JPS63245891A - Method of forming insulating film - Google Patents

Method of forming insulating film

Info

Publication number
JPS63245891A
JPS63245891A JP62078100A JP7810087A JPS63245891A JP S63245891 A JPS63245891 A JP S63245891A JP 62078100 A JP62078100 A JP 62078100A JP 7810087 A JP7810087 A JP 7810087A JP S63245891 A JPS63245891 A JP S63245891A
Authority
JP
Japan
Prior art keywords
film
insulating film
substrate
silicon
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62078100A
Other languages
Japanese (ja)
Inventor
健 吉田
雅彦 板橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP62078100A priority Critical patent/JPS63245891A/en
Priority to US07/175,317 priority patent/US4895734A/en
Publication of JPS63245891A publication Critical patent/JPS63245891A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は透明導電膜を通し光の取り出しを行う発光素子
及び光の取り入れを行う受光素子等に用いる。透明導電
膜が形成された透明基板上に絶縁膜を形成する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention is used in a light emitting element that extracts light through a transparent conductive film, a light receiving element that takes in light, and the like. The present invention relates to a method of forming an insulating film on a transparent substrate on which a transparent conductive film is formed.

(従来の技術) 従来、ガラス基板等の透明基板上に形成された透明導電
膜の上にシリコンナイトライド、シリコンオキサイド、
シリコンオキシナイトライドを成膜する方法としては、
抵抗加熱真空蒸着法、電子ビーム加熱真空蒸着法、スパ
ッタリング法及びプラズマCVD (Chemical
  vapordeposition)法があった。
(Prior Art) Conventionally, silicon nitride, silicon oxide,
The method for forming a silicon oxynitride film is as follows:
Resistance heating vacuum evaporation method, electron beam heating vacuum evaporation method, sputtering method and plasma CVD (Chemical
There was a vapor deposition method.

(発明が解決しようとする問題点) 真空蒸着法では製造した膜にピンホール及び組成ずれに
よる低抵抗部分が多く発生し、透明導電膜と絶縁膜の背
面側に形成した導電膜の間で、これら絶縁膜に電界をか
けた場合に絶縁膜を流れるリーク電流が大きくなり、そ
の電界が大きくなると上記欠陥部分で絶縁破壊をおこす
。また透明導電膜に存在する突起物あるいはパターン形
成された透明導電膜の端面、透明導電膜上の微小なごみ
に対してのステンプカバレージが悪く、これらの部分で
上記絶縁膜がうすくなったり1組成ずれをおこし電気抵
抗が下がりリーク電流が大きくなったり、絶縁破壊をお
こすという問題点があった。
(Problems to be solved by the invention) In the vacuum evaporation method, many low-resistance parts occur in the manufactured film due to pinholes and compositional deviations, and between the transparent conductive film and the conductive film formed on the back side of the insulating film. When an electric field is applied to these insulating films, leakage current flowing through the insulating films becomes large, and when the electric field becomes large, dielectric breakdown occurs at the defective portions. In addition, the stamp coverage is poor for protrusions existing on the transparent conductive film, end faces of the patterned transparent conductive film, and minute dust on the transparent conductive film, and the insulating film becomes thin in these areas. This has caused problems such as misalignment, lowering electrical resistance, increasing leakage current, and causing dielectric breakdown.

またスパッタリング法では真空蒸着法よりステンプカバ
レージがいいもののまだ十分ではないことと、成膜時間
が長く生産性が悪いこと、また透明導電膜が高エネルギ
ーのプラズマにさらされるため損傷を受は電気抵抗が大
きくなること等問題が多い。
In addition, although the sputtering method has better sputter coverage than the vacuum evaporation method, it is still not sufficient, the deposition time is long and productivity is low, and the transparent conductive film is exposed to high-energy plasma, so it is not easily damaged by electricity. There are many problems such as increased resistance.

またプラズマCVD法による成膜では上記問題の大部分
が解決されるが、成膜後加熱工程を通すと絶縁膜にクラ
ンクが発生したり、膜はがれが発生する。この現象は成
膜後の加熱工程での加熱温度が高い程、また成膜面積が
大きい程顕著に表れるという問題があった。またもう一
つの問題点として往々にして膜が不透明となる。これは
この部分ではリーク電流が異常に大きく均一な膜になっ
ていないためである。
Although most of the above problems are solved by plasma CVD film formation, cranking or peeling of the insulating film occurs when the film is subjected to a heating process after film formation. There is a problem in that this phenomenon becomes more pronounced as the heating temperature in the heating step after film formation is higher and as the film formation area becomes larger. Another problem is that the film is often opaque. This is because the leakage current is abnormally large in this part and the film is not uniform.

