JPS6324552A - Nickel oxide-hydrogen secondary cell - Google Patents

Nickel oxide-hydrogen secondary cell

Info

Publication number
JPS6324552A
JPS6324552A JP61166648A JP16664886A JPS6324552A JP S6324552 A JPS6324552 A JP S6324552A JP 61166648 A JP61166648 A JP 61166648A JP 16664886 A JP16664886 A JP 16664886A JP S6324552 A JPS6324552 A JP S6324552A
Authority
JP
Japan
Prior art keywords
hydrogen
electrode
storage alloy
alloy
nickel oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61166648A
Other languages
Japanese (ja)
Inventor
Toshiaki Nakamura
中村 敏昭
Shinji Tsuruta
鶴田 慎司
Kiyoshi Mitsuyasu
光安 清志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61166648A priority Critical patent/JPS6324552A/en
Publication of JPS6324552A publication Critical patent/JPS6324552A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the self-discharge property of a nickel oxidehydrogen secondary cell, and to keep the charged electric quantity stable for a long time, by applying a hydrogen absorption alloy electrode or an electrode consisting of hydrogen absorption alloy powder with a coverage of a vinyl polymer for a negative electrode. CONSTITUTION:After a hydrogen absorption alloy is placed in a pressure tank and depressurized and degased at about 60 deg.C for about one hour, the alloy is cooled immediately up to about 10 deg.C, and hydrogen is introduced by pressure. After pressurized by the hydrogen for about two hours, the gas is exhausted, and the alloy is depressurized and degased for about three hours while heating again up to about 90 deg.C. To the screened powder of the micropowdered alloy, after giving an activation treatment in such a way, a polytetrafluoride ethylene PTFE powder, which is a vinylpolymer formed by polymerizing a vinyl monomer, is added, kneaded, and made into a sheet form by a roller. The resulting product is superposed on a nickel net, pressed at a specific pressure, and a hydrogen absorption alloy electrode is produced to be used as a negative electrode. Therefore, a nickel oxide-hydrogen secondary cell with an excellent self-discharge rate and a long period preservation ability can be acquired.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、ニッケル酸化物・水素二次電池の電極に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to an electrode for a nickel oxide/hydrogen secondary battery.

(従来の技術) 水素を可逆的に吸蔵・放出しうるいわゆる水素吸蔵合金
を用いて作成した二次電池の負極は、従来のニッケル・
カドミウム二次電池や鉛二次電池に使用されているカド
ミウム負極や鉛負極1ご比べて、単位重量当りのエネル
ギー密度が大きく、また、有害金属も含まない、という
長所がある。
(Prior technology) The negative electrode of a secondary battery made using a so-called hydrogen storage alloy that can reversibly absorb and release hydrogen is a conventional nickel-based negative electrode.
Compared to the cadmium negative electrode and lead negative electrode 1 used in cadmium secondary batteries and lead secondary batteries, it has the advantage of having a higher energy density per unit weight and not containing any harmful metals.

しかし、この水素吸蔵合金電極は充電状態では、わずか
ながら分子状の水素を放出する。すなわち下に示す電極
反応 の他に、平衡反応 M−HドーM + −H,(2) も同時に進行する。なお、上記の2つの式中でMは水素
吸蔵合金を、M−Hは水素吸蔵合金が水素を吸蔵した状
態を示す。通常(2)式で発生する分子状水素は気体と
ならず電極と接した電解液へ、ごくわずか溶屏するのみ
であるが、この溶解水素は正極に達して、これを還元(
放電)する。つまり従来のニッケル・カドミウム二次電
池と比較して、ニッケル酸化物・水素二次電池の自己放
電特性が劣ることは否めない。
However, this hydrogen storage alloy electrode releases a small amount of molecular hydrogen in a charged state. That is, in addition to the electrode reaction shown below, the equilibrium reaction M-H (M + -H, (2)) also proceeds simultaneously. In the above two formulas, M represents a hydrogen storage alloy, and MH represents a state in which the hydrogen storage alloy stores hydrogen. Normally, the molecular hydrogen generated in equation (2) does not become a gas and only a small amount dissolves into the electrolyte in contact with the electrode, but this dissolved hydrogen reaches the positive electrode and reduces it (
discharge). In other words, it cannot be denied that nickel oxide/hydrogen secondary batteries have inferior self-discharge characteristics compared to conventional nickel/cadmium secondary batteries.

