JPS63245675A - Hollow fiber membrane for immobilization of enzyme and production thereof - Google Patents

Hollow fiber membrane for immobilization of enzyme and production thereof

Info

Publication number
JPS63245675A
JPS63245675A JP62080714A JP8071487A JPS63245675A JP S63245675 A JPS63245675 A JP S63245675A JP 62080714 A JP62080714 A JP 62080714A JP 8071487 A JP8071487 A JP 8071487A JP S63245675 A JPS63245675 A JP S63245675A
Authority
JP
Japan
Prior art keywords
membrane
hollow fiber
fiber membrane
water
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62080714A
Other languages
Japanese (ja)
Other versions
JPH0344756B2 (en
Inventor
Hirotoshi Ishizuka
浩敏 石塚
Masaaki Ito
雅章 伊藤
Takeshi Hibino
健 日比野
Takeshi Okada
猛 岡田
Hiroko Sahashi
佐橋 裕子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP62080714A priority Critical patent/JPS63245675A/en
Publication of JPS63245675A publication Critical patent/JPS63245675A/en
Publication of JPH0344756B2 publication Critical patent/JPH0344756B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain the titled membrane capable of keeping high activity over a long period, having excellent separation performance of a low-molecular weight product which is a reaction product with a substrate and useful as an immobilized enzyme membrane, etc., in high efficiency, by impregnating and adsorbing an aqueous solution of a water-soluble polymer having >=2 functional groups into a specific hollow fiber membrane from the side of porous layer and crosslinking the adsorbed polymer. CONSTITUTION:The hollow fiber membrane used as a starting material of the objective membrane is made of an aromatic polysulfone, etc., and is an asymmetric ultrafiltration membrane composed of an outer dense layer having a fractional molecular weight of 1,000-1,000,000 and an inner porous layer supporting the dense layer and having a pore diameter of 0.05-10mu. An aqueous solution of a water-soluble polymer having >=2 functional groups e.g. polyethyleneimine or polyarylamine having a weight-average molecular weight of 1,000-200,000 and a functional group number of from several tens to several hundreds is impregnated into the hollow fiber membrane from the side of the porous layer under a pressure of 0.1-1.0kg/cm<2> to effect physical adsorption of the polymer to the membrane. A solution of a crosslinking agent such as polyethyleneimine or polyarylamine is impregnated into the above membrane. The molar concentration ratio of the functional group in the water- soluble polymer to the functional group in the crosslinking agent is selected to 2-50. The polymer in the membrane is crosslinked by this process to obtain the titled membrane containing a water-soluble polymer in a porous layer of a hollow fiber membrane is a crosslinked state.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は酵素固定用中空糸状膜およびその製法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a hollow fiber membrane for enzyme immobilization and a method for producing the same.

〈従来の技術〉 近年、酵素反応を利用した工業的規模での実施は医薬品
や食品工業の分野で盛んに行なわ几ているが、酵素自体
の価格が高価なことや、溶液状態にて使用した場合に反
応後における生成物と酵素の分離や回収が困難であるこ
となどの問題点から。
<Prior art> In recent years, industrial-scale implementation using enzyme reactions has been actively carried out in the fields of pharmaceuticals and food industries, but the enzymes themselves are expensive, and it is difficult to use them in a solution state. In some cases, there are problems such as difficulty in separating and recovering the product and enzyme after the reaction.

担持体に酵素を固定する。所謂固定化酵素の手法が種々
検討されている。
Immobilize the enzyme on the carrier. Various methods using so-called immobilized enzymes have been studied.

反応生成物と酵素の分離を酵素反応と同時に処理できる
方法として限外濾過膜の如き膜を利用した方法が研究さ
れており、精密分離精製の前処理として分子分画による
粗分離処理が極めて容易になるものとして注目されてお
り、とりわけ、高分子基質から低分子生成物を得るため
の酵素反応への適用が期待されている。これらの一つと
して。
Methods using membranes such as ultrafiltration membranes are being researched as a method for separating reaction products and enzymes at the same time as the enzymatic reaction, and crude separation processing using molecular fractionation is extremely easy as a pretreatment for precise separation and purification. In particular, it is expected to be applied to enzymatic reactions to obtain low-molecular products from high-molecular substrates. As one of these.

酵素を膜に固定したメンブレンリアクターが提案され、
酵素を異方性限外濾過膜の多孔質部に閉じ込めて被覆を
施こす方法(特開昭59−25686号公報)や、多孔
質部に酵素をタルと共に封入包括する方法(特公昭57
−41238号公報)などが開示されているが、いずれ
の方法も酵素を長期間にわたって安定に保持できるもの
ではない。
A membrane reactor in which enzymes are immobilized on the membrane has been proposed.
There is a method of enclosing the enzyme in the porous part of an anisotropic ultrafiltration membrane and applying a coating (Japanese Patent Application Laid-open No. 59-25686), and a method of enclosing the enzyme together with a tall in the porous part (Japanese Patent Publication No. 57-1988).
41238), but none of these methods is capable of stably retaining the enzyme for a long period of time.

また、酵素を安定に保持するために、官能基を有する膜
に直接共有結合によって酵素ff:固定する方法も提案
されているが、この方法では酵素活性が低下したり、酵
素が失活した際の再生が困建であるなどの問題を有する
ものであり、工業的規模での実用化に充分に耐えるもの
ではない。
In addition, in order to stably retain the enzyme, a method has been proposed in which the enzyme ff: is immobilized by direct covalent bonding to a membrane having a functional group, but this method does not allow the enzyme to function properly if the enzyme activity decreases or the enzyme is deactivated. However, it has problems such as difficulty in recycling, and is not suitable for practical use on an industrial scale.

〈発明が解決しようとする問題点〉 従って1本発明の第1の目的は、酵素を長期間にわたっ
て高活性に保持でき、且つ基質との反応生成物、特に高
分子基質と反応生成物である低分子生成物の分離性能に
饅れた酵素固定用中空糸状膜ft提供することにある。
<Problems to be Solved by the Invention> Therefore, the first object of the present invention is to maintain an enzyme with high activity for a long period of time, and to produce a reaction product with a substrate, especially a reaction product with a polymeric substrate. An object of the present invention is to provide a hollow fiber membrane for enzyme immobilization that has excellent separation performance for low-molecular products.

本発明の第2の目的は、と記酵素固定用中窓糸状膜を効
率よく製造するための方法を提供することにある。
A second object of the present invention is to provide a method for efficiently producing the above-mentioned mesofenaminous filamentous membrane for enzyme immobilization.