本発明は、絶縁特性(ステンプカバレージ)に優れると
共に、成膜後の加熱工程に耐え、かつ生産性の高い、透
明かつ均一な絶縁膜の形成法を提供するものである。
The present invention provides a method for forming a transparent and uniform insulating film that has excellent insulating properties (stencil coverage), can withstand a heating process after film formation, and has high productivity.

(問題点を解決するための手段) 本発明は、透明導電膜が形成されたガラス板等の透明基
板上に、プラズマCVD法によってシリコンナイトライ
ド、シリコンオキサイド、シリコンオキシナイトライド
の絶縁膜を蒸着するに際して、透明基板を350〜55
0℃とするものである。
(Means for Solving the Problems) The present invention involves depositing an insulating film of silicon nitride, silicon oxide, or silicon oxynitride by plasma CVD on a transparent substrate such as a glass plate on which a transparent conductive film is formed. When doing so, the transparent substrate should be
The temperature shall be 0°C.

プラズマCVD法とは、形成させようとする薄膜材料を
構成する元素からなる1種またはそれ以上の化合物・単
体のガスをプラズマ放電にさらすことによって、熱を利
用するよりもより低温で活性化させ気相または基板表面
で反応を起こさせて所望の薄膜を形成させる蒸着法であ
る。
The plasma CVD method is a method that activates one or more compounds or single gases of the elements constituting the thin film material to be formed at a lower temperature than using heat by exposing them to plasma discharge. This is a vapor deposition method that forms a desired thin film by causing a reaction in the gas phase or on the surface of a substrate.

一般にプラズマCVD法は、プラズマを利用した低温蒸
着が特徴で基板温度が200〜300℃である。本発明
では基板温度を350〜550℃に上げる。基板温度を
上げると熱CVDがおこり種々の副反応が起こるため温
度設定が難しく、350〜550℃、好ましくは380
℃〜420℃が良く、この範囲であれば熱CVDによる
弊害が少なく均一な膜が得られる。
In general, the plasma CVD method is characterized by low-temperature deposition using plasma, and the substrate temperature is 200 to 300°C. In the present invention, the substrate temperature is raised to 350-550°C. When the substrate temperature is raised, thermal CVD occurs and various side reactions occur, so it is difficult to set the temperature.
C. to 420.degree. C. is preferable; within this range, a uniform film can be obtained with few adverse effects caused by thermal CVD.

結果として、この範囲で蒸着した膜は、成膜後550℃
の熱工程を通してもクラック、膜はがれが発生しない。
As a result, the film deposited in this range can be heated to 550°C after deposition.
No cracks or peeling of the film occurs even through the thermal process.

これは1000m2の面積をもつ基板まで検討したが結
果は良好であった。またこの温度範囲をはずすと、低い
場合には後の熱工程でクランク、膜はがれが発生し、高
い場合には熱CVDによってガス導入口、熱板上ででき
た絶縁物粒子が基板に付着する。また蒸着後、基板を常
温にもどすと膜はがれ、クランクが発生し前述の付着物
のまわりでこの現象が特に顕著になる。従って良好な膜
を得る基板温度範囲は非常に狭い。
This was investigated up to a substrate with an area of 1000 m2, and the results were good. Also, if the temperature is outside this range, if it is low, cranking and film peeling will occur during the subsequent thermal process, and if it is high, insulator particles formed at the gas inlet and on the hot plate due to thermal CVD will adhere to the substrate. . Furthermore, when the substrate is returned to room temperature after vapor deposition, the film peels off and cranks occur, and this phenomenon becomes particularly noticeable around the aforementioned deposits. Therefore, the substrate temperature range in which a good film can be obtained is very narrow.

また、この方法でも連続して蒸着する回数は10回まで
としてガス導入口をサンドブラスト等でクリーニングす
ることが望ましい。
Further, in this method as well, it is preferable that the number of times of continuous vapor deposition is up to 10 times and that the gas inlet is cleaned by sandblasting or the like.