(本発明が解決しようとする問題点) 本発明は上記したようなニッケル酸化物・水素二次電池
の自己放電特性を改善し、充電電気量を長期に恒って安
定に保ち得るようなニッケル酸化物・水素二次電池を提
供することを目的とする。
(Problems to be Solved by the Present Invention) The present invention improves the self-discharge characteristics of the nickel oxide/hydrogen secondary battery as described above, and uses nickel oxide that can maintain a stable charge amount over a long period of time. The purpose is to provide oxide/hydrogen secondary batteries.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段と作用)本発明のニッケ
ル酸化物・水素二次電池は、水素吸蔵合金粉末の表面、
ないしは水素吸蔵合金を主成分とする負極の表面が、水
媒体中で、該水素吸蔵合金粉末ないしは水素吸蔵合金を
主成分とする負極の存在下でビニルモノマーの重合を行
なうことによりオ得られたビニルポリマーの被覆を有1
することを特徴とする。
(Means and effects for solving the problems) The nickel oxide/hydrogen secondary battery of the present invention has a surface of hydrogen storage alloy powder,
Alternatively, the surface of a negative electrode containing a hydrogen storage alloy as a main component is obtained by polymerizing a vinyl monomer in an aqueous medium in the presence of the hydrogen storage alloy powder or a negative electrode containing a hydrogen storage alloy as a main component. Has vinyl polymer coating1
It is characterized by

すなわち本発明は、ニッケル酸化物電極を正極とし、水
素吸蔵合金電極を負極とするニッケル酸化物・水素二次
電池において、 前記水素吸蔵合金電極また、は前記水素吸蔵合金電極を
形成する水素吸蔵合金粉末の表面でビニルモノマーを重
合して形成したとニルポリマーよりなる被覆を有した水
素吸蔵合金電極または水素吸蔵合金粉末よりなる電極を
、負極に用いたことを特徴とするニッケル酸化物・水素
二次電池である。
That is, the present invention provides a nickel oxide/hydrogen secondary battery having a nickel oxide electrode as a positive electrode and a hydrogen storage alloy electrode as a negative electrode, which includes: the hydrogen storage alloy electrode or the hydrogen storage alloy forming the hydrogen storage alloy electrode; A nickel oxide/hydrogen secondary, characterized in that a hydrogen storage alloy electrode having a coating made of a vinyl polymer formed by polymerizing a vinyl monomer on the surface of the powder or an electrode made of a hydrogen storage alloy powder is used as a negative electrode. It's a battery.

本発明に使用されるビニルポリマーは、モノマーユニッ
トが次式で示されるポリマーである。
The vinyl polymer used in the present invention is a polymer whose monomer units are represented by the following formula.

すなわち、(CH,== CR’R” ](式中、R1
、R2はそれぞれ同じであっても異なっていてもヨく水
素原子、ハロゲン元素、二) IJル基、炭素数1〜6
のアルキル基を含むアルコキシ基又は酸基の群から選ば
れる。ただし、R1とR2が共に水素原子の場合及びR
1とR2が同じであって立体障害を起こす場合は除く。
That is, (CH,==CR'R''] (where R1
, R2 may be the same or different, hydrogen atom, halogen element, 2) IJ group, carbon number 1-6
selected from the group of alkoxy groups including alkyl groups or acid groups. However, if R1 and R2 are both hydrogen atoms and R
Except when 1 and R2 are the same and cause steric hindrance.

)で示されるモノマーユニットである。) is a monomer unit shown by.

しかしながら、上記モノマーユニットにおいて、几1と
R2が共に水素原子の場合及びR1と几2が共にアルコ
キシ基又は酸基であり側基が立体干渉を起こすような組
合わせの場合は除く。このような場合は、亜鉛又は亜鉛
合金に付着する活性基が生成されないので負極活物質の
表面を被覆することが困難となる。しかしながら、R1
とR2が共にアルコキシ基又は酸基であっても側基が立
体干渉を起こさなければ被覆が可能となる。
However, in the above monomer unit, cases in which both R1 and R2 are hydrogen atoms, and combinations in which R1 and R2 are both alkoxy groups or acid groups and the side groups cause steric interference are excluded. In such a case, active groups adhering to zinc or zinc alloy are not generated, making it difficult to coat the surface of the negative electrode active material. However, R1
Even if R2 and R2 are both alkoxy groups or acid groups, coating is possible if the side groups do not cause steric interference.

