JPS632453B2 - - Google Patents

Info

Publication number
JPS632453B2
JPS632453B2 JP56073738A JP7373881A JPS632453B2 JP S632453 B2 JPS632453 B2 JP S632453B2 JP 56073738 A JP56073738 A JP 56073738A JP 7373881 A JP7373881 A JP 7373881A JP S632453 B2 JPS632453 B2 JP S632453B2
Authority
JP
Japan
Prior art keywords
operational amplifier
circuit
input terminal
inverting input
zero
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56073738A
Other languages
Japanese (ja)
Other versions
JPS57189028A (en
Inventor
Yoshihiro Oono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7373881A priority Critical patent/JPS57189028A/en
Publication of JPS57189028A publication Critical patent/JPS57189028A/en
Publication of JPS632453B2 publication Critical patent/JPS632453B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【発明の詳細な説明】 本発明は、シリコン光電池等の光電変換素子を
用いて閃光あるいは定常光の測定を行なう場合の
光電流積分回路よりなるオートゼロ測光回路に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an auto-zero photometry circuit comprising a photocurrent integration circuit when measuring flash light or steady light using a photoelectric conversion element such as a silicon photovoltaic cell.

シリコン光電池やセレン光電池等の光電変換素
子を用いて測光を行なう場合、光電流出力の直線
性を保つため、素子の出力電圧を0〔V〕付近に
保持しながら出力電流を取り出す必要があり、一
般には演算増幅器を用いて電流−電圧変換を行な
い、特に閃光を測定する場合は演算増幅器で積分
器を構成して光量の測定を行なうのが通例であ
る。
When performing photometry using a photoelectric conversion element such as a silicon photovoltaic cell or a selenium photovoltaic cell, in order to maintain the linearity of the photocurrent output, it is necessary to extract the output current while maintaining the output voltage of the element near 0 [V]. Generally, an operational amplifier is used to perform current-to-voltage conversion, and particularly when measuring flash light, it is customary to construct an integrator using the operational amplifier to measure the amount of light.

演算増幅器を測光に用いる場合、測定誤差を生
ずる一因としてゼロ点ドリフトの問題がある。シ
リコン光電池のように光起電力形の光電変換素子
を上述のようにゼロバイアスで使用する場合は素
子自身の暗電流をゼロとみなすことができるの
で、演算増幅器が生ずるゼロ点ドリフトを除去で
きればゼロ調整の必要のない高安定な回路が実現
できる。
When an operational amplifier is used for photometry, one of the causes of measurement errors is the problem of zero point drift. When using a photovoltaic photoelectric conversion element such as a silicon photovoltaic cell with zero bias as mentioned above, the dark current of the element itself can be considered zero, so if the zero point drift caused by the operational amplifier can be removed, the dark current can be zero. A highly stable circuit that does not require adjustment can be realized.

演算増幅器のゼロ点ドリフトは、オフセツト電
圧と入力バイアス電流の変動によつて生ずるもの
であり、微弱光を測定する場合は両方の特性が大
きく影響する。しかしながら、この両方の特性を
充分満足するような演算増幅器を得ることはきわ
めて困難であり、ここに本発明の必要性がある。
The zero point drift of an operational amplifier is caused by variations in the offset voltage and input bias current, and both characteristics have a large effect when measuring weak light. However, it is extremely difficult to obtain an operational amplifier that fully satisfies both of these characteristics, and this is where the need for the present invention lies.

一般に、ゼロ点ドリフトの補正方法としては、
測定前に入力を切り離してゼロ調整回路の可変抵
抗を調節する方法、あるいは、ドリフト分をあら
かじめ測定しておき、後で測定値から差し引く方
法などがよく採用されている。しかしながら、こ
れらの方法では、多チヤンネル同時測定や多数の
サンプルの測定においては非常に繁雑な操作とな
り、ややもすると操作ミス等で測定誤差を生ずる
恐れもある。また、最近では、スイツチ素子(ス
イツチ、リレー、アナログスイツチ回路など)を
用いてゼロドリフト(オフセツト電圧)を補正す
る回路が考案されているが、これらはいずれもス
イツチ回路を複数個用いたものであり、回路が複
雑になるのみならず、各スイツチ回路の切換タイ
ミングのずれ等による測定誤差を生ずる要因があ
つた。
Generally, the zero point drift correction method is as follows:
Commonly used methods include disconnecting the input before measurement and adjusting the variable resistance of the zero adjustment circuit, or measuring the drift amount in advance and subtracting it from the measured value later. However, these methods require very complicated operations in simultaneous multi-channel measurement or measurement of a large number of samples, and there is a risk that measurement errors may occur due to operational errors or the like. In addition, recently, circuits have been devised to correct zero drift (offset voltage) using switch elements (switches, relays, analog switch circuits, etc.), but all of these circuits use multiple switch circuits. This not only complicates the circuit, but also causes measurement errors due to shifts in switching timing of each switch circuit.