透明基板面を350〜550℃にするには、0゜3〜5
mm程度の透明基板を密着固定する2〜5Qmm程度の
金属板の温度を350〜550℃にコントロールするこ
とにより行うことが出来る。
To make the transparent substrate surface 350 to 550℃, the temperature is 0℃ to 5℃.
This can be done by controlling the temperature of a metal plate of about 2 to 5 Qmm to tightly fix a transparent substrate of about mm to 350 to 550°C.

また、輻射熱により透明基板面を加熱する場合は、透明
基板面の温度を熱電対で計測してコントロールすること
が出来る。
Furthermore, when heating the transparent substrate surface with radiant heat, the temperature of the transparent substrate surface can be measured and controlled with a thermocouple.

プラズマCVD法で、シリコンナイトライド。Silicon nitride using plasma CVD method.

シリコンオキサイド又はシリコンオキシナイトライドの
薄膜を形成する場合のガス種は、シリコン源としては+
  S iH4+  S i2 H6等の水素化物。
When forming a thin film of silicon oxide or silicon oxynitride, the gas type is + as a silicon source.
Hydride such as S iH4+ S i2 H6.

S iF t+ S t Cl 4等のハロゲン化物等
が、窒素源としてはNHs、Nz等が、酸素源としては
N20,02等が、希釈ガスとしてはN z + A 
r等が使用される。St/N比、5i10比は、それぞ
れ体積比で窒素ガス100部に対してシリコン源ガス0
. 5〜80部、酸素源ガス100部に対してシリコン
源ガス20〜300部である。ガスの圧力は全圧で0.
1〜5 t o r r、投入電力は0.05〜l O
W/cm2.周波数は10KHz〜50GHzの条件が
使用される。
S iF t+ S t Cl 4 and other halides, nitrogen sources include NHs, Nz, etc., oxygen sources include N20,02, and diluent gases include N z + A.
r etc. are used. The St/N ratio and the 5i10 ratio are each expressed as a volume ratio of 0 parts of silicon source gas to 100 parts of nitrogen gas.
.. 5 to 80 parts, and 20 to 300 parts of silicon source gas per 100 parts of oxygen source gas. The total pressure of the gas is 0.
1 to 5 t o r r, input power is 0.05 to l O
W/cm2. A frequency of 10 KHz to 50 GHz is used.

プラズマCVD法で形成されるシリコンナイトライド、
シリコンオキサイド又はシリコンオキシナイトライドの
薄膜の厚みは、0.1〜3μmである。
Silicon nitride formed by plasma CVD method,
The thickness of the silicon oxide or silicon oxynitride thin film is 0.1 to 3 μm.

透明導電膜としては、  I nz 03(S n) 
+5nOz(Sb)、5nOz(P)、5nOz(Te
)。
As a transparent conductive film, I nz 03 (S n)
+5nOz(Sb), 5nOz(P), 5nOz(Te
).

5nOz(W)、5nOz(CI)、5nOz(F) 
1Cdz 5n04 、CdSn0z 、CdO等の酸
化物半導体膜、 Au、 Ag、 Cu、  Pd、 
Pt。
5nOz(W), 5nOz(CI), 5nOz(F)
Oxide semiconductor films such as 1Cdz 5n04, CdSn0z, CdO, Au, Ag, Cu, Pd,
Pt.

AI、Cr、Rh等の金属膜が使用される。これらの酸
化物半導体膜、金属膜の膨張係数は、その上に形成され
るシリコンナイトライド、シリコンオキサイド、シリコ
ンオキシナイトライドの膨張係数の倍〜数倍である。
A metal film such as AI, Cr, Rh, etc. is used. The expansion coefficients of these oxide semiconductor films and metal films are twice to several times higher than those of silicon nitride, silicon oxide, and silicon oxynitride formed thereon.

更に、一般にシリコンナイトライド、シリコンオキサイ
ド、シリコンオキシナイトライドは、プラズマCVDで
蒸着すると膜の残留応力として。
Furthermore, silicon nitride, silicon oxide, and silicon oxynitride generally cause residual stress in the film when deposited by plasma CVD.