上式のR1,R2と置換可能なハロゲン元素としては、
例えば、塩素、フッ素、臭素、ヨウ素である。
As the halogen element that can be substituted for R1 and R2 in the above formula,
For example, chlorine, fluorine, bromine, and iodine.

同様に、アルコキシ基としては、例えば、メトキシ基、
エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキ
シ基、ヘキシルオキシ基である。
Similarly, examples of alkoxy groups include methoxy groups,
These are ethoxy group, propoxy group, butoxy group, pentyloxy group, and hexyloxy group.

酸基さしては、例えば、アセトキシ基、プロピオン酸基
などがある。
Examples of acid groups include acetoxy groups and propionic acid groups.

上記のような各種の基、元素を几1.R2に適用した具
体的なモノマーユニットとしては、例えば、ハロゲン元
素を含む場合では、[CH,=CH−Ct〕ニリデン、
  CCH,=CH−B r ]で示される臭化ビニル
などがあげられ、二I−’Jル基を含む場合では、(C
H,==CH−CN :lで示されるアクリロニトリル
(またはシアン化ビニル)などがあげられる。
1. Various groups and elements as mentioned above. Specific monomer units applied to R2 include, for example, when containing a halogen element, [CH,=CH-Ct]nylidene,
Examples include vinyl bromide represented by CCH,=CH-Br], and in cases containing a diI-'J group, (C
Examples include acrylonitrile (or vinyl cyanide) represented by H,==CH-CN:l.

そして、アルコキシ基を含む場合としては、例えば、メ
チルビニルエーテル(CH,=CH−0−CH,)、エ
チルビニルエーテル(CH,=CH−0−C!H,)、
n−ブチルビニルエーテル(CH2=CH−0−(CH
2)。
Examples of cases containing an alkoxy group include methyl vinyl ether (CH,=CH-0-CH,), ethyl vinyl ether (CH,=CH-0-C!H,),
n-Butyl vinyl ether (CH2=CH-0-(CH
2).

CH3)、インブチルビニルエーテル(CH2=CH−
0−C(CH,)3 )などがあげられる。
CH3), inbutyl vinyl ether (CH2=CH-
0-C(CH,)3), etc.

酸基を含む場合としては、例えば、 酸ビニル、[CH,=CH−0−凸−C,H,]で示さ
れる安息香酸ビニルなどがあげられる。
Examples of the case containing an acid group include vinyl acid and vinyl benzoate represented by [CH,=CH-0-convex-C,H,].

本発明で使用されるビニルポリマーは、上記したモノマ
ー1種からなる場合のほか、上記したモノマー2種以上
からなる共重合体も含む。このような共重合体としては
、例えば、塩化ビニル−酢酸ビニル共重合体、塩化ビニ
ル−塩化ビニリデン共重合体、アクリロニトリル−塩化
ビニル共重合体などがあげられる。
The vinyl polymer used in the present invention includes not only one type of monomer described above but also a copolymer consisting of two or more types of monomers described above. Examples of such copolymers include vinyl chloride-vinyl acetate copolymers, vinyl chloride-vinylidene chloride copolymers, and acrylonitrile-vinyl chloride copolymers.

上記したビニルポリマーフィルムは、苛性アルカリ水溶
液中で溶解せず安定でなければならないと同時に電池の
使用時における放電反応を阻害するものであってはなら
ない。
The vinyl polymer film described above must be stable and not dissolve in an aqueous caustic solution, and at the same time must not inhibit the discharge reaction during use of the battery.

従って、水素吸蔵合金、または水素吸蔵合金を主成分と
する負極を該ビニルポリマーで被覆する際には、ビニル
ポリマーフィルムの厚さを0.01〜70μmの範囲好
ましくは0.02〜20μmの範囲にする。
Therefore, when coating a hydrogen storage alloy or a negative electrode mainly composed of a hydrogen storage alloy with the vinyl polymer, the thickness of the vinyl polymer film should be in the range of 0.01 to 70 μm, preferably in the range of 0.02 to 20 μm. Make it.

フィルムの厚みが0.1μm未満の場合には、前記(2
)式で発生する水素がフィルムを通して電解液に溶解す
る程度が大きくなり、また、70μmを超えると電池使
用時にも放電反応が阻害されて好ましくない。
When the thickness of the film is less than 0.1 μm, the above (2)
) The extent to which the hydrogen generated in the formula is dissolved into the electrolytic solution through the film becomes large, and if the thickness exceeds 70 μm, the discharge reaction is inhibited even when the battery is used, which is not preferable.