く問題点を解決するための手段〉 本発明者らは、酵素固定膜において膜形状が平板状や管
状のように支持部材や流路スペーサーを必要とするもの
では、モジニール化した場合に単位容積当りの膜面積や
膜体積が大きく、工業的な規模での実施には不向きであ
シ、さらに酵素固定化部位の汚染を防止するには緻密I
II側からの逆洗性が必要であることを鑑み、前記目的
を達成すべく検討を重ねた。その結果、外面に緻密Il
lを有する中空糸状膜の多孔質層に、特定の水溶性高分
子を含浸させ、架橋剤によって架橋せしめた膜が優れ九
自由度を維持しながら酵素を固定でき、固定される酵素
の活性も長期間にわたって維持出来ることを見い出した
。特に、外側に緻密mを有する中空糸状膜を使用するこ
とで、工業的な規模での実用化において不可欠な条件で
ある耐久性が付与され、′!た膜再生も容易なものとな
ることが判明した。
Means for Solving Problems〉 The present inventors have found that enzyme-immobilized membranes that require supporting members and channel spacers, such as flat or tubular membranes, have a unit volume of The membrane area and volume per unit are large, making it unsuitable for implementation on an industrial scale, and in addition, it is difficult to prevent contamination of the enzyme immobilization site.
In view of the need for backwashability from the II side, repeated studies were conducted to achieve the above objective. As a result, dense Il on the outer surface
A membrane in which the porous layer of a hollow fiber membrane with 100% polyamide is impregnated with a specific water-soluble polymer and cross-linked with a cross-linking agent is superior in that it can immobilize enzymes while maintaining nine degrees of freedom, and the activity of the immobilized enzyme can also be improved. We have found that it can be maintained for a long period of time. In particular, by using a hollow fiber membrane with a dense m on the outside, durability is provided, which is an essential condition for practical use on an industrial scale. It was also found that membrane regeneration becomes easy.

即ち、本発明の酵素固定用中空糸状膜は、外面に緻密層
ヲ有する非対称限外濾過膜からなる中空糸状膜の多孔質
I−に、少なくとも2個の官能基を有する水溶性高分子
が架橋状態にて保持されていることを特徴とするもので
ある。
That is, in the hollow fiber membrane for enzyme immobilization of the present invention, a water-soluble polymer having at least two functional groups is cross-linked to the porous I- of the hollow fiber membrane, which is an asymmetric ultrafiltration membrane having a dense layer on the outer surface. It is characterized by being maintained in the same state.

さらに、かかる酵素固定用中空糸状膜を得る好適な製造
態様は、外面に緻密層を有する非対称限外濾過膜からな
る中空糸状膜の多孔質tm側から。
Furthermore, a preferred manufacturing mode for obtaining such a hollow fiber membrane for enzyme immobilization is from the porous tm side of a hollow fiber membrane consisting of an asymmetric ultrafiltration membrane having a dense layer on the outer surface.

少なくとも2個の官能基を有する水M性高分子水溶液を
含浸させて該水溶性高分子を上記多孔質層に物理吸着さ
せたのち、架橋剤にて前記水浴性高分子を架橋すること
を特徴とするものである。
The porous layer is impregnated with an aqueous solution of a water-based polymer having at least two functional groups, and the water-soluble polymer is physically adsorbed onto the porous layer, and then the water-based polymer is crosslinked with a crosslinking agent. That is.

本発明において用いられる中空糸状膜は、有効膜面積が
大きく、固定化される酵素と基質との接触面積が大きく
なるものであって1分画分子量が1.000〜1,00
0,000の性能を有する緻密層と。
The hollow fiber membrane used in the present invention has a large effective membrane area and a large contact area between the immobilized enzyme and the substrate, and has a molecular weight cut-off of 1.000 to 1,000.
With a dense layer with a performance of 0,000.

該層を担持する孔径が約0.05〜10μm、好ましく
は0.1〜5μ毒の多孔質j−からなる非対称限外濾過
膜から形成される。なお1本発明における分画分子量は
、阻止率90%以上のデキストランの分子量から求めた
ものである。
The layer is formed from a porous ultrafiltration membrane with a pore size of approximately 0.05 to 10 μm, preferably 0.1 to 5 μm. Note that the molecular weight cutoff in the present invention is determined from the molecular weight of dextran with a rejection rate of 90% or more.

上記中空糸状膜は外側に緻密層を有するものであり、該
層を数千本組み込んで工業的規模での大型モジュールと
する場合に後れた効果を発揮する。
The above-mentioned hollow fiber membrane has a dense layer on the outside, and exhibits an inferior effect when several thousand of the layers are incorporated to form a large module on an industrial scale.

つまり、大型モジュールにすると、基質溶液を中空糸状
膜の内側から供給する方が各層に均一に基質溶液を供給
できる。一方、酵素固定用膜の場合は多孔質層に酵素が
固定され、該層側から基質溶液を供給する必要があるの
で、基質と反応生成物との分離のためには外側に緻密層
を有することが重要なのである。内外両面に緻密層を有
する中空糸状膜では、多孔質層への水溶性高分子の物理
吸着が困蝿であったり、単位膜当りの酵素固定化量が減
少する場合があるので好ましくない。また。
In other words, when a large-sized module is used, it is better to supply the substrate solution from the inside of the hollow fiber membrane so that the substrate solution can be uniformly supplied to each layer. On the other hand, in the case of membranes for enzyme immobilization, the enzyme is immobilized in a porous layer, and it is necessary to supply the substrate solution from this layer side, so in order to separate the substrate and reaction products, a dense layer is provided on the outside. That is important. A hollow fiber membrane having dense layers on both the inner and outer surfaces is not preferred because physical adsorption of the water-soluble polymer to the porous layer may be difficult or the amount of enzyme immobilized per unit membrane may be reduced. Also.

逆に緻密/Iを全く有しない所謂微多孔膜では、本発明
の酵素固定用中空糸状の最も重要な特性の一つである。
On the other hand, in the case of a so-called microporous membrane having no dense/I at all, this is one of the most important properties of the hollow fiber-like membrane for enzyme immobilization of the present invention.

酵素反応と同時に反応生成物を分離する機能が失なわれ
るので好ましくない。
This is not preferable because the function of separating the reaction products at the same time as the enzymatic reaction is lost.

上記中空糸状膜を製造するに際して用いる材料としては
1例えば芳香族ポリスルホン、芳香族ポリエーテルスル
ホン、芳香族ポリアミド、ポリイミド、酢酸セルロース
、ポリ?クリロニトリルなどが挙げられ、これらの材料
は後述する水溶性高分子できるものであれば特に制限は
ない。これらの膜材料のうち、耐熱性や機械的強度、耐
薬品性の面で、芳香族ポリスルホンが好適に使用できる
Examples of materials used in manufacturing the hollow fiber membrane include aromatic polysulfone, aromatic polyether sulfone, aromatic polyamide, polyimide, cellulose acetate, polyamide, etc. Examples include crylonitrile, and these materials are not particularly limited as long as they can form water-soluble polymers as described below. Among these membrane materials, aromatic polysulfone can be preferably used in terms of heat resistance, mechanical strength, and chemical resistance.

上記中空糸状膜は既知の方法で製造することができる。The hollow fiber membrane described above can be manufactured by a known method.

その−例として以下に芳香族ポリスルホン中空糸状膜の
製法を述べる。
As an example, a method for producing an aromatic polysulfone hollow fiber membrane will be described below.

芳香族ポリスルホンを溶解する極性有機溶剤と、該溶剤
と混和するが、芳香族ポリスルホンを溶解しない溶剤(
以下、非溶剤という)との混合溶剤に芳香族ポリスルホ
ンを溶解して製膜溶液を調製し3次に二重管壁ノズルの
外管に製膜溶液を、また内管に内部凝固液としての上記
極性有機溶剤と水との混合溶液を通液して水中に押出し
たのち。
A polar organic solvent that dissolves the aromatic polysulfone, and a solvent that is miscible with the solvent but does not dissolve the aromatic polysulfone (
A membrane-forming solution is prepared by dissolving aromatic polysulfone in a mixed solvent with a non-solvent (hereinafter referred to as a non-solvent). 3. Next, the membrane-forming solution is applied to the outer tube of the double-walled nozzle, and the internal coagulation liquid is added to the inner tube. After passing the mixed solution of the above polar organic solvent and water and extruding it into water.