テンサイルストレスが残るため、見かけ上熱膨張係数は
もっと小さくなり、この点からも後工程である熱処理に
より、膜はがれ、クランクが発生しやすい。
Since tensile stress remains, the apparent coefficient of thermal expansion becomes smaller, and from this point of view as well, film peeling and cranking are likely to occur during post-process heat treatment.

本発明では、プラズマCVD法によってシリコンナイト
ライド、シリコンオキサイド、シリコンオキシナイトラ
イドの絶縁膜を蒸着するに際して。
In the present invention, when depositing an insulating film of silicon nitride, silicon oxide, or silicon oxynitride by plasma CVD method.

透明基板を350〜550℃とすることによって。By setting the temperature of the transparent substrate to 350-550°C.

後工程である熱処理を行っても、膜はがれ、クランクが
発生することはなくなる。
Even if heat treatment is performed as a post-process, the film will not peel off or cracks will occur.

透明基板上の透明導電膜の全面積が5a+I以上の場合
でも1本発明では、後工程である熱処理を行っても、膜
はがれ、クラックが発生することはなくなる。
Even if the total area of the transparent conductive film on the transparent substrate is 5a+I or more, according to the present invention, the film will not peel off or cracks will occur even if heat treatment is performed as a post-process.

透明基板上の透明導電膜は、ストライプ状のものでも、
透明基板の全面に形成されたものでも。
The transparent conductive film on the transparent substrate can be striped or
Even those formed on the entire surface of a transparent substrate.

形状は任意で良い。Any shape is fine.

プラズマCVD法で形成されたシリコンナイトライド、
シリコンオキサイド、シリコンオキシナイトライドの絶
縁膜にはしばしば白化現象(不透明化)が表れる。この
白化は電子顕微鏡で調べた結果、透明導電膜上で異常粒
径の粒子が成長し均一な膜が成長していないことが判明
した。この現象は透明導電膜を十分に洗浄した場合に多
く見られ、透明導電膜のごく表面でおこる反応と考えら
れる。また基板温度が高い方が白化現象が顔繋に表れる
。これは上述の反応が促進されていると考えられるが粒
子成長の原因は明らかではない。そこで透明導電膜の前
処理として基板をプラズマCVDチャンバ内で酸素プラ
ズマ処理を施した。条件は酸素分圧0.05〜1.0t
orr、投入型は装置によって異なるが電極面積に対し
て0.05〜IW/cm2、基板温度は200〜550
℃とし処理時間は数分で十分である。この処理を施すこ
とによって膜の白化はまったく見られなくなった。また
酸素ガスを窒素ガス、アルゴン等の不活性ガスに置きか
えても酸素プラズマには劣るが同様の効果があった。従
って同一基板上に酸素プラズマによって損傷を受ける物
質が存在する場合に限って窒素、不活性ガスに置きかえ
ることが望ましい。
Silicon nitride formed by plasma CVD method,
Insulating films made of silicon oxide and silicon oxynitride often exhibit a whitening phenomenon (opacity). As a result of examining this whitening using an electron microscope, it was found that particles of abnormal particle size grew on the transparent conductive film, and a uniform film did not grow. This phenomenon is often seen when the transparent conductive film is thoroughly cleaned, and is considered to be a reaction that occurs on the very surface of the transparent conductive film. In addition, the higher the substrate temperature, the more the whitening phenomenon appears on the face. This is thought to be due to the above-mentioned reaction being promoted, but the cause of particle growth is not clear. Therefore, as a pretreatment for the transparent conductive film, the substrate was subjected to oxygen plasma treatment in a plasma CVD chamber. Conditions are oxygen partial pressure 0.05-1.0t
orr, the injection type varies depending on the device, but the electrode area is 0.05 to IW/cm2, and the substrate temperature is 200 to 550.
A treatment time of several minutes is sufficient. By applying this treatment, no whitening of the membrane was observed at all. Furthermore, even if oxygen gas was replaced with an inert gas such as nitrogen gas or argon, the same effect, although inferior to oxygen plasma, was obtained. Therefore, it is desirable to replace it with nitrogen or an inert gas only when there is a substance on the same substrate that is damaged by oxygen plasma.

また他の処理法として透明導電膜上に絶縁物を1〜10
人蒸着しておくことも効果があった。このような蒸着で
は、透明導電膜を絶縁物が均一におおってはおらず島状
構造となって点在している。
In addition, as another treatment method, an insulating material of 1 to 10% is applied on a transparent conductive film.
Having people evaporated was also effective. In such vapor deposition, the insulating material does not cover the transparent conductive film uniformly, but is scattered in an island-like structure.