ビニルポリマーを上記した厚さで水素吸蔵合金ないしは
、水素吸蔵合金を主成分とする負極に被覆する方法とし
て、本発明の負極活物質の存在下で水媒体中でビニルモ
ノマーの重合を用いる。これより水素吸蔵合金、ないし
は水素吸蔵合金を主成分とする負極の表面に均一に被覆
を施すことができる。
As a method for coating a hydrogen storage alloy or a negative electrode mainly composed of a hydrogen storage alloy with a vinyl polymer to the above-mentioned thickness, polymerization of a vinyl monomer in an aqueous medium in the presence of the negative electrode active material of the present invention is used. This makes it possible to uniformly coat the surface of the hydrogen storage alloy or the negative electrode whose main component is the hydrogen storage alloy.

その具体的な方法としては、例えば以下に述べるような
方法が採用される。まず攪拌装置を備えた丸底フラスコ
に電極もしくは電極材料、水、上記したビニルポリマー
のモノマーを加え、35〜80℃、好ましくは40〜7
0℃、さらに好ましくは45〜60℃に保ったのち、必
要な場合にはごく微量の反応開始剤(主として亜硫酸イ
オンを生成する物質)を添加し20分〜5時間程度攪拌
しながらビニルモノマーを重合させる。
As a specific method, for example, the following method is adopted. First, add the electrode or electrode material, water, and the above-mentioned vinyl polymer monomer to a round-bottomed flask equipped with a stirring device, and heat the mixture to 35-80°C, preferably 40-70°C.
After maintaining the temperature at 0°C, more preferably at 45 to 60°C, add a very small amount of a reaction initiator (mainly a substance that generates sulfite ions) if necessary, and stir the vinyl monomer for about 20 minutes to 5 hours. Polymerize.

反応終了後、フラスコ底部に沈降した試料を分別し、水
洗し、さらに必要な場合にはエタノール、アセトン等で
洗浄した後、空気中で、好ましくは真空中ないしは窒素
、アルゴン等の不活性雰囲気中で乾燥(降ましくは5〜
120℃で)する。こうして得られた被覆の施された電
極もしくは電極材料を走査電子顕微鏡などで観察すると
、その表面がビニルポリマーで均一に被覆されカプセル
化されていることが認められた。
After the reaction is complete, the sample settled at the bottom of the flask is separated, washed with water, and if necessary, washed with ethanol, acetone, etc., and then placed in air, preferably in vacuum or in an inert atmosphere such as nitrogen or argon. Dry (preferably 5~
) at 120°C. When the coated electrode or electrode material thus obtained was observed using a scanning electron microscope, it was found that the surface was uniformly coated and encapsulated with vinyl polymer.

なお、ニッケル酸化物・水素二次電池の自己放電は、基
本的には、前述したように、水素吸蔵合金を主成分とす
る負極から脱落した水素が、ニッケル酸化物電極に達し
、これを還元することによって進行するものである。し
たがって本発明で使用するビニルポリマーは、充放電を
休止している期間中、負極表面からの水素の脱離反応を
抑制する働きをしているものと考えられる。
As mentioned above, self-discharge in nickel oxide/hydrogen secondary batteries basically occurs when hydrogen that falls off from the negative electrode, which is mainly composed of a hydrogen storage alloy, reaches the nickel oxide electrode and is reduced. It progresses by doing. Therefore, it is considered that the vinyl polymer used in the present invention functions to suppress the hydrogen desorption reaction from the negative electrode surface during the period when charging and discharging are suspended.

これに対し、本発明者らが既に出願したビニルポリマー
をアルカリ電池中の活物質金属の腐食抑制に用いる発明
(特願昭60−82587号明細書)で記載したのは、
該ビニルポリマーを添加することによってアルカリ溶液
中で卑金属が酸化されることを防止することを目的とし
たものであって、本発明のように、水素が反応媒体とし
て関与する反応とは全く別異のものである。
On the other hand, what was described in the invention (Japanese Patent Application No. 82587/1987) in which a vinyl polymer is used to inhibit corrosion of active material metal in an alkaline battery, which the present inventors have already applied for, is as follows.
The purpose of this reaction is to prevent base metals from being oxidized in an alkaline solution by adding the vinyl polymer, and this reaction is completely different from a reaction in which hydrogen is involved as a reaction medium as in the present invention. belongs to.

