JPS63243665A - Cold-heat accumulating method utilizing ice - Google Patents

Cold-heat accumulating method utilizing ice

Info

Publication number
JPS63243665A
JPS63243665A JP7529587A JP7529587A JPS63243665A JP S63243665 A JPS63243665 A JP S63243665A JP 7529587 A JP7529587 A JP 7529587A JP 7529587 A JP7529587 A JP 7529587A JP S63243665 A JPS63243665 A JP S63243665A
Authority
JP
Japan
Prior art keywords
water
ice
liquid
heat
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7529587A
Other languages
Japanese (ja)
Inventor
鶴田 英正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7529587A priority Critical patent/JPS63243665A/en
Publication of JPS63243665A publication Critical patent/JPS63243665A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は主として夏季の冷房負荷の平滑化を目的とし余
剰の夜間電力により発生させた冷熱を蓄え、 これを昼
間のピーク時に放出使用することにある。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is mainly aimed at smoothing the cooling load in the summer by storing cold heat generated by surplus nighttime electricity and releasing it for use during peak hours during the day. It is in.

[従来の技術] 箭記の目的に対し従来より随単な手段として冷凍機を使
用して水槽に満たされた水を冷却して菩え、必要の時に
この冷水を循環利用して建物内の空気を冷やすことが行
われている。
[Prior art] As a conventional means for achieving the purpose of the Book of Proverbs, a refrigerator is used to cool the water filled in the aquarium, and when necessary, this cold water is circulated and used to cool the inside of the building. Air cooling is being done.

このさい水温は冷熱の利用につれて上昇するために次第
に冷却効果は減少し、一定の水温に達すればその効果は
失われることとな る。
At this time, the water temperature increases as cold energy is used, so the cooling effect gradually decreases, and once a certain water temperature is reached, the effect is lost.

実用上この温度幅は3〜5℃といわれ、したがってこの
ように水の顕熱を利用するときは蓄冷熱容fc(以下蓄
冷容量と称す)としては槽内に蓄えられた水1リットル
当り最高で3〜5 Kcal程度に過ぎない。
In practice, this temperature range is said to be 3 to 5 degrees Celsius, so when using the sensible heat of water in this way, the cold storage heat capacity fc (hereinafter referred to as cold storage capacity) is the maximum per liter of water stored in the tank. That's only about 3-5 Kcal.

蓄冷容量を大幅に高めるために前記のごとく水の顕熱を
利用するのではなく水が0℃の下で氷との間に相変化を
起こしその凝固と融解の間に約80にca l/ kg
 H2Oの潜熱の出入りがあることを利用した潜熱利用
型の蓄冷熱方法も広く利用されている。
In order to greatly increase the cold storage capacity, instead of using the sensible heat of water as described above, water undergoes a phase change between it and ice at 0°C, and during its solidification and melting, it is reduced to approximately 80 cal/l/h. kg
A cold storage method using latent heat that takes advantage of the fact that latent heat of H2O goes in and out is also widely used.

この方法によれば仮に貯水量の 172が潜熱として利
用されるとしても40Kcal/L容積の蓄冷容量が可
能であり、前記顕熱利用型の3〜5 Kcal/L容積
に比較すれば約 10倍上昇し、それだけ小型な蓄冷j
l! (以下蓄冷槽と称す)が可能となり、冷房の付属
設備としての価値は大きい。
According to this method, even if 172 of the stored water is used as latent heat, a cold storage capacity of 40 Kcal/L is possible, which is about 10 times the 3 to 5 Kcal/L volume of the sensible heat utilization type. The cold storage that rises and is that much smaller
l! (hereinafter referred to as a cold storage tank), which has great value as an accessory equipment for air conditioning.