このような島状構造でも白化現象をなくすこと    
  ゛ができ、この白化現象が基板表面の特殊な現象で
あることがわかる。また薄くつける絶縁膜はその種類を
とわずたとえばシリコンナイトライド膜をプラズマCV
Dで成膜する場合にまず基板に約数オングストロームの
シリコンナイトライドをプラズマCVDで蒸着し一端投
入パワーを切った後。
Eliminating the bleaching phenomenon even in such an island-like structure
It can be seen that this whitening phenomenon is a special phenomenon on the substrate surface. In addition, the insulating film to be thinly applied can be made of any type, such as silicon nitride film by plasma CVD.
When forming a film using D, first, approximately several angstroms of silicon nitride is deposited on the substrate by plasma CVD, and the input power is temporarily turned off.

その上に所定の膜厚のシリコンナイトライドを成膜して
も白化現象は発生しなくなる。この他、絶縁物として、
プラズマCVD法によるシリコンオキサイド、シリコン
オキシナイトライドの絶縁膜。
Even if a silicon nitride film of a predetermined thickness is formed thereon, the whitening phenomenon will not occur. In addition, as an insulator,
Insulating film of silicon oxide and silicon oxynitride by plasma CVD method.

あるいはAl2O3の3〜10人程度の蒸着膜でも良い
Alternatively, a evaporated film of Al2O3 by about 3 to 10 people may be used.

実施例I ホウケイ酸ガラスにI n 203(S n)を約20
00人電子ビーム加熱真空蒸着法によって成膜した後、
ストライプ状にエツチングしたものを基板として使用し
た。基板を洗浄しプラズマCVD装置内にデボダウン方
式で設置し基Fj、温度400℃にして、チャンバー内
を1.5X10−6torrに減圧した。その後S i
Ha 、NZ 、NHsを1ニア:2の体積比で導入し
全圧をQ、8torrとしO−18w/ c m2の投
入電力で約5分間シリコンナイトライドを蒸着した。得
られたシリコンナイトライド膜は透明で膜厚は約300
0人でありリーク電流が小さく (直流電圧1’OOV
でlo−5,c+A/mm” )1.OX 107V/
cmの電界をかけても絶縁破壊はみられなかった。
Example I About 20 In 203 (S n) in borosilicate glass
After forming a film by electron beam heating vacuum evaporation method,
A substrate etched into stripes was used. The substrate was cleaned and placed in a plasma CVD apparatus using a debodown method, the temperature was set to 400° C., and the pressure inside the chamber was reduced to 1.5×10 −6 torr. Afterwards Si
Ha, NZ, and NHs were introduced at a volume ratio of 1:2, the total pressure was Q, 8 torr, and silicon nitride was evaporated for about 5 minutes with an input power of O-18 w/cm2. The obtained silicon nitride film is transparent and has a thickness of approximately 300 mm.
0 people and the leakage current is small (DC voltage 1'OOV
at lo-5, c+A/mm”) 1.OX 107V/
No dielectric breakdown was observed even when an electric field of cm was applied.

実施例2 実施例1と同様にしSiH4,N20を25ニア5の体
積比で導入し、全圧をQ、8torrとして0.06W
/cm2の投入電力で約1分30秒間シリコンオキサイ
ドを、基板温度410℃で蒸着し膜厚約3000人の透
明な膜を得た。リーク電流は直流電圧100■で10−
’μA/mm2で7.OXI 06V/cmの電界をか
けても絶縁破壊はみられなかった。
Example 2 In the same manner as in Example 1, SiH4 and N20 were introduced at a volume ratio of 25 near 5, the total pressure was Q, 8 torr, and 0.06 W.
Silicon oxide was evaporated for about 1 minute and 30 seconds at a substrate temperature of 410° C. with an input power of /cm 2 to obtain a transparent film with a thickness of about 3000 μm. The leakage current is 10- at a DC voltage of 100
'7 in μA/mm2. No dielectric breakdown was observed even when an electric field of 06 V/cm was applied.