脱溶剤、凝固させることによって中空糸状膜を得ること
ができる。
A hollow fiber membrane can be obtained by removing the solvent and coagulating it.

上記芳香族ポリスルホンの極性有機溶剤としては、N−
メチル−2−ピロリドン、ジメチルホルムアミド、ジメ
チルスルホキシド、ジメチルアセトアミド等が好ましく
用いられ、非溶剤としては。
The polar organic solvent for the aromatic polysulfone is N-
Methyl-2-pyrrolidone, dimethylformamide, dimethyl sulfoxide, dimethylacetamide and the like are preferably used as the non-solvent.

エチレングリコール、ジエチレングリコール、フロピレ
ンゲリコール、ポリエチレングリコール、グリセリン等
の脂肪族多価アルコール、メタノール、エタノール、イ
ソプロピルアルコール等の低am肪族アルコール&7セ
トン、メチルエチルケトン等の低級脂肪族ケトン等が好
ましく使用できる。なお、膜材質が他の高分子物質の場
合は、J:記以外の溶剤も使用できることはいうまでも
ない。
Aliphatic polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene gellicol, polyethylene glycol, and glycerin, low am aliphatic alcohols such as methanol, ethanol, isopropyl alcohol, and lower aliphatic ketones such as 7-setone and methyl ethyl ketone can be preferably used. . It goes without saying that if the membrane material is another polymeric substance, solvents other than those listed in J: may also be used.

混合溶剤中の非溶剤の含有量は得られる混合溶剤および
製膜浴液が均一であれば特に制限されないが1通常、5
〜50重量%、好ましくは20〜45重着%の範囲で混
合する。
The content of the non-solvent in the mixed solvent is not particularly limited as long as the mixed solvent and film forming bath solution obtained are uniform, but usually 1,5
It is mixed in a range of 50% by weight, preferably 20-45% by weight.

また、二重管壁ノズルの内管に通液する内部凝固液中の
極性有機溶剤の含有量は1通常、50〜95重量%、好
1しくけ70〜90重量%の範囲で設定する。極性有機
溶剤の含有量が多くなるほど得られる中空糸状膜の内面
が多孔質化するので多孔度の調整を該溶剤量で行なうこ
とができる。
Further, the content of the polar organic solvent in the internal coagulating liquid passed through the inner tube of the double wall nozzle is usually set in the range of 50 to 95% by weight, preferably 70 to 90% by weight. As the content of the polar organic solvent increases, the inner surface of the resulting hollow fiber membrane becomes more porous, so the porosity can be adjusted by adjusting the amount of the solvent.

本発明の#床固定用中空糸状膜は上記で得られた中空糸
状膜の多孔質triIに、少なくとも2個の官能基を有
する水溶性高分子水g液を含浸させて該水溶性高分子を
多孔質層に物理吸着させ、架橋剤によって架橋せしめて
得られる。このような水溶性高分子としては、例えばポ
リエチレンイミン、?リプロピレンイミン、ポリブチレ
ンイミンの如きポリフルキレンイミン、ポリエチレング
リコール、ぼりプロピレングリコールの如きプリアルキ
レングリコール、jfプリジン、ポリスルホンの如きポ
リアミノ酸、ポリアリールアミンなどが挙げられ1通常
1重量平均分子′!1が約1,000〜zoo、ooo
、官能基数が数十〜数百のものが好ましく、使用する酵
素の種類や膜材料の81類に応じて適宜選択することが
出来る。これらの水溶性高分子のうち、ポリエチレンイ
ミンやポリアリールアミンは官能基数の調節が容易で1
反応性も高いので好適に用いることができる。
The # hollow fiber membrane for bed fixing of the present invention is obtained by impregnating the porous triI of the hollow fiber membrane obtained above with aqueous solution of a water-soluble polymer having at least two functional groups. It is obtained by physically adsorbing it onto a porous layer and crosslinking it with a crosslinking agent. Examples of such water-soluble polymers include polyethyleneimine, ? Examples include polyfulkylene imine such as ripropylene imine and polybutylene imine, prealkylene glycol such as polyethylene glycol and bori propylene glycol, polyamino acids such as jf pridine and polysulfone, polyarylamine, etc. 1 Usually 1 weight average molecule'! 1 is approximately 1,000 ~ zoo, ooo
The number of functional groups is preferably from several tens to several hundreds, and can be appropriately selected depending on the type of enzyme used and the type 81 membrane material. Among these water-soluble polymers, polyethyleneimine and polyarylamine are easy to adjust the number of functional groups.
Since it has high reactivity, it can be suitably used.

上記水溶性高分子の溶液を中空糸状膜の多孔質層に含浸
するにあたり、該溶液の溶質濃度は1重量%以下、好ま
しくは0.05〜0.25重量%の範囲に設定する。溶
質濃度が1重量%を超えた場合は溶液粘度が高くなり、
多孔質ノーに水溶性高分子が充分に含浸されなかったり
、含浸した水溶性高分子が膜孔を閉塞して、基質溶液の
透過溶液の透過水量が低下し、限外濾過性能が低下した
りすることがある。
When impregnating the porous layer of the hollow fiber membrane with the water-soluble polymer solution, the solute concentration of the solution is set to 1% by weight or less, preferably in the range of 0.05 to 0.25% by weight. When the solute concentration exceeds 1% by weight, the solution viscosity increases;
The water-soluble polymer may not be sufficiently impregnated into the porous material, or the impregnated water-soluble polymer may block the membrane pores, reducing the amount of water permeated from the substrate solution and reducing ultrafiltration performance. There are things to do.

上記のように水溶性高分子を多孔質I−に含浸し。Impregnate the porous I- with a water-soluble polymer as described above.

物理吸着させる方法としては、中空糸状膜を水溶性高分
子水溶液に所定時間浸漬する方法や、中空糸状膜の多孔
質層側、即ち内面側から水溶性高分子水溶液を加圧透過
させる方法等があるが、短時間で安定に水溶性高分子を
吸着させるためには。
Physical adsorption methods include immersing a hollow fiber membrane in a water-soluble polymer aqueous solution for a predetermined period of time, and passing a water-soluble polymer aqueous solution under pressure from the porous layer side of the hollow fiber membrane, that is, from the inner surface side. However, in order to stably adsorb water-soluble polymers in a short period of time.

加圧透過による方法が好ましい。A pressure permeation method is preferred.

加圧透過によって水溶性高分子を含浸せしめる際の加圧
条件としては、0.1〜1.0klil/cd 、好ま
しくは0.1〜0.5に9/cylの範囲に設定するこ
とがよく。
Pressure conditions when impregnating a water-soluble polymer by pressurized permeation are preferably set in the range of 0.1 to 1.0 klil/cd, preferably 0.1 to 0.5 to 9/cyl. .