しかるにこの方式は0℃において水を氷に凝固するため
には熱交換器の伝熱面を介して水の間接冷却を行うのが
一般的であり、このさいには伝熱面の水相側に氷の生恋
附着にともなう伝熱抵抗の増加が起こるため、伝熱面の
低温側温度は実用上−10〜−15℃またはそれ以下と
しなければならず蓄冷のための動力消費が大となる欠点
があった。
However, in this method, in order to solidify water into ice at 0°C, it is common to cool the water indirectly through the heat transfer surface of the heat exchanger, and in this case, the water phase side of the heat transfer surface is Since the heat transfer resistance increases due to the adhesion of ice, the temperature on the low temperature side of the heat transfer surface must be kept at -10 to -15℃ or lower in practice, and power consumption for cold storage is large. There was a drawback.

[発明が解決しようとする問題点] このように熱交換器を用いて水を間接冷却して氷を作る
さいにはその伝熱面における結氷現象は避けられず、そ
の伝熱抵抗は氷層の厚さの増加と共に増大する。 した
がって蓄熱槽のVI熱速度を早めたり動力消費を軽減す
るには極めて大きな伝熱面積を設けなければならず、 
これは当然設@費用の増加をともなう。
[Problems to be solved by the invention] When making ice by indirectly cooling water using a heat exchanger, freezing phenomenon on the heat transfer surface is unavoidable, and the heat transfer resistance is reduced by the ice layer. increases with increasing thickness. Therefore, in order to increase the VI heat rate of the heat storage tank and reduce power consumption, it is necessary to provide an extremely large heat transfer area.
This naturally accompanies an increase in setup costs.

本発明は水の冷却・氷結を熱交換器による間接冷却によ
る従来の欠点を除く目的のために、水自体を減圧下で蒸
発させ、その烈発潜熱により液を自己冷却して氷点下に
保つことにより氷を生成させるものである。
The present invention aims to eliminate the drawbacks of conventional indirect cooling using a heat exchanger for cooling and freezing of water, by evaporating the water itself under reduced pressure and using its intense latent heat to self-cool the liquid and keep it below freezing. This produces ice.

したがって従来使用している熱交換器は不要となり、設
備資の大幅な削減が可能となる。
Therefore, the conventionally used heat exchanger is no longer necessary, making it possible to significantly reduce equipment costs.

また伝熱面を介して熱移動を行うさいに必要な温度差を
10〜20℃を設けることも不要となり動力?Y4費の
軽減に役立つことができる。
In addition, it is no longer necessary to provide a temperature difference of 10 to 20 degrees Celsius when heat is transferred through a heat transfer surface. This can help reduce Y4 costs.

しかしながらこのような水蒸発による自己冷却により氷
の生成を行うためには、水の沸点を0℃以下にする必要
があり、系を4mnHg程度の減圧に保たなければなら
ない。
However, in order to generate ice by self-cooling through water evaporation, the boiling point of water must be lowered to 0° C. or lower, and the system must be maintained at a reduced pressure of about 4 mnHg.

もしこの条件下で得られる水蒸気を全部真空ポンプなど
で大気に放出するものとすれば、その規模に応じてきわ
めて大容量の真空ポンプと大きな動力を要し、到底実用
性は期待できない。
If all the water vapor obtained under these conditions were to be released into the atmosphere using a vacuum pump, it would require an extremely large-capacity vacuum pump and a large amount of power depending on the scale, and it would be impractical.

このような蒸気を減圧下で凝縮し真空ポンプの負荷を激
減する有力な手段として熱交換器の伝熱面を冷却し蒸気
を液化、凝縮することが考えられる。 しかしながらこ
のときは少なくとも4mHg程度で0℃以下で水分を伝
熱面に凝縮させねばならず、 これは凝結水の氷結につ
ながるおそれがある。
One possible means of condensing such steam under reduced pressure and drastically reducing the load on the vacuum pump is to cool the heat transfer surface of the heat exchanger to liquefy and condense the steam. However, in this case, the moisture must be condensed on the heat transfer surface at a temperature of at least 4 mHg or less and below 0°C, which may lead to freezing of the condensed water.