(実施例) まず、実施例および比較例で用いる電極系を以下の手順
で作成した。
(Example) First, electrode systems used in Examples and Comparative Examples were created according to the following procedure.

水素吸蔵合金L aN ’ 4.7Ato3を耐圧タン
ク中に入れ60℃で1時間減圧脱気したのち、直ちに1
0℃に冷却して30 kg/mAの水素を圧入した。2
時間水素で加圧したのち、これを排気して再び90℃ま
で加熱しながら3時間減圧脱気を行なった。以上の活性
化処理を施こし、微粉化した合金のうち200メツシュ
C目開き寸法74μm)のふるいを通過した粉末に4.
0重量%のPTFB粉末を添加し、混練したのち、ロー
ラーを用いて厚さ0.5 mのシート状にした。これを
1洲に切断し、線径0.15mm、40メツシユのニッ
ケルネットに重ねて、soo#/dの圧力で圧着し、水
素吸蔵合金電極を作成した。
Hydrogen storage alloy L aN ' 4.7 Ato3 was placed in a pressure tank and degassed under reduced pressure at 60°C for 1 hour, and then immediately
It was cooled to 0°C and hydrogen was injected at 30 kg/mA. 2
After pressurizing with hydrogen for an hour, it was evacuated and degassed under reduced pressure for 3 hours while heating to 90°C. After performing the above activation treatment, the powder that passed through a 200 mesh C sieve (opening size: 74 μm) out of the finely powdered alloy was subjected to 4.
After adding 0% by weight of PTFB powder and kneading, it was formed into a sheet with a thickness of 0.5 m using a roller. This was cut into one piece, stacked on a 40-mesh nickel net with a wire diameter of 0.15 mm, and crimped at a pressure of soo#/d to produce a hydrogen storage alloy electrode.

この電極をポリプロピレン製布織布(厚さ0.2■)を
介してニッケル酸化物電極ではさみ、トルク0.5 #
αのネジ2本で固定して電極系を構成した。以下これを
基本電極系と呼ぶ。
This electrode was sandwiched between nickel oxide electrodes through a polypropylene cloth (thickness: 0.2 mm), and a torque of 0.5 #
An electrode system was constructed by fixing it with two α screws. Hereinafter, this will be referred to as the basic electrode system.

実施例1〜4 攪拌器を備えた、容量1tの丸底フラスコに、前記の2
00メツシユの篩を通過した水素吸蔵合金粉末20g、
水500mt1第1表に示したビニルモノマーを加え、
35〜60℃に保ったのち、必要に応じて反応開始剤(
主として亜硫酸水素イオンを生成する物質、例えば亜硫
酸)を添加し、約3時間攪拌しながらビニルモノマーを
重合させ、水素吸蔵合金粉末に厚さ約1μInのビニル
ポリマーを被覆した。この粉末を水洗乾燥後、走査形電
子顕微鏡により観察し、該水素吸蔵合金粉末の表面がビ
ニルポリマーにより均一にカプセル化されていることを
確認した。
Examples 1 to 4 Into a 1 t capacity round bottom flask equipped with a stirrer, the above 2
20g of hydrogen storage alloy powder passed through a 00 mesh sieve,
Add 500 mt of water and the vinyl monomer shown in Table 1,
After maintaining the temperature at 35 to 60°C, add a reaction initiator (
A substance that mainly generates bisulfite ions, such as sulfite, was added, and the vinyl monomer was polymerized while stirring for about 3 hours, thereby coating the hydrogen storage alloy powder with a vinyl polymer having a thickness of about 1 μIn. After washing and drying this powder, it was observed using a scanning electron microscope, and it was confirmed that the surface of the hydrogen storage alloy powder was uniformly encapsulated with the vinyl polymer.

上記の、表面がビニルポリマーで被覆された水素吸蔵合
金に4.0重量%のPTFE粉末を添加し、混練し以下
基本電極系の場合と全く同様にして、水素吸蔵合金電極
を作成し、これを用いて本発明に係る電極系を構成した
Add 4.0% by weight of PTFE powder to the above hydrogen storage alloy whose surface is coated with vinyl polymer, knead it, and then proceed in exactly the same manner as in the case of the basic electrode system to create a hydrogen storage alloy electrode. An electrode system according to the present invention was constructed using the following.