好ましく、高加圧下での含浸では多孔質層内部、特に緻
密層側に水溶性高分子の圧密化が生じ、膜孔を閉塞する
恐れがある。また加圧条件が低くすぎると水溶性高分子
の多孔質1−への含浸に時間がかかったり、多孔質層全
体への均一な含浸を行ない難く1表1一部のみへの含浸
となシ酵素の結合量の低下を招く恐れがある。
Preferably, impregnation under high pressure may cause consolidation of the water-soluble polymer inside the porous layer, particularly on the dense layer side, which may clog the membrane pores. In addition, if the pressure conditions are too low, it may take time to impregnate the water-soluble polymer into the porous layer 1-, or it may be difficult to uniformly impregnate the entire porous layer, resulting in impregnation of only a portion of the porous layer. This may lead to a decrease in the amount of enzyme bound.

と記の如く含浸を行なり次水溶性高分子は非対称限外濾
過膜からなる中空糸状膜の多孔質層に物理吸着により保
持されるが、数回の膜洗浄操作によって未吸着の水溶性
高分子や極度に低分子量の水溶性高分子が除去される。
After impregnation as described above, water-soluble polymers are retained by physical adsorption in the porous layer of a hollow fiber membrane made of an asymmetric ultrafiltration membrane. Molecules and extremely low molecular weight water-soluble polymers are removed.

しかるのち架橋剤溶液中に含浸せしめるか、前記水溶性
高分子溶液含浸時の加圧条件範囲内1通常は前記と同条
件下にて多孔質層側から透過せしめて前記水溶性高分子
を架橋せしめる。このような架橋手段を施こすことによ
って水溶性高分子は三次元化して不溶化し。
Thereafter, the water-soluble polymer is cross-linked by impregnating it in a cross-linking agent solution, or by permeating it from the porous layer side under the same pressure conditions as above (1), usually under the same conditions as above. urge By applying such crosslinking means, water-soluble polymers become three-dimensional and insolubilized.

分子のかさばりゃ立体障害が犬きくなるので、中空糸状
膜の膜自体に結合せずとも多孔質層の孔内に保持するこ
とができ、後の逆洗浄によっても流出しないものとなる
The bulkier the molecule is, the greater the steric hindrance, so it can be retained within the pores of the porous layer without being bound to the membrane itself of the hollow fiber membrane, and will not flow out even during subsequent backwashing.

このような架橋剤としては、グリオキサール。Such a crosslinking agent is glyoxal.

グルタルアルデヒド、アジピンアルデヒド、マロンジア
ルデヒド、ジアルデヒド澱粉の如キジアルデヒド類、ヘ
キサメチレンジイソシアネート、トルエンジイソシアネ
ートの如きジイソシアネート類、ヘキサズチレンジイン
チオシアネートの如きジイソチオシアネート類などが挙
げられ、水浴性高分子にポリアミノ酸を使用した場合に
は水溶性カルボジイミドなどの縮合試薬を用いることも
できる。これらのうち、特にジアルデヒド類やジイソシ
アネート類は水溶液中で比較的安定で反応性も高いため
に好適に用いることができる。
Examples include oxidialdehydes such as glutaraldehyde, adipine aldehyde, malondialdehyde, and dialdehyde starch, diisocyanates such as hexamethylene diisocyanate and toluene diisocyanate, and diisothiocyanates such as hexazethylene dithiocyanate. When a polyamino acid is used, a condensation reagent such as a water-soluble carbodiimide can also be used. Among these, dialdehydes and diisocyanates are particularly suitable for use because they are relatively stable in aqueous solution and have high reactivity.

上記架橋剤は溶液状態で使用するが、水溶性高分子中の
官能基量と該架橋剤中の官能基量とのモル濃度比ft2
〜505好ましくは6〜20とすることによって、のち
に酵素と結合する官能基量を充分に残存させることがで
きる。
The above crosslinking agent is used in a solution state, and the molar concentration ratio ft2 of the amount of functional groups in the water-soluble polymer and the amount of functional groups in the crosslinking agent is
By setting the number to 505 and preferably 6 to 20, a sufficient amount of functional groups that will later bind to the enzyme can remain.

と記のようにして本発明の酵素固定用中空糸状膜を得る
ことができるが、酵素を固定化するに際して上記のよう
に架橋した膜の緻密層側から1通常の洗浄処理である逆
洗浄によって多孔質層に残存する未架倫の水溶性高分子
や未反応の架橋剤を除去することが好ましい。
The hollow fiber membrane for enzyme immobilization of the present invention can be obtained as described above, but when immobilizing the enzyme, the dense layer side of the crosslinked membrane as described above is washed by back washing, which is a normal washing process. It is preferable to remove uncrosslinked water-soluble polymers and unreacted crosslinkers remaining in the porous layer.

このようにして得られた酵素固定用中空糸状は酵素溶液
を多孔質層側(内面側)より透過させて。
The thus obtained hollow fiber for enzyme immobilization allows the enzyme solution to pass through from the porous layer side (inner surface side).

前記水溶性高分子の官能基を介して共有結合で酵素を固
定化することによって、酵素固定膜となる。
By covalently immobilizing the enzyme via the functional groups of the water-soluble polymer, an enzyme-immobilized membrane is obtained.

前記水溶性高分子はその分子末端や側鎖にアミノ基、カ
ルボキシル基、ヒドロキシル基などの官能基を有してい
るので、既知の手法を用いて酵素が有する官能基と直接
、または前記架橋剤やカップリング剤によって間接的に
共有結合させる。さらに、固定化された酵素の可動性を
太きくシ、酵素反応を高めるためにスペーサーを介在さ
せることもできる。
Since the water-soluble polymer has a functional group such as an amino group, a carboxyl group, or a hydroxyl group at its molecular end or side chain, it can be directly connected to the functional group of the enzyme using a known method or the crosslinking agent. indirectly covalently bonded using a coupling agent or a coupling agent. Furthermore, a spacer can be interposed to increase the mobility of the immobilized enzyme and enhance the enzyme reaction.

このような酵素としては特に限定されるものではないが
、本発明の酵素固定膜を用いて限外濾過膜としての特性
を充分に発揮するためには多糖類や蛋白質の加水分解酵
素が有用であり、例えばα−アミラーゼ、グルコアミラ
ーゼ、ベクチナーイ。
Although such enzymes are not particularly limited, polysaccharide and protein hydrolyzing enzymes are useful in order to fully exhibit the characteristics of an ultrafiltration membrane using the enzyme-immobilized membrane of the present invention. Yes, such as α-amylase, glucoamylase, vectinae.

セルラーゼ、ムラミダーゼの如き多糖類加水分解酵素、
パパイン、ペプシン、トリプシン、キモトリプシン、プ
ロメライン、プロテアーゼの如き蛋白質加水分解酵素な
どが挙げられる。
polysaccharide hydrolase such as cellulase and muramidase,
Examples include protein hydrolases such as papain, pepsin, trypsin, chymotrypsin, promelain, and protease.

〈発明の効果〉 以上のように2本発明の酵素固定用中空糸状膜は外面に
緻密J−を有する非対称限外濾過膜からなる中空糸状膜
の多孔質層に、特定の水溶性高分子が架瑚状態にて保持
されており、該水溶性高分子の有する官能基を介して酵
素を共有結合にて固定することができるので、この膜を
酵素固定膜として使用すると以下のような効果を奏する
<Effects of the Invention> As described above, the hollow fiber membrane for enzyme immobilization of the present invention has a specific water-soluble polymer in the porous layer of the hollow fiber membrane, which is an asymmetric ultrafiltration membrane having dense J- on the outer surface. It is maintained in a suspended state, and enzymes can be covalently immobilized via the functional groups of the water-soluble polymer, so when this membrane is used as an enzyme immobilization membrane, the following effects can be achieved. play.