したがって減圧下の直接冷却法は蓄熱槽内に冷却伝熱面
を廃止することにより、その表面への氷結現象は避ける
ことはできても、発止した水蒸気の凝縮、液化のさいの
伝熱表面への氷結によるトラブル、 すなわち伝熱能力
の低下や閉塞による運転不能を避けられない。
Therefore, in the direct cooling method under reduced pressure, by eliminating the cooling heat transfer surface in the heat storage tank, it is possible to avoid freezing on the surface, but when the generated water vapor condenses and liquefies, the heat transfer surface Troubles caused by ice formation on the pipes, such as reduced heat transfer capacity and blockage, are unavoidable.

[問題点を解決するための手段] 本発明はリチウムブロマイド(LiBr)等の水に可溶
性でかつ不揮発性な物質を含む水溶液の持つ物理化学的
な性質を利用するものである。
[Means for Solving the Problems] The present invention utilizes the physicochemical properties of an aqueous solution containing a water-soluble and nonvolatile substance such as lithium bromide (LiBr).

上記のごとき水溶液は溶解している物質(溶質)の濃度
に応じて氷点が下がることは氷点降下現象として知られ
ており、濃度の低い範囲ではその降“ド量は溶質に関係
なく濃度口mol/Lコのみに比例し 1.86°C/ [: mol/L]である。
The freezing point of an aqueous solution like the one mentioned above decreases depending on the concentration of the dissolved substance (solute), which is known as the freezing point depression phenomenon. /L, which is 1.86°C/ [: mol/L].

また上記水溶液の一定圧力下での沸点は同じく溶質の濃
度Cmol/L]に応じて 上品することは沸点上昇と
して知られており、同様に濃度が低いときはその上昇度
は1′4質に関係なく濃度のみに比例し0℃付近では0
.25℃/  Cmol/lコ で あ る。
The boiling point of the above aqueous solution under constant pressure also increases depending on the concentration of solute (Cmol/L), which is known as boiling point elevation, and similarly, when the concentration is low, the degree of increase is 1'4. Regardless, it is proportional only to the concentration, and it is 0 near 0℃.
.. 25℃/Cmol/l.

このような性質は水に可溶性の無機、有機物のすべてに
見られる。本発明は溶質の選定条件としてほかに水への
溶S度、引火性。
These properties are found in all water-soluble inorganic and organic substances. In the present invention, solute selection conditions include solubility in water and flammability.

使用条件下での不揮発性、溶液の粘度2価格等のほか装
置材料に対する侵触性等も重要な因子となる。
In addition to non-volatility under usage conditions, viscosity of the solution, invasiveness to equipment materials, etc., are important factors.

LiBrはそのような選定例の1つであるが、本発明に
おいてはこのような物質をr4sした不凍性水溶液を作
業液と称する。
LiBr is one such selection example, and in the present invention, an antifreeze aqueous solution prepared by r4sing such a substance is referred to as a working fluid.

本発明は蓄冷時において水〜氷の共存系を約4mnHg
の下で沸騰させ、得られる水蒸気をはゾ同じ圧力下にお
いて濃度に応1.じて冷却された前記作業液に吸収する
ことにより、蓄冷槽中の氷の生成を進行させることを基
本としている。
The present invention maintains a coexistence system of water and ice at approximately 4 mnHg during cold storage.
The resulting water vapor is boiled under the same pressure as the concentration of 1. The basic idea is to promote the formation of ice in the cold storage tank by absorbing it into the working fluid that has been cooled down.

またその状態における作業液温度は沸点上昇により0℃
以上となるが、 たとえ伝熱面に接する液温が若干o℃
を下回ることがあるとしても、氷点降下のために液より
の氷の発生とそれによる伝熱面への着氷が防止できるこ
とを問題解決のための手段としてい る。
In addition, the temperature of the working fluid in that state is 0℃ due to the rise in boiling point.
However, even if the temperature of the liquid in contact with the heat transfer surface is slightly o℃
The solution to this problem is to prevent the formation of ice from the liquid and the resulting ice formation on the heat transfer surface due to the drop in the freezing point, even if the temperature drops below this level.