実施例5〜8 前述した基本電極系に用いたものと全く同様にして水素
吸着合金電極を作成し、攪拌器を備えた容i1tの丸底
フラスコ内に、水500mt、第1表に示したビニルモ
ノマーと共−に加え、35〜60℃に保ったのち、必要
に応じて反応開始剤(主として亜硫酸水素イオンを生成
する物質、例えば亜硫酸)を添加し、約3時間攪拌しな
がらビニルモノマーを重合させ、該水素吸着合金電極の
表面に厚さ約1μmのビニルポリマーを被覆した。
Examples 5 to 8 Hydrogen adsorption alloy electrodes were prepared in exactly the same manner as those used for the basic electrode system described above, and 500 m of water and the amount shown in Table 1 were placed in a round bottom flask with a capacity of 1 t equipped with a stirrer. After adding the vinyl monomer together with the vinyl monomer and keeping it at 35 to 60°C, add a reaction initiator (mainly a substance that generates hydrogen sulfite ions, e.g. sulfite) as necessary, and add the vinyl monomer while stirring for about 3 hours. The surface of the hydrogen adsorption alloy electrode was coated with a vinyl polymer having a thickness of about 1 μm.

上記水素吸蔵合金電極を用い、その他は基本電極系と全
く同様にして電極系を構成した。
An electrode system was constructed in exactly the same manner as the basic electrode system except for using the above hydrogen storage alloy electrode.

以上の電極系に対し、充電: 66mAX30分、放電
:33mAでIVまで、休止時間10分の条件で充放電
を士数回繰り返したのち、充電状態で30℃、95%R
Hの雰囲気に保存した。2週間経過後に、この電池を2
0℃の雰囲気中で放電し、この時の容量と保存前の容量
との比較から次式により自己放電率を算出した。
For the above electrode system, charge: 66 mA for 30 minutes, discharge: 33 mA to IV, and after repeating charging and discharging several times under the conditions of resting for 10 minutes, the battery was heated at 30°C and 95% R in the charged state.
It was stored in an atmosphere of H. After 2 weeks, replace this battery with 2
The battery was discharged in an atmosphere at 0° C., and the self-discharge rate was calculated by the following formula from a comparison between the capacity at this time and the capacity before storage.

得られたそれぞれの実施例の電極系の自己放電率を基本
電極系の自己放電率と比較して相対自己放電率を算出し
表中に併記した。
The self-discharge rate of the obtained electrode system of each example was compared with the self-discharge rate of the basic electrode system to calculate the relative self-discharge rate, which is also listed in the table.

第  1  表 〔発明の効果〕 以上の結果から明らかなように、本発明のニッケル酸化
物・水素二次電池は自己放電率に優れ、長期に恒る保存
が可能な二次電池であり、工業的価値が極めて大きいも
のであると考える。
Table 1 [Effects of the Invention] As is clear from the above results, the nickel oxide/hydrogen secondary battery of the present invention has an excellent self-discharge rate, can be stored for a long time, and is suitable for industrial use. We believe that this is of extremely great value.

代理人 弁理士 則 近 憲 佑 同    竹 花 喜久男Agent: Patent Attorney Noriyuki Chika Same Bamboo Flower Kikuo

Claims (3)

【特許請求の範囲】[Claims] (1)ニッケル酸化物電極を正極とし、水素吸蔵合金電
極を負極とするニッケル酸化物・水素二次電池において
、 前記水素吸蔵合金電極または前記水素吸蔵合金電極を形
成する水素吸蔵合金粉末の表面でビニルモノマーを重合
して形成したビニルポリマーよりなる被覆を有した水素
吸蔵合金電極または水素吸蔵合金粉末よりなる電極を、
負極に用いたことを特徴とするニッケル酸化物・水素二
次電池。
(1) In a nickel oxide/hydrogen secondary battery having a nickel oxide electrode as a positive electrode and a hydrogen storage alloy electrode as a negative electrode, on the surface of the hydrogen storage alloy electrode or the hydrogen storage alloy powder forming the hydrogen storage alloy electrode. A hydrogen storage alloy electrode having a coating made of a vinyl polymer formed by polymerizing a vinyl monomer or an electrode made of a hydrogen storage alloy powder,
A nickel oxide/hydrogen secondary battery characterized by its use as a negative electrode.
(2)ビニルポリマーの厚さが、0.01乃至70μm
であることを特徴とする特許請求の範囲第1項記載のニ
ッケル酸化物、水素二次電池。
(2) The thickness of the vinyl polymer is 0.01 to 70 μm
The nickel oxide, hydrogen secondary battery according to claim 1, characterized in that:
(3)ビニルポリマーのモノマーユニットが、次式〔C
H_2=CR^1R^2〕 (式中、R^1、R^2はそれぞれ同じであっても異な
っていてもよく、水素原子、ハロゲン元素、ニトリル基
、炭素数1〜6のアルキル基を含むアルコキシ基または
酸基の群から選ばれる。ただし、R^1、R^2が共に
水素原子の場合及びR^1とR^2が同じであって、立
体障害を起こす場合は除く。)で示されることを特徴と
する特許請求の範囲第1項記載のニッケル酸化物・水素
二次電池。
(3) The vinyl polymer monomer unit has the following formula [C
H_2=CR^1R^2] (In the formula, R^1 and R^2 may be the same or different, and represent a hydrogen atom, a halogen element, a nitrile group, or an alkyl group having 1 to 6 carbon atoms. selected from the group containing alkoxy groups or acid groups.However, cases where both R^1 and R^2 are hydrogen atoms, or cases where R^1 and R^2 are the same and cause steric hindrance are excluded.) The nickel oxide/hydrogen secondary battery according to claim 1, characterized in that:
JP61166648A 1986-07-17 1986-07-17 Nickel oxide-hydrogen secondary cell Pending JPS6324552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61166648A JPS6324552A (en) 1986-07-17 1986-07-17 Nickel oxide-hydrogen secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61166648A JPS6324552A (en) 1986-07-17 1986-07-17 Nickel oxide-hydrogen secondary cell

Publications (1)

Publication Number Publication Date
JPS6324552A true JPS6324552A (en) 1988-02-01

Family

ID=15835164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61166648A Pending JPS6324552A (en) 1986-07-17 1986-07-17 Nickel oxide-hydrogen secondary cell

Country Status (1)

Country Link
JP (1) JPS6324552A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1168470A1 (en) * 2000-06-30 2002-01-02 SANYO ELECTRIC Co., Ltd. Hydrogen absorbing alloy electrode, method of fabricating the same and alkaline storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1168470A1 (en) * 2000-06-30 2002-01-02 SANYO ELECTRIC Co., Ltd. Hydrogen absorbing alloy electrode, method of fabricating the same and alkaline storage battery

Similar Documents

Publication Publication Date Title
JP4692693B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery
TW200828651A (en) Gel-type polymer electrolyte precursor and rechargeable cells employing the same
US4245016A (en) Electrode coating composed of copolymers derived from diacetone acrylamide
JPH0636754A (en) Secondary battery
JP4041670B2 (en) Gel electrolyte and non-aqueous electrolyte battery using the same
JP2007122902A (en) Manufacturing method of lithium ion battery
CN112321840B (en) Metal organic framework material and preparation method and application thereof
JPS6324552A (en) Nickel oxide-hydrogen secondary cell
KR102561871B1 (en) Electrode mixture, method for manufacturing electrode mixture, electrode structure, method for manufacturing electrode structure, and secondary battery
US4530890A (en) Electrode coating composed of copolymers derived from diacetone acrylamide
JPH10195310A (en) Latex, its preparation and its use
US4405700A (en) Electrode coating composed of copolymers derived from diacetone acrylamide
US4407913A (en) Electrode coating composed of copolymers derived from diacetone acrylamide
JP2018115291A (en) Polymer particle
JPS61163569A (en) Metal oxide-hydrogen secondary cell
JP5999438B2 (en) Emulsion containing silicon alone, microcapsules and active material particles, and production method thereof
JPS6313280A (en) Nickel oxide-hydrogen secondary battery
JPS62290759A (en) Composite material of metal complex and electrically conductive high-molecular material and production thereof
JP2014200711A (en) Polysilane derivative-containing emulsion, polysilane derivative-containing microcapsule, and silicon simple substance-containing active material particle, as well as production method of them
JPH02281560A (en) Nickel-hydrogen alkaline storage battery
US4298667A (en) Electrode coating composed of copolymers derived from diacetone acrylamide
JPH03129669A (en) Manufacture of hydrogen storage electrode
JPH10284127A (en) Lithium battery
JPS6043628B2 (en) Method for manufacturing electrodes for alkaline batteries
JPH02234355A (en) Manufacture of hydrogen absorbing electrode