即ち、酵素の自由度を確保するように高活性を維持しな
がら確実に固定できるので、長期間にわたる酵素反応に
も酵素の離脱がなく使用することが可能となる。また本
発明の製法において、加圧条件下にて水溶性高分子等を
含浸、透過させると短時間での製造ができ、基質溶液の
透過経路である孔内に酵素を保持しているので接触機会
が確実に多くなり1反応と同時に反応生成物の分離を短
時間で達成できるので、基質溶液の大量処理を効率的に
行なえる。
That is, since the enzyme can be reliably immobilized while maintaining high activity so as to ensure the degree of freedom of the enzyme, it can be used even in long-term enzymatic reactions without detachment of the enzyme. In addition, in the production method of the present invention, production can be carried out in a short time by impregnating and permeating water-soluble polymers etc. under pressurized conditions. Since the number of opportunities is certainly increased and separation of reaction products can be achieved simultaneously with one reaction in a short time, a large amount of substrate solution can be efficiently processed.

さらに1本発明では外面に緻密rIIJを有する中空糸
状膜を用いているので、基質溶液は中空糸状膜内面より
供給される。従って、大型モジュール化しても各中空糸
状膜に均一に基質が供給されるので1反応効率の低下は
起こらず、工業的規模での使用に耐えうるものである。
Furthermore, since the present invention uses a hollow fiber membrane having dense rIIJ on its outer surface, the substrate solution is supplied from the inner surface of the hollow fiber membrane. Therefore, even if the membrane is made into a large-sized module, the substrate is uniformly supplied to each hollow fiber membrane, so there is no reduction in the efficiency of one reaction, and the membrane can be used on an industrial scale.

〈実施例〉 以下に本発明の実施例を示し、さらに詳細に説明するが
1本発明の技術的思想を逸脱しない範囲で種々の応用が
可能である。
<Examples> Examples of the present invention will be shown below and explained in more detail, but various applications are possible without departing from the technical idea of the present invention.

実施例I N−メチル−2−ピロリドン58重量部と、ジエチレン
グリコール25重量部との混合溶剤ニ。
Example I A mixed solvent of 58 parts by weight of N-methyl-2-pyrrolidone and 25 parts by weight of diethylene glycol.

芳香族ポリスルホン樹脂(P−3500,UCC社製)
17重量部を溶解して製膜溶液を調製した。
Aromatic polysulfone resin (P-3500, manufactured by UCC)
A film forming solution was prepared by dissolving 17 parts by weight.

二重管壁ノズルの外管からと記製膜溶液を水温25℃の
水中に押し出すと共に、内管からは内部凝固液として7
5重量%のN−メチル−2−ピロリドン水醪液を流出さ
せて、水中で脱溶剤化、凝固させることによって、内径
0.551m、外径1.9Ilil。
The membrane forming solution is extruded from the outer pipe of the double wall nozzle into water at a water temperature of 25°C, and the internal coagulating liquid is extruded from the inner pipe.
A 5% by weight N-methyl-2-pyrrolidone aqueous solution was poured out, and the solvent was removed and coagulated in water to obtain an inner diameter of 0.551 m and an outer diameter of 1.9 Ilil.

多孔質層の孔径0.2〜1μ常の中空糸状膜を得た。A hollow fiber membrane with a porous layer having a pore diameter of 0.2 to 1 μm was obtained.

この膜は分子量5万のデキストランに対する阻止率が9
0%であることから1分画分子量は約5万と推定さnる
This membrane has a rejection rate of 9 for dextran with a molecular weight of 50,000.
Since it is 0%, the molecular weight of one fraction is estimated to be about 50,000.

上記で得た中空糸状膜200本を組み込んだ小型モジュ
ール(有効膜長15薗、有効膜内表面積500、J)を
作成し、膜の多孔質層側(内面)から0.1%重量%濃
度のポリエチレンイミン水溶液(重量平均分子量70,
000,1分子当シの7ミノ基数約400)を0.3 
kg/dの加圧下にて約30分透過させた。
A small module (effective membrane length 15 mm, effective membrane internal surface area 500 J) incorporating 200 hollow fiber membranes obtained above was created, and a concentration of 0.1% by weight from the porous layer side (inner surface) of the membrane was prepared. Polyethyleneimine aqueous solution (weight average molecular weight 70,
000, the number of 7-mino groups per molecule is approximately 400) is 0.3
It was allowed to permeate for about 30 minutes under a pressure of kg/d.

さらに約51の水を用い同圧下にて洗浄したのち、モジ
ュール全体を40℃に維持しなから架欄剤として0.0
5i量%のグルタルアルデヒド溶液(夛ん酸緩衝液pH
7,0)を同加圧下で透過し、多孔質11に保持されて
いるポリエチレンイミン水溶液した。
After further washing under the same pressure using approximately 51% water, the entire module was maintained at 40°C and 0.0% crosslinking agent was used.
5i% glutaraldehyde solution (phosphate buffer pH
7,0) was permeated under the same pressure, and the polyethyleneimine aqueous solution retained in the porous material 11 was obtained.

室温下1 kg/cAの加圧条件で中空糸状膜の緻密層
III (外面)より純水にて逆洗浄を行ない多孔質層
に保持されないポリエチレンイミンや未反応のグルタル
アルデヒドを除去して本発明の酵素固定用中空糸状膜を
得た。
The present invention is performed by backwashing the dense layer III (outer surface) of the hollow fiber membrane with pure water under a pressure of 1 kg/cA at room temperature to remove polyethyleneimine that is not retained in the porous layer and unreacted glutaraldehyde. A hollow fiber membrane for enzyme immobilization was obtained.

上記のようにして得た酵素固定用中空糸状膜に。To the hollow fiber membrane for enzyme immobilization obtained as above.

40℃にて多孔質層側、(・内面、、)から2.5=爪
量%のグルタルアルデヒド溶液(りん酸緩衝液pH7,
0)を0.1 kliJ/c4の加圧条件にて透過し、
ポリエチレンイミンのアミノ基を活性化した。同加圧条
件にて水洗したのち2.5Q/muのα−アミラーゼ溶
液(酢酸緩衝液pH6,0)1に前記加、圧下にて透過
し共有結合によって固定化を行ない、α−アミラーゼ固
定膜を得た。
At 40°C, from the porous layer side (inner surface), glutaraldehyde solution (phosphate buffer pH 7,
0) under pressure conditions of 0.1 kliJ/c4,
The amino groups of polyethyleneimine were activated. After washing with water under the same pressure conditions, the α-amylase-immobilized membrane was permeated with 2.5 Q/mu α-amylase solution (acetate buffer pH 6,0) 1 under the above-mentioned pressure and pressure, and immobilized by covalent bonding. I got it.

比較例1 架橋剤としてのグルタルアルデヒド溶液を透過せず、ポ
リエチレンイミンの架橋処理を行なわなかりた以外は実
施例1と同様の操作を行ない物理吸着法のみでα−アミ
ラーゼ固定膜を得た。
Comparative Example 1 An α-amylase-immobilized membrane was obtained using only the physical adsorption method by carrying out the same operation as in Example 1, except that the glutaraldehyde solution as a crosslinking agent was not permeated and the crosslinking treatment of polyethyleneimine was not performed.

実施例1及び比較例1にて得られたα−アミラーゼ固定
膜に1重量%の可溶性澱粉溶液(酢酸緩衝液PH6,0
)’e中空糸状膜の内面から0.5 kg/−の加圧下
で供給し、一定期開缶に緻密層側(外面)からの逆洗浄
を行ないながら40℃にて酵素反応を続け、透過液中の
還元糖の量を測定した。実施例1のα−アミラーゼ固定
膜を用いた結果を第1図に示し、比較例1の場合を第2
図に示した。
A 1% by weight soluble starch solution (acetate buffer pH 6,0
)'e The enzyme is supplied from the inner surface of the hollow fiber membrane under a pressure of 0.5 kg/-, and the enzymatic reaction is continued at 40°C while backwashing from the dense layer side (outer surface) after opening the can for a certain period of time. The amount of reducing sugar in the liquid was measured. The results using the α-amylase fixed membrane of Example 1 are shown in Figure 1, and the results of Comparative Example 1 are shown in Figure 2.
Shown in the figure.

実施例1の酵素固定膜を用いた場合は1回目の逆洗浄で
活性の低下が見られるが、これは未結合の酵素が洗浄に
よって流出した結果であり、以後活性の低下はほとんど
見られず、安定に酵素が固定されていることを示唆して
いる。
When the enzyme-immobilized membrane of Example 1 was used, a decrease in activity was observed in the first backwash, but this was the result of unbound enzyme being washed out, and little decrease in activity was observed thereafter. , suggesting that the enzyme is stably immobilized.

一方、比較例1の場合は、ポリエチレンイミンが架橋処
理されていないので逆洗性によって酵素の大半が流出し
て活性の大幅低下が見られた。
On the other hand, in the case of Comparative Example 1, since the polyethyleneimine was not cross-linked, most of the enzyme was washed out due to backwashing properties, resulting in a significant decrease in activity.

実施例2 実施例1と同じ中正糸状膜3000本を組み込んだ大型
モジュール(有効膜長1悔、有効膜内表面M5.2/)
f、作成し、実施例1と同様の操作を行なってα−アミ
ラーゼ固定膜を得之。
Example 2 Large module incorporating 3000 medium thread-like membranes as in Example 1 (effective membrane length 1 mm, effective membrane inner surface M5.2/)
f. Prepared and performed the same operation as in Example 1 to obtain an α-amylase fixed membrane.

比較例2 二重管壁ノズルの外管から実施例1にて用いた製膜溶液
を、75重量%のN−メチル−2−ピロリドン水溶液中
(25℃)に押し出すと共に、内管からは水を流出させ
て0次いで水中にて脱溶剤化、凝固させることによって
、内面に緻密11を有する内径9.55mm、外径1.
Omttr 、多孔質層の孔径0.2〜1μ鴨の中空糸
状膜(分画分子量約5万)t−得九。
Comparative Example 2 The membrane forming solution used in Example 1 was extruded from the outer pipe of the double wall nozzle into a 75% by weight N-methyl-2-pyrrolidone aqueous solution (25°C), and water was extruded from the inner pipe. By draining and then desolventizing and coagulating in water, a material with an inner diameter of 9.55 mm and an outer diameter of 1.
Omttr, porous layer pore size 0.2-1 μm duck hollow fiber membrane (molecular weight cut off about 50,000) t-toku9.

得られた中空糸状膜に実施例2と同様の操作を施こして
、大型モジュールを作成し、α−アミラーゼ固定膜を得
た。
The obtained hollow fiber membrane was subjected to the same operation as in Example 2 to prepare a large module and obtain an α-amylase fixed membrane.

比較例3 実施例1と同サイズの小型モジュールとした以外は比較
例3と同様にして、内面に緻密JΔを有する酵素固定用
中空糸状膜を用いたα−アミラーゼ固定膜を得た。
Comparative Example 3 An α-amylase-immobilized membrane using a hollow fiber membrane for enzyme immobilization having a dense JΔ on the inner surface was obtained in the same manner as in Comparative Example 3 except that a small module of the same size as in Example 1 was used.

実施例1.2および比較例2,3で得られた各々のα−
アミラーゼ固定膜について、1重量%のBJ溶性澱粉(
酢酸緩衝液pH6,0)を温度40℃。
Each α- obtained in Example 1.2 and Comparative Examples 2 and 3
For the amylase-immobilized membrane, 1% by weight of BJ-soluble starch (
acetate buffer pH 6.0) at a temperature of 40°C.

圧力0.5に9/cAの条件で中空糸状膜の多孔質I−
側、即ち、実施例1.2では中空糸状膜の内面、比較例
2,3では中空糸状膜の外面より供給して酵素反応を行
なった。1時間後の各々の酵素反応によって生成された
透過液中の還元糖の量を測定し。
Porous I- of hollow fiber membrane under pressure 0.5 and 9/cA conditions
The enzyme reaction was carried out by supplying from the inner surface of the hollow fiber membrane in Examples 1 and 2, and from the outer surface of the hollow fiber membrane in Comparative Examples 2 and 3. After 1 hour, the amount of reducing sugar in the permeate produced by each enzyme reaction was measured.

単位膜当りの酵素活性を求めた。実施例1のα−アミラ
ーゼ固定膜の活性を100とした場合の各々のα−アミ
ラーゼ固定膜の相対活性を第1表に示した。
Enzyme activity per unit membrane was determined. Table 1 shows the relative activity of each α-amylase immobilized membrane when the activity of the α-amylase immobilized membrane of Example 1 was set as 100.

第1表 第1表に示すように本発明の#素固定用中空糸状膜を用
いたα−アミラーゼ固定膜(実施例1.2)では、大型
モジュールの活性は、小型モジニールの活性と同等であ
り、モジュールを大型にすることによる反応効率の低下
は認められなかった。
Table 1 As shown in Table 1, in the α-amylase-immobilized membrane using the hollow fiber membrane for immobilizing #element of the present invention (Example 1.2), the activity of the large module was equivalent to that of the small module. There was no decrease in reaction efficiency due to increasing the size of the module.

これに対し、内面に緻密1771!を有するα−アミラ
ーゼ固定膜(比較例2,3)の場合、小型モジュールで
は1本発明を適用した151g素固定膜と同活性を示し
たが、大型モジュールでは活性が低下し5反応効率の犬
怖な低下が認められた。内面に緻密層を有する酵素固定
用中空糸状膜の場合、基質溶液は、中空糸状膜の外面よ
シ供給するため大型モジュールでは流れが不均一となり
、特に中室糸束の中心部では基質溶液が充分に供給され
ないことによるものと推定される。
On the other hand, the inner surface is dense 1771! In the case of α-amylase-immobilized membranes (Comparative Examples 2 and 3), the small module showed the same activity as the 151g element-immobilized membrane to which the present invention was applied, but the activity decreased in the large module, and the reaction efficiency was 5. A frightening decline was observed. In the case of a hollow fiber membrane for enzyme immobilization that has a dense layer on the inner surface, the substrate solution is supplied to the outer surface of the hollow fiber membrane, so the flow becomes uneven in large modules, and the substrate solution is particularly concentrated in the center of the middle fiber bundle. It is presumed that this is due to insufficient supply.

実施例3 実施例1と同じ中空糸状膜からなる小型モジュールの多
孔質1!1側(内面)から、0.1重量%のボリアリー
ルアミン水溶液(重量平均分子量10,000.1分子
当りの7ミノ基数約1,750)を0.2 kg/、4
の力日圧下にて約30分間透過させた。
Example 3 From the porous 1!1 side (inner surface) of a small module made of the same hollow fiber membrane as in Example 1, a 0.1% by weight polyarylamine aqueous solution (weight average molecular weight 10,000. 0.2 kg/, 4
It was allowed to permeate for about 30 minutes under a pressure of 100 ml.

さらに約51の水を用い、同圧下にて洗浄したのち、架
橋剤として0.1重量%のへキサメチレンジイソシアネ
ート水溶液を同加圧下にて透過し。
After washing under the same pressure with about 51% of water, a 0.1% by weight aqueous solution of hexamethylene diisocyanate as a crosslinking agent was permeated under the same pressure.

多孔質層に吸着、保持されているボリアリールアミンを
架橋した。
The polyarylamine adsorbed and retained in the porous layer was crosslinked.

次に逆洗性によって水洗?充分に行ない、多孔質I−に
保持されないボリアリールアミンや未反応の架橋剤を除
去して本発明の酵素固定用中空系状膜を得次。
Next, wash with water due to backwashing properties? The hollow membrane for enzyme immobilization of the present invention was then obtained by thoroughly removing the polyarylamine not retained in the porous I- and unreacted crosslinking agent.

上記のようにして得た酵素固定用中空糸状膜に。To the hollow fiber membrane for enzyme immobilization obtained as above.

40℃にて多孔質層側(内面)から2.5重量%のグル
タルアルデヒド溶液(りん酸緩#液pH7,0)0−1
’9/ct4の加圧下にて透過させ、ボリアリールアミ
ンの官能基を活性化させた。同加圧条件下にて水洗した
のち3mg/xiのプロテアーゼのりん酸緩衝液(pH
7,5)溶液を0.1kg/ct4の加圧下、4℃にて
透過し、共有結合によって固定化を行ない、プロテアー
ゼ固定膜を得た。
2.5% by weight glutaraldehyde solution (phosphoric acid solution pH 7.0) 0-1 from the porous layer side (inner surface) at 40°C
It was permeated under a pressure of '9/ct4 to activate the functional groups of the polyarylamine. After washing with water under the same pressurized conditions, 3 mg/xi of protease in phosphate buffer (pH
7,5) The solution was permeated at 4°C under a pressure of 0.1 kg/ct4, and immobilization was performed by covalent bonding to obtain a protease-immobilized membrane.

得られたプロテアーゼ固定膜を力ん酸緩衝液(pH7,
5)VCで充分に逆洗浄したのち、1重量%のカゼイン
溶液(りん酸緩衝液、pH7,5)を0.3kl?/d
の加圧下にて連続的に供給して酵素反応を行ない、透過
液中の蛋白質分解物をケルメール法。
The obtained protease-immobilized membrane was soaked in a strong acid buffer (pH 7,
5) After thorough backwashing with VC, add 0.3kl of 1% by weight casein solution (phosphate buffer, pH 7.5). /d
The enzymatic reaction is carried out by continuously supplying the enzyme under pressure, and the protein decomposition products in the permeate are collected using the Kermer method.

トリクロロ酢酸沈澱により測定した。透過液はトリクロ
ロ酢酸で沈澱を生じず、該液中の窒素量から算出して0
.8重量%の濃度の低分子ペプチドが連続して100時
間透過していることが判明し次。
Measured by trichloroacetic acid precipitation. The permeate does not precipitate with trichloroacetic acid, and is 0 as calculated from the amount of nitrogen in the solution.
.. It was found that a low molecular weight peptide at a concentration of 8% by weight was continuously transmitted for 100 hours.

実施例4 実施例1にて得られたα−アミラーゼ固定膜による酵素
反応を連続的に行ない、透過流束および生成グルコース
−at−測定した。fk>、反応条件等は逆洗浄を行な
わなかった以外、実施例1と同様であり、結果を第3図
に示した。
Example 4 Enzyme reactions using the α-amylase-immobilized membrane obtained in Example 1 were carried out continuously, and the permeation flux and produced glucose-at- were measured. fk>, reaction conditions, etc. were the same as in Example 1 except that backwashing was not performed, and the results are shown in FIG.

第3図から明らかなように1時間の経過と共に生成グル
コース量及び透過流束が徐々に低乍してくるので、生成
グルコース量が初期の約1/2に減少時に、以下に示す
方法によシ酵素固定膜の再生を行なった。
As is clear from Figure 3, the amount of glucose produced and the permeation flux gradually decrease with the passage of one hour, so when the amount of glucose produced decreases to about 1/2 of the initial amount, the method shown below is applied. The enzyme-immobilized membrane was regenerated.

酵素固定膜の外側から次亜塩素酸ナトリウム水浴液(有
効塩素濃度的600pPm)を圧力1.Okg/c4、
温度60℃の条件にて循環しながら約3時間逆洗浄し、
次に、0゜OINの希塩酸により上記と同条件にて逆洗
浄した後、充分水洗することにより、架#jポリエチレ
ンイ亙ン、酵素、および膜面汚染物質の洗浄、除去を行
なった。
A sodium hypochlorite water bath solution (available chlorine concentration: 600 pPm) was applied to the outside of the enzyme-immobilized membrane at a pressure of 1. Okg/c4,
Backwash for about 3 hours while circulating at a temperature of 60℃,
Next, the membrane was backwashed with dilute hydrochloric acid at 0° OIN under the same conditions as above, and then thoroughly washed with water to wash and remove the #j polyethylene ion, enzyme, and membrane surface contaminants.

上記操作によって洗浄した中空糸状膜に実施例1と同様
の操作によって本発明の酵素固定用中空糸状膜とし、グ
ルコアミラーゼを再固定化して酵素固定膜を再生した。
The hollow fiber membrane washed by the above procedure was subjected to the same procedure as in Example 1 to obtain a hollow fiber membrane for enzyme immobilization of the present invention, and glucoamylase was reimmobilized to regenerate the enzyme immobilized membrane.

再生しfc#素固定膜を用いて前記とIWlfllの酵
素反応を行なった結果、第3図に示すように、初期と同
様のグルコース生成量および透過流束が得られた、 以とのように1本発明の酵素固定用中空糸状膜は、固定
化したI#素が失活した場合でも繰り返し再生すること
によって固定化能を低下させることなく長期間菱用する
ことができるため、工業的規模の酵素反応にも充分実用
化しうるものである。
As a result of carrying out the enzymatic reaction of the above and IWlfll using the regenerated fc# immobilized membrane, as shown in Figure 3, the same glucose production amount and permeation flux as in the initial stage were obtained. 1. The hollow fiber membrane for enzyme immobilization of the present invention can be used for a long period of time without reducing the immobilization ability by repeatedly regenerating even if the immobilized I# element is deactivated, so it can be used on an industrial scale. It can be fully put to practical use in enzymatic reactions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1にて得られた酵素固定膜の活性t−測
測定た結果を示し、第2図は比較例1にて得られた酵素
固定膜の活性を測定した結果1−、示し。 第3図は実施例4にて再生処3Jlを行なった際のグル
コース量および透過流束の結果である。
FIG. 1 shows the results of the activity t-measurement of the enzyme-immobilized membrane obtained in Example 1, and FIG. 2 shows the results of measuring the activity of the enzyme-immobilized membrane obtained in Comparative Example 1. Show. FIG. 3 shows the results of the glucose amount and permeation flux when the regeneration treatment 3Jl was performed in Example 4.