本発明は、このような従来の問題を解決し、ス
イツチ素子により1回路のみの切り換えを行な
い、自動的にゼロドリフト(オフセツト電圧)を
補正して、閃光および定常光の測定ができる測光
回路を提供するものである。
The present invention solves these conventional problems and provides a photometry circuit that can measure flashing light and steady light by switching only one circuit using a switch element and automatically correcting zero drift (offset voltage). This is what we provide.

以下、本発明を添付図面により、その実施例に
ついて詳述する。第1図において、1はシリコン
光電池、2は演算増幅器、3はリレー、4はサン
プルホールド回路であり、シリコン光電池1から
の光電流を演算増幅器2に入力し、積分コンデン
サC1により入力電流の積分を行なうよう構成さ
れている。オフセツト電圧補正の動作は次のとお
りである。まず、リレー3の接点は測定前にはa1
に接続されている。この状態の等価回路は第2図
のaに示すとおりで、演算増幅器2の出力端子に
はオフセツト電圧が発生しており、C1とC2には
このオフセツト電圧がR1、R2を通して充電され
る。この電圧の極性が図に示したとおりであると
仮定する。このときシリコン光電池1が演算増幅
器2の出力端子に接続された形となるが、光電流
はすべて演算増幅器2に吸収されるので問題とな
らない。
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. In Fig. 1, 1 is a silicon photocell, 2 is an operational amplifier, 3 is a relay, and 4 is a sample and hold circuit.The photocurrent from the silicon photovoltaic cell 1 is input to the operational amplifier 2, and the input current is controlled by an integrating capacitor C1 . It is configured to perform integration. The operation of offset voltage correction is as follows. First, the contact point of relay 3 is a 1 before measurement.
It is connected to the. The equivalent circuit in this state is shown in Figure 2a. An offset voltage is generated at the output terminal of operational amplifier 2, and this offset voltage charges C1 and C2 through R1 and R2. be done. Assume that the polarity of this voltage is as shown in the figure. At this time, the silicon photovoltaic cell 1 is connected to the output terminal of the operational amplifier 2, but this does not pose a problem since all the photocurrent is absorbed by the operational amplifier 2.

さて、次にリレー3の接点がa2に接続されると
第2図のbに示すような等価回路となり、積分コ
ンデンサC1による積分器が構成される。R1はこ
の時は負荷抵抗として働く。ここで、先程C1
充電されたオフセツト電圧の極性を調べると、第
2図のbに示したとおりであり、−入力端子から
オフセツト電圧と逆極性の電圧が出力端子との間
に生じることになり、出力端子ではオフセツト電
圧が相殺されてゼロになる。一方、光電池1の出
力は、演算増幅器2の−入力端子に接続されて光
電流の積分動作が開始される。ここで、閃光を発
光させるかあるいは定常光を一定時間積分した
後、サンプルホールド回路4により積分値を保持
し、μ−CPUに取り込む等の処理をした後リレ
ー3をもとの状態にもどす。このようにして、オ
フセツト電圧を完全に補正した積分動作が可能と
なる。ただし、入力バイアス電流による誤差は補
正されず、積分時間に比例して現われるので、特
に長い積分時間をとる場合は入力バイアス電流の
小さい演算増幅器を使用する必要がある。ここ
で、R1はC1が放電する時過大電流が流れるのを
防止する。R2とC2は、リレー3の接点がa1〜a2
の間を移動する瞬間に演算増幅器が開ループとな
つて動作不安定になるのを防ぐためのものであ
る。
Next, when the contact point of relay 3 is connected to a2 , an equivalent circuit as shown in FIG . R 1 works as a load resistance at this time. Now, when we examine the polarity of the offset voltage charged to C1 earlier, we find that it is as shown in Figure 2b, and a voltage with the opposite polarity to the offset voltage is generated between the - input terminal and the output terminal. The offset voltage is canceled out and becomes zero at the output terminal. On the other hand, the output of the photovoltaic cell 1 is connected to the negative input terminal of the operational amplifier 2, and the integration operation of the photocurrent is started. Here, after emitting a flash light or integrating the steady light for a certain period of time, the integrated value is held by the sample hold circuit 4, and after processing such as importing it into the μ-CPU, the relay 3 is returned to its original state. In this way, an integral operation with completely corrected offset voltage is possible. However, since errors due to the input bias current are not corrected and appear in proportion to the integration time, it is necessary to use an operational amplifier with a small input bias current when a particularly long integration time is required. Here, R1 prevents excessive current from flowing when C1 discharges. R 2 and C 2 are the contacts of relay 3 between a 1 and a 2
This is to prevent the operational amplifier from becoming open loop and becoming unstable at the moment of movement between the two.

さらに、入力バイアス電流の充分小さい演算増
幅器を用いれば、第3図に示すように、光電池の
出力と演算増幅器の入力の間に新たなスイツチ回
路5を設けることにより、演算増幅器2にホール
ド機能を持たせてサンプルホールド4を省略する
こともできる。
Furthermore, if an operational amplifier with a sufficiently small input bias current is used, a hold function can be added to the operational amplifier 2 by providing a new switch circuit 5 between the output of the photovoltaic cell and the input of the operational amplifier, as shown in FIG. It is also possible to omit the sample hold 4.

このように、本発明による測光回路を使用する
ことにより、比較的安価な演算増幅器を用いなが
らゼロドリフト誤差のきわめて小さな測光回路を
実現することができる。本発明による測光回路
は、測定精度の向上、測定装置の操作性の向上の
面で大きな効果が期待できる。
As described above, by using the photometric circuit according to the present invention, it is possible to realize a photometric circuit with extremely small zero-drift error while using a relatively inexpensive operational amplifier. The photometric circuit according to the present invention can be expected to have great effects in terms of improving measurement accuracy and improving the operability of the measuring device.

【図面の簡単な説明】[Brief explanation of the drawing]

添付の図面は、本発明の実施例を示すもので、
第1図はその基本回路図を示す。第2図のaはリ
レー3の接点をa1に接続した時の等価回路を示
し、bはリレー3の接点をa2に接続した時の等価
回路を示す。第3図は、本発明の別の実施例にお
ける基本回路図を示す。 1……シリコン光電池、2……演算増幅器、3
……リレー、4……サンプルホールド回路。
The accompanying drawings illustrate embodiments of the invention, and
FIG. 1 shows its basic circuit diagram. In FIG. 2, a shows an equivalent circuit when the contact of relay 3 is connected to a1 , and b shows an equivalent circuit when the contact of relay 3 is connected to a2 . FIG. 3 shows a basic circuit diagram in another embodiment of the invention. 1... Silicon photovoltaic cell, 2... Operational amplifier, 3
...Relay, 4...Sample and hold circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 非反転入力端子を接地し、反転入力端子を信
号入力端子とした演算増幅器と、前記演算増幅器
の反転入力端子に一端を接続した積分コンデンサ
と、前記演算増幅器の出力端子を、反転入力端子
かまたは前記積分コンデンサの他方の端子のどち
らかに接続するように回路を切り換えるスイツチ
素子と、前記積分コンデンサの前記スイツチ側の
端子と接地との間に接続した抵抗より構成される
ことを特徴とするオートゼロ測光回路。
1 An operational amplifier whose non-inverting input terminal is grounded and whose inverting input terminal is a signal input terminal, an integrating capacitor whose one end is connected to the inverting input terminal of the operational amplifier, and whose output terminal is connected to the inverting input terminal. Alternatively, it is characterized by comprising a switch element that switches the circuit to be connected to one of the other terminals of the integrating capacitor, and a resistor connected between the switch side terminal of the integrating capacitor and ground. Auto zero metering circuit.
JP7373881A 1981-05-15 1981-05-15 Auto zero photometric circuit Granted JPS57189028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7373881A JPS57189028A (en) 1981-05-15 1981-05-15 Auto zero photometric circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7373881A JPS57189028A (en) 1981-05-15 1981-05-15 Auto zero photometric circuit

Publications (2)

Publication Number Publication Date
JPS57189028A JPS57189028A (en) 1982-11-20
JPS632453B2 true JPS632453B2 (en) 1988-01-19

Family

ID=13526872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7373881A Granted JPS57189028A (en) 1981-05-15 1981-05-15 Auto zero photometric circuit

Country Status (1)

Country Link
JP (1) JPS57189028A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02186591A (en) * 1989-01-13 1990-07-20 Hitachi Ltd High-frequency heating device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55116226A (en) * 1979-03-03 1980-09-06 Hitachi Ltd Discharging current integration-type photodetector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55116226A (en) * 1979-03-03 1980-09-06 Hitachi Ltd Discharging current integration-type photodetector

Also Published As

Publication number Publication date
JPS57189028A (en) 1982-11-20

Similar Documents

Publication Publication Date Title
US5479130A (en) Auto-zero switched-capacitor integrator
US4604584A (en) Switched capacitor precision difference amplifier
JPH06235658A (en) Photo-electric conversion circuit
JP2560747B2 (en) Photoelectric conversion device
US9030213B2 (en) Method and system for measuring a time constant of an integrated circuit, and integrated circuit provided with such a system
JPH0587812B2 (en)
JPS632453B2 (en)
US4209717A (en) Sample and hold circuit
EP0309366B1 (en) Current differentual amplifier with a sequential working anode
US4666301A (en) Radiation responsive integrating amplifier
US20220393697A1 (en) Sensor circuits
JPH0553371B2 (en)
JPS592513Y2 (en) Spectrophotometer photometry circuit
US11874166B2 (en) Light sensor circuit
SU473102A1 (en) Current Voltage Comparator
RU2194252C1 (en) Device for carrying out photometric measurements in pulsating mode
JPS5945087B2 (en) Photoelectric element sensitivity correction circuit
SU1538059A1 (en) Photometer
JPS59182322A (en) Circuit for automatically correcting zero position in photometry
SU1019410A1 (en) Direction calibrator
SU1248413A1 (en) Photodetectin device
SU1157648A1 (en) D.c.instrument amplifier
JP2578857B2 (en) Integral type A / D converter
JPH01226539A (en) Sensitivity correcting equipment for label sensor
JPS60207020A (en) Spectrophotometer