さらにこのような低温下の吸収時に発生する水蒸気の吸
収熱を伝熱面を介して冷媒の蒸発で奪い、これを圧縮機
により昇圧、昇温して加熱源として利用し、水吸収によ
り希釈された作業液の濃縮を行う、いオJゆるヒートポ
ンプ式の吸収液のi!縮再再生方法省エネルギーの重要
手段としている。
Furthermore, the absorption heat of water vapor generated during absorption at such low temperatures is removed by evaporation of the refrigerant through the heat transfer surface, and this is used as a heating source by increasing the pressure and temperature by the compressor, and is diluted by water absorption. This is an i-J Yuru heat pump type absorption liquid that concentrates the working liquid. The reduction and regeneration method is considered an important means of energy conservation.

[作  用] 本発明の作用について図面により説明する。[For production] The operation of the present invention will be explained with reference to the drawings.

第1図は本発明の作用を示すフローシートである。FIG. 1 is a flow sheet showing the operation of the present invention.

1は蓄冷槽であり内部には60〜80%容積程度の水が
存在している。
Reference numeral 1 denotes a cold storage tank, in which approximately 60 to 80% of the volume of water is present.

蓄冷時には1の内部を水蒸気ダクト2.水蒸気吸収器3
の凝縮側4を経て配管により真空ポンプ6に連結し、約
4an+Hgまで減圧する。水は減圧下で沸騰し蒸発す
る蒸気による蒸発潜熱により水温は低下し0℃に保持さ
れる。
During cold storage, the inside of 1 is connected to a steam duct 2. Water vapor absorber 3
It is connected to a vacuum pump 6 via piping through the condensing side 4, and the pressure is reduced to about 4 an+Hg. The water boils under reduced pressure and is maintained at 0°C due to the latent heat of vaporization caused by the steam.

その後も水は沸騰を続けるが蒸発潜熱はこの氷の生成熱
と相殺され、水温は0℃に保たれながら氷の生成が続き
ついには1の内部の水の40〜70%が氷によって占め
られるにいたる。
After that, the water continues to boil, but the latent heat of vaporization is offset by the heat of ice formation, and ice continues to form while the water temperature is maintained at 0°C, until 40 to 70% of the water inside 1 is occupied by ice. It comes to.

3の主体は熱交換器であり、 4にはその高温側の伝熱
面が設けられる。その伝熱面には前記作業液の濃縮液が
上部より清液しこれを覆いつつ流下する。液の呈する平
衡水蒸気圧は1よりの前記水蒸気圧力より低く、その差
が駆動力となって水蒸気は渡縮液に吸収され吸収液は次
第に希釈される。
The main body of 3 is a heat exchanger, and 4 is provided with a heat transfer surface on the high temperature side. On the heat transfer surface, a concentrated liquid of the working liquid clears from the upper part and flows down while covering the heat transfer surface. The equilibrium water vapor pressure exhibited by the liquid is lower than the above-mentioned water vapor pressure of 1, and the difference serves as a driving force, and the water vapor is absorbed into the condensing liquid, gradually diluting the absorption liquid.

そのさいに発生する吸収熱は3の冷却側5で行われる冷
媒の蒸発による冷却により除かれこれにより所要の水蒸
気吸収、 したがって氷生成速度を得ることができる。
The heat of absorption generated in this case is removed by cooling by evaporation of the refrigerant on the cooling side 5 of 3, thereby making it possible to obtain the required water vapor absorption and therefore ice formation rate.

生成した希釈作業液は希釈液ポンプ7により熱交換器8
を通り濃縮器9の蒸発側IOへまた冷却に用いられて蒸
発した冷媒蒸気は冷媒圧縮機13により昇圧、昇温を受
け9の加熱側11に送られ、 そこでの凝縮熱が濃縮の
ための熱源となる。
The generated diluted working liquid is transferred to a heat exchanger 8 by a diluted liquid pump 7.
The evaporated refrigerant vapor used for cooