。
Next, the present invention will be explained based on an embodiment shown in FIGS. 2 and 3. In FIG. 2, a pipeline 1 can be closed off at a predetermined section by shutoff valves 2 and 3. When the liquid in this pipeline is transported, the shutoff valves 2 and 3
is opened and the main liquid sending pump (not shown) is driven to transport fluid from the sending side to the receiving side, and when the method of the present invention is carried out, the fluid transport is stopped and the shutoff valves 2 and 3 are closed. The liquid to be transported is sealed within the closed section of the pipeline 1 at a predetermined pressure.

締切られたパイプライン1には、被輸送液体の
一部をパイプライン1から抜き出すための減圧用
弁4、パイプライン1に液体を更に注入する加圧
装置5およびパイプライン1の液体圧力を測定す
る圧力測定器6が設けられている。
The closed pipeline 1 includes a pressure reducing valve 4 for extracting a portion of the liquid to be transported from the pipeline 1, a pressurizing device 5 for further injecting liquid into the pipeline 1, and a measuring device for measuring the liquid pressure in the pipeline 1. A pressure measuring device 6 is provided.

このような構成の漏洩検知設備において、パイ
プライン1の漏洩テストを行なう場合には、まず
パイプライン1内の液体の輸送を停止し、次い
で、締切弁2,3を締め、被輸送液体を所定圧力
で封入する。ここで、所定時間内における液体の
圧力変化量を圧力測定器6によつて測定する。
In the leak detection equipment having such a configuration, when performing a leak test on the pipeline 1, first stop the transportation of the liquid in the pipeline 1, then close the shutoff valves 2 and 3, and reduce the amount of liquid to be transported to a specified level. Enclose with pressure. Here, the pressure measuring device 6 measures the amount of change in the pressure of the liquid within a predetermined period of time.

次に減圧用弁4を開放してパイプライン1から
液体の一部を抜き出すか或いは加圧装置5によつ
てパイプライン1に液体を更に注入することによ
つてパイプライン1の内部圧力を強制的に変化さ
せる。パイプライン1の内部圧力を変化させた時
点から再び所定時間内における液体の圧力変化量
を圧力測定器6によつて測定する。そして各内部
圧力における圧力変化量(圧力変化率)の差に基
づいて漏洩の有無を判定する。
Next, the internal pressure of the pipeline 1 is forced by opening the pressure reducing valve 4 to draw out a portion of the liquid from the pipeline 1, or by injecting more liquid into the pipeline 1 by the pressurizing device 5. to change. The pressure measuring device 6 measures the amount of change in the pressure of the liquid within a predetermined period of time from the time when the internal pressure of the pipeline 1 is changed. Then, the presence or absence of a leak is determined based on the difference in the amount of pressure change (rate of pressure change) in each internal pressure.

第3図は、封入圧力P1を始点として圧力変化
を測定後、減圧用弁4によつて強制的に圧力P2
に減圧し、再度圧力変化を測定した場合における
圧力変化を示すグラフであつて、第3図aは漏洩
がない場合の圧力変化を示し、第3図bは漏洩が
ある場合の圧力変化を示す。
Figure 3 shows that after measuring the pressure change starting from the sealed pressure P 1 , the pressure is forcibly reduced to P 2 by the pressure reducing valve 4.
3 is a graph showing the pressure change when the pressure is reduced to 1 and the pressure change is measured again, FIG. 3a shows the pressure change when there is no leakage, and FIG. 3b shows the pressure change when there is a leakage. .

すなわち、パイプライン1からの漏洩がない第
3図aの場合は、圧力変化は液体の温度変化のみ
に依存するので、P1からの圧力変化率ΔP1/Δτ1とP2 からの圧力変化率ΔP2/Δτ2とは等しい。一方、パイ プライン1からの漏洩がある第3図bの場合は、
圧力によつて漏洩量が異なるために圧力変化率は
刻刻変化する。特に、パイプライン内の圧力を強
制的に変化させる前後においては、圧力変化率が
大きく異なるので、その差異を明瞭にとらえるこ
とができる。
In other words, in the case of Fig. 3a where there is no leakage from pipeline 1, the pressure change depends only on the temperature change of the liquid, so the pressure change rate from P 1 is ΔP 1 /Δτ 1 and the pressure change from P 2 The ratio ΔP 2 /Δτ 2 is equal. On the other hand, in the case of Figure 3b where there is a leak from pipeline 1,
Since the amount of leakage differs depending on the pressure, the rate of pressure change changes momentarily. In particular, since the rate of pressure change is significantly different before and after the pressure inside the pipeline is forcibly changed, the difference can be clearly seen.