実施例3 実施例1と同様にしてSiH4,N2.NH3゜N、O
を9:17:70:4の体積比で導入し。
Example 3 SiH4, N2. NH3゜N, O
were introduced at a volume ratio of 9:17:70:4.

基板温度390℃でO、I W/ c’m2の投入電力
で、約10分シリコンオキシナイトライドを蒸着した。
Silicon oxynitride was deposited for about 10 minutes at a substrate temperature of 390° C. and an input power of O, I W/cm2.

得られた膜は膜厚約3000人でリーク電流は直流電圧
100■で10−5μA/mm2゜1.0xlO’ V
/cmの電界をかけても絶縁破壊はみられなかった。
The thickness of the obtained film was approximately 3000 mm, and the leakage current was 10-5μA/mm2゜1.0xlO'V at a DC voltage of 100cm.
No dielectric breakdown was observed even when an electric field of /cm was applied.

実施例4 実施例1と同様に基板をチャンバー内に設置し基板温度
を400℃にして1.5X10−’torrに減圧した
後、酸素を導入してチャンバー内をQ、  15tor
rとして0.2W/cm2の投入電力で約3分間酸素プ
ラズマ処理をした後、実施例1. 2. 3と同様にし
てそれぞれシリコンナイドライド、シリコンオキサイド
、シリコンオキシナイトライドを蒸着した。この処理を
施すことによってしばしば発生する白化現象はまったく
見られなくなり、電気特性の変化は見られなかった。
Example 4 A substrate was placed in a chamber in the same manner as in Example 1, the substrate temperature was set at 400°C, and the pressure was reduced to 1.5X10-'torr, then oxygen was introduced and the chamber was heated to Q, 15torr.
After oxygen plasma treatment for about 3 minutes with input power of 0.2 W/cm2 as r, Example 1. 2. Silicon nide, silicon oxide, and silicon oxynitride were deposited in the same manner as in 3. By applying this treatment, the whitening phenomenon that often occurs was completely eliminated, and no change in electrical characteristics was observed.

また酸素ガスを窒素ガスにかえても同様に白化現象は見
られなくなったが、電気特性は約5%悪化した。しかし
実用上の問題はない。
Further, even when oxygen gas was replaced with nitrogen gas, no whitening phenomenon was observed, but the electrical properties deteriorated by about 5%. However, there are no practical problems.

実施例5 実施例1の基板に電子ビーム加熱真空蒸着法でA1□0
3を約3秒(モニタ換算5人)蒸着した後、実施例1,
2.3と同様にしてそれぞれ成膜した。実施例1,2.
3でそれぞれ成膜するのに先たちガス組成、投入電力を
それぞれの実施例と同一にして約2秒プラズマを立てた
後、実施例1.2.3によってそれぞれの成膜を行った
Example 5 A1□0 was formed on the substrate of Example 1 by electron beam heating vacuum evaporation method.
After depositing Example 3 for about 3 seconds (5 people in terms of monitor), Example 1,
Each film was formed in the same manner as in 2.3. Examples 1 and 2.
Before forming each film in Example 3, plasma was generated for about 2 seconds using the same gas composition and input power as in each example, and then each film was formed in accordance with Example 1, 2, and 3.

これらの前処理により、白化現象はまったく見られなく
なり、電気特性も窒素プラズマ処理と同様すぐれた膜が
得られた。
By these pretreatments, no whitening phenomenon was observed at all, and a film with excellent electrical properties similar to those obtained by nitrogen plasma treatment was obtained.

(発明の効果) 本発明に於いては、熱処理にたえる。白化現象の発生し
ない、電気特性のよいプラズマCVD法によるシリコン
ナイトライド、シリコンオキサイド、シリコンオキシナ
イトライド膜を得ることができる。またこの方法は量産
性にすぐれている。
(Effects of the Invention) The present invention is suitable for heat treatment. Silicon nitride, silicon oxide, and silicon oxynitride films that do not cause whitening and have good electrical properties can be obtained by plasma CVD. Moreover, this method is excellent in mass production.

Claims (5)

【特許請求の範囲】[Claims] 1.透明導電膜が形成された透明基板上に,透明基板を
350〜550℃にしてプラズマCVD法によってシリ
コンナイトライド,シリコンオキサイド又はシリコンオ
キシナイトライドの少なくとも一種の薄膜を蒸着するこ
とを特徴とする絶縁膜の形成法。
1. An insulation characterized by depositing at least one thin film of silicon nitride, silicon oxide, or silicon oxynitride on a transparent substrate on which a transparent conductive film is formed, by plasma CVD at a temperature of 350 to 550°C. Membrane formation method.
2.透明基板を200〜550℃として,酸素プラズマ
中で処理した後,蒸着する特許請求の範囲第1項記載の
絶縁膜の形成法。
2. 2. The method of forming an insulating film according to claim 1, wherein the transparent substrate is treated in oxygen plasma at 200 to 550° C. and then vapor deposited.
3.透明基板を200〜550℃として,不活性ガスプ
ラズマ中で処理した後,蒸着する特許請求の範囲第1項
記載の絶縁膜の形成法。
3. 2. The method of forming an insulating film according to claim 1, wherein the transparent substrate is treated in an inert gas plasma at 200 to 550° C. and then vapor deposited.
4.透明基板に絶縁物を1〜10Å蒸着した後,蒸着す
る特許請求の範囲第1項記載の絶縁膜の形成法。
4. 2. The method of forming an insulating film according to claim 1, wherein the insulating material is deposited on the transparent substrate by 1 to 10 Å, and then the insulating material is deposited.
5.1〜10Åの蒸着絶縁物が,シリコンナイトライド
,シリコンオキサイド,シリコンオキシナイトライド又
はアルミナの少なくとも一種である特許請求の範囲第4
項記載の絶縁膜の形成法。
5. Claim 4, wherein the vapor-deposited insulator with a thickness of 1 to 10 Å is at least one of silicon nitride, silicon oxide, silicon oxynitride, or alumina.
A method for forming an insulating film as described in .
JP62078100A 1987-03-31 1987-03-31 Method of forming insulating film Pending JPS63245891A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62078100A JPS63245891A (en) 1987-03-31 1987-03-31 Method of forming insulating film
US07/175,317 US4895734A (en) 1987-03-31 1988-03-30 Process for forming insulating film used in thin film electroluminescent device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62078100A JPS63245891A (en) 1987-03-31 1987-03-31 Method of forming insulating film

Publications (1)

Publication Number Publication Date
JPS63245891A true JPS63245891A (en) 1988-10-12

Family

ID=13652454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62078100A Pending JPS63245891A (en) 1987-03-31 1987-03-31 Method of forming insulating film

Country Status (1)

Country Link
JP (1) JPS63245891A (en)

Similar Documents

Publication Publication Date Title
US4895734A (en) Process for forming insulating film used in thin film electroluminescent device
EP0478010B1 (en) Process for producing a continuous web of an electrically insulated metallic substrate
US5510011A (en) Method for forming a functional deposited film by bias sputtering process at a relatively low substrate temperature
US5231057A (en) Method of depositing insulating layer on underlying layer using plasma-assisted cvd process using pulse-modulated plasma
JPH06283430A (en) Method for execution of multilayer cvd at inside of single chamber
US4777061A (en) Blanket tungsten deposition for dielectric
JPH0661335A (en) Wafer holding plate for semiconductor manufacturing device
JPS63245891A (en) Method of forming insulating film
JP3273827B2 (en) Semiconductor device and manufacturing method thereof
US5869390A (en) Method for forming electrode on diamond for electronic devices
JP2900284B2 (en) Thin film formation method
US4214018A (en) Method for making adherent pinhole free aluminum films on pyroelectric and/or piezoelectric substrates
JPH09148676A (en) Semiconductor laser and its manufacture
JPS63245893A (en) Method of forming insulating film
JP3529308B2 (en) Sputtering apparatus and sputtering method
JPH0654807B2 (en) Method of forming ohmic contact for hydrogenated amorphous silicon
JPS63245892A (en) Method of forming insulating film
JPS63245890A (en) Thin film electroluminescence device and manufacture of the same
JPH089767B2 (en) Method for producing low resistance transparent conductive film
KR100719805B1 (en) Method of depositing capacitor electrode adding transition metal
JPS59148329A (en) Fabrication of high melting point metal nitride film
JP2002069616A (en) Production method for thin film of anatase-type titanium oxide
JPS6130042A (en) Semiconductor element loading substrate
JPS62254450A (en) Insulated substrate and manufacture thereof
JPH06450Y2 (en) Coil movable ion plating device