Claims (8)

【特許請求の範囲】[Claims] (1)外面に緻密層を有する非対称限外濾過膜からなる
中空糸状膜の多孔質層に、少なくとも2個の官能基を有
する水溶性高分子が架橋状態にて保持されていることを
特徴とする酵素固定用中空糸状膜。
(1) A water-soluble polymer having at least two functional groups is held in a crosslinked state in the porous layer of a hollow fiber membrane consisting of an asymmetric ultrafiltration membrane having a dense layer on the outer surface. Hollow fiber membrane for enzyme immobilization.
(2)中空糸状膜が芳香族ポリスルホンからなる特許請
求の範囲第1項記載の酵素固定用中空糸状膜。
(2) The hollow fiber membrane for enzyme immobilization according to claim 1, wherein the hollow fiber membrane is made of aromatic polysulfone.
(3)水溶性高分子がポリエチレンイミンまたはポリア
リールアミンである特許請求の範囲第1項記載の酵素固
定用中空糸状膜。
(3) The hollow fiber membrane for enzyme immobilization according to claim 1, wherein the water-soluble polymer is polyethyleneimine or polyarylamine.
(4)水溶性高分子がジアルデヒドまたはジイソシアネ
ートにて架橋されている特許請求の範囲第1項記載の酵
素固定用中空糸状膜。
(4) The hollow fiber membrane for enzyme immobilization according to claim 1, wherein the water-soluble polymer is crosslinked with dialdehyde or diisocyanate.
(5)外面に緻密層を有する非対称限外濾過膜からなる
中空糸状膜の多孔質層側から、少なくとも2個の官能基
を有する水溶性高分子水溶液を含浸させて該水溶性高分
子を上記多孔質層に物理吸着させたのち、架橋剤にて前
記水溶性高分子を架橋することを特徴とする酵素固定用
中空糸状膜の製法。
(5) An aqueous solution of a water-soluble polymer having at least two functional groups is impregnated from the porous layer side of a hollow fiber membrane consisting of an asymmetric ultrafiltration membrane having a dense layer on the outer surface, and the water-soluble polymer is A method for producing a hollow fiber membrane for enzyme immobilization, which comprises physically adsorbing the water-soluble polymer onto a porous layer and then crosslinking the water-soluble polymer with a crosslinking agent.
(6)中空糸状膜が芳香族ポリスルホンからなる特許請
求の範囲第5項記載の酵素固定用中空糸状膜の製法。
(6) The method for producing a hollow fiber membrane for enzyme immobilization according to claim 5, wherein the hollow fiber membrane is made of aromatic polysulfone.
(7)水溶性高分子がポリエチレンイミンまたはポリア
リールアミンである特許請求の範囲第5項記載の酵素固
定用中空糸状膜の製法。
(7) The method for producing a hollow fiber membrane for enzyme immobilization according to claim 5, wherein the water-soluble polymer is polyethyleneimine or polyarylamine.
(8)架橋剤がジアルデヒドまたはジイソシアネートに
て架橋されている特許請求の範囲第5項記載の酵素固定
用中空糸状膜の製法。
(8) The method for producing a hollow fiber membrane for enzyme immobilization according to claim 5, wherein the crosslinking agent is crosslinked with dialdehyde or diisocyanate.
JP62080714A 1987-03-31 1987-03-31 Hollow fiber membrane for immobilization of enzyme and production thereof Granted JPS63245675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62080714A JPS63245675A (en) 1987-03-31 1987-03-31 Hollow fiber membrane for immobilization of enzyme and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62080714A JPS63245675A (en) 1987-03-31 1987-03-31 Hollow fiber membrane for immobilization of enzyme and production thereof

Publications (2)

Publication Number Publication Date
JPS63245675A true JPS63245675A (en) 1988-10-12
JPH0344756B2 JPH0344756B2 (en) 1991-07-08

Family

ID=13726011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62080714A Granted JPS63245675A (en) 1987-03-31 1987-03-31 Hollow fiber membrane for immobilization of enzyme and production thereof

Country Status (1)

Country Link
JP (1) JPS63245675A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013521984A (en) * 2010-03-23 2013-06-13 ハイパーブランチ メディカル テクノロジー, インコーポレイテッド Disposable syringe applicator for multi-component formulations and method of use thereof
CN114369591A (en) * 2021-12-29 2022-04-19 万华化学集团股份有限公司 Preparation method and application of composite immobilized enzyme material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013521984A (en) * 2010-03-23 2013-06-13 ハイパーブランチ メディカル テクノロジー, インコーポレイテッド Disposable syringe applicator for multi-component formulations and method of use thereof
CN114369591A (en) * 2021-12-29 2022-04-19 万华化学集团股份有限公司 Preparation method and application of composite immobilized enzyme material
CN114369591B (en) * 2021-12-29 2023-05-30 万华化学集团股份有限公司 Preparation method and application of composite immobilized enzyme material

Also Published As

Publication number Publication date
JPH0344756B2 (en) 1991-07-08

Similar Documents

Publication Publication Date Title
JPS6283885A (en) Immobilized enzyme membrane and production thereof
Bolto et al. Crosslinked poly (vinyl alcohol) membranes
GB2174641A (en) Non-adsorptive, semipermeable filtration membrane
Marpani et al. In situ formation of a biocatalytic alginate membrane by enhanced concentration polarization
Thirumavalavan et al. A short review on chitosan membrane for biomolecules immobilization
JP2860908B2 (en) Crosslinked cellulose composite semipermeable membrane for water treatment and method for producing the same
JP3421455B2 (en) Hydrophilic membrane and method for producing the same
JPS63245675A (en) Hollow fiber membrane for immobilization of enzyme and production thereof
JPS61268302A (en) Aromatic polysulfone composite semipermeable membrane and preparation thereof
JPH0372881A (en) Production of hollow fiber membrane for enzyme immobilization
JPH02219575A (en) Production of membrane for immobilizing enzyme
JPS63177790A (en) Regeneration of enzyme immobilizing membrane
JPH02245190A (en) Enzymatic reaction
JPS62296876A (en) Immobilized enzyme membrane
JPH01141587A (en) Method for enzymic reaction using immobilized enzyme membrane
JPH02109980A (en) Hollow fiber membrane for immobilizing enzyme
JPH04200622A (en) Treatment of composite semipermeable membrane
JPS61111687A (en) Immobilized enzyme membrane and preparation thereof
JPH02109986A (en) Method and apparatus for carrying out enzymic reaction using enzyme immobilized membrane
JPH0566108B2 (en)
JPH02128650A (en) Production of tea using filtration membrane
JPS6344885A (en) Enzyme immobilized dynamic membrane
JPS6365699B2 (en)
JPH0313869B2 (en)
JPH02195894A (en) Production of galacto-oligosaccharide