なお、圧力変化率を測定するに要する時間は各
各10分乃至30分程度でよく、その時間内の平均値
として圧力変化率をとらえることができる。
Note that the time required to measure the rate of pressure change may be approximately 10 to 30 minutes each, and the rate of pressure change can be taken as the average value within that time.

また、パイプライン内の圧力を強制的に変化さ
せるための時間も短時間ですむので、全体として
検知に要する時間は1〜2時間あればよい。
Further, since the time required to forcefully change the pressure in the pipeline is short, the total time required for detection may be 1 to 2 hours.

また、第3図では減圧用弁4によつてパイプラ
イン1の内部圧力を強制的に低下させた場合につ
いて説明したが、これに限らず加圧装置5によつ
てパイプライン1の内部圧力を強制的に上昇させ
てもよい。
Furthermore, in FIG. 3, a case has been described in which the internal pressure of the pipeline 1 is forcibly reduced by the pressure reducing valve 4, but the internal pressure of the pipeline 1 is reduced by the pressurizing device 5. It may be forced to rise.

以上説明したように本発明によれば、液体温度
変化による圧力変化の影響を受けることなく、短
時間でパイプライン内液体の漏洩の有無を短時間
に判定することができる。
As described above, according to the present invention, it is possible to determine in a short time whether there is a leakage of liquid in a pipeline without being affected by pressure changes due to changes in liquid temperature.

また本発明は、実測値を予め推定した基準の圧
力変化率と比較するのでなく、圧力を強制的に変
化させる前後の二つの実測した圧力変化率を比較
するので、推定値が入らず精度が高まる。また、
さらに漏洩検知の実施に伴なうパイプラインの運
転休止時間の短縮を図ることが可能である。
In addition, the present invention does not compare the actual measured value with a pre-estimated standard pressure change rate, but compares the two actually measured pressure change rates before and after the pressure is forcibly changed, so the estimated value is not included and the accuracy is reduced. It increases. Also,
Furthermore, it is possible to shorten the downtime of the pipeline due to the implementation of leakage detection.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を原理的に説明するために用い
た圧力と時間との関係を示すグラフ、第2図は本
発明方法を実施するパイプラインの漏洩検知設備
の概略系統図、第3図は本発明方法を実施した場
合における圧力と時間との関係を示すグラフであ
る。 1……パイプライン、2,3……締切弁、4…
…減圧用弁、5……加圧装置、6……圧力測定
器。
Fig. 1 is a graph showing the relationship between pressure and time used to explain the present invention in principle, Fig. 2 is a schematic system diagram of pipeline leak detection equipment that implements the method of the present invention, and Fig. 3 is a graph showing the relationship between pressure and time when the method of the present invention is implemented. 1... Pipeline, 2, 3... Shutoff valve, 4...
...pressure reducing valve, 5...pressurizing device, 6...pressure measuring device.

Claims (1)

【特許請求の範囲】[Claims] 1 被輸送液体を第1の圧力で収容してパイプラ
インを締切り、時間変化に伴なう第1の圧力変化
率を求め、次いでパイプラインの内部圧力を前記
第1の圧力とは異なる第2の圧力まで強制的に変
化させ、時間変化に伴なう第2の圧力変化率を求
め、前記第1の圧力変化率と前記第2の圧力変化
率との比較にもとづいて前記パイプラインの漏洩
を検知するパイプラインの漏洩検知方法。
1. The pipeline is closed off by storing the liquid to be transported at a first pressure, the first rate of pressure change with time is determined, and then the internal pressure of the pipeline is adjusted to a second pressure different from the first pressure. The pressure is forcibly changed to a pressure of A pipeline leak detection method that detects.
JP12629881A 1981-08-11 1981-08-11 Detecting method for leakage at pipe line Granted JPS5827041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12629881A JPS5827041A (en) 1981-08-11 1981-08-11 Detecting method for leakage at pipe line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12629881A JPS5827041A (en) 1981-08-11 1981-08-11 Detecting method for leakage at pipe line

Publications (2)

Publication Number Publication Date
JPS5827041A JPS5827041A (en) 1983-02-17
JPS632458B2 true JPS632458B2 (en) 1988-01-19

Family

ID=14931737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12629881A Granted JPS5827041A (en) 1981-08-11 1981-08-11 Detecting method for leakage at pipe line

Country Status (1)

Country Link
JP (1) JPS5827041A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660330U (en) * 1992-06-05 1994-08-23 皓年 大澤 Tiered moving daylight cultivation shelves
JP2001027576A (en) * 1999-07-13 2001-01-30 Nkk Corp Method for detecting leak in pipeline and its device
WO2010134622A1 (en) * 2009-05-22 2010-11-25 国立大学法人 熊本大学 Leak inspection method and leak inspection device

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0094533B1 (en) * 1982-05-15 1986-03-12 Fried. Krupp Gesellschaft mit beschränkter Haftung Method for leakage testing of pipes or networks of pipes
DE3445281A1 (en) * 1984-12-12 1986-06-19 Klöckner-Humboldt-Deutz AG, 5000 Köln METHOD AND DEVICE FOR TIGHTNESS TESTING TWO SHUT-OFF VALVES IN A GAS-FLOWED PIPE
JPS62251007A (en) * 1986-04-24 1987-10-31 Kawasaki Steel Corp Machining method for roll and device therefor
JPS6347816U (en) * 1986-09-18 1988-03-31
JPH0811322B2 (en) * 1987-03-23 1996-02-07 大同特殊鋼株式会社 Rolling roll cutting device
US4876530A (en) * 1987-10-13 1989-10-24 The Marley Company Method and apparatus for detecting leakage in fuel storage and delivery systems
US5317899A (en) * 1992-12-11 1994-06-07 Control Engineers, Inc. Method for detecting leaks in underground product lines
US5390532A (en) * 1993-10-18 1995-02-21 Anthony; Mark Test apparatus for a fluid dispensing system
IT1391129B1 (en) * 2008-08-06 2011-11-18 Zanella DEVICE FOR THE DETECTION OF WATER LEAKS IN CIVIL AND INDUSTRIAL PLANTS.
DE102011086486B4 (en) * 2011-11-16 2023-01-19 Inficon Gmbh Device and method for rapid leak detection on dimensionally stable/slack packaging without the addition of tracer gas
DE102015115664B3 (en) * 2015-09-17 2017-02-02 Turn-off metering GmbH Method and device for determining a leakage value of a line section
GB2554950B (en) 2016-10-17 2019-06-05 Univ Cape Town Pipe leak measurement and assessment
GB2567181B (en) 2017-10-05 2021-04-07 Homeserve Plc Leak detection method and apparatus
GB2589276B (en) * 2017-10-05 2022-03-23 Homeserve Plc Leak detection method and apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660330U (en) * 1992-06-05 1994-08-23 皓年 大澤 Tiered moving daylight cultivation shelves
JP2001027576A (en) * 1999-07-13 2001-01-30 Nkk Corp Method for detecting leak in pipeline and its device
WO2010134622A1 (en) * 2009-05-22 2010-11-25 国立大学法人 熊本大学 Leak inspection method and leak inspection device

Also Published As

Publication number Publication date
JPS5827041A (en) 1983-02-17

Similar Documents

Publication Publication Date Title
JPS632458B2 (en)
US4608857A (en) Method for checking pipes or pipe networks for leaks
US5072621A (en) Pipeline leak detector apparatus and method
AU2001259373B2 (en) Improved methods for detecting leaks in pressurized piping with a pressure measurement system
US6082182A (en) Apparatus for measuring the flow rate due to a leak in a pressurized pipe system
CA2394293A1 (en) Nondestructive testing a sealed product for leaks
US5948969A (en) Methods for measuring the flow rate due to a leak in a pressurized pipe system
AU2001259373A1 (en) Improved methods for detecting leaks in pressurized piping with a pressure measurement system
US20060037383A1 (en) Method and apparatus for continuously monitoring interstitial regions in gasoline storage facilities and pipelines
CN103968256B (en) Piping for tank farm leakage detection method
US9983091B2 (en) System and method for identifying a leak
GB1496436A (en) Testing pipelines for leaks
US4704897A (en) Locating method of and the locating unit for leaks on piping
CN113944891B (en) Chemical device facility leakage detection and correction method
US20240060847A1 (en) Pipeline Leak Detection Apparatus, and Methods Thereof
DK201670025A1 (en) Measurement device
JPH05223685A (en) Method and apparatus for detecting fluid leakage from pipe
JP2824235B2 (en) How to test for pipe leaks
WO2006076074A2 (en) Fluid containment element leak detection apparatus and method
US7051579B2 (en) Method and apparatus for continuously monitoring interstitial regions in gasoline storage facilities and pipelines
JPH0235326A (en) Leakage detecting apparatus for piping system
US8104327B1 (en) Leak detection method for a primary containment system
JPS628033A (en) Method for detecting leakage of piping
JPH0153732B2 (en)
RU2758876C1 (en) Method for determining level of leakage through leaky gate of ball valve of shut-off and control valve in operating mode and device for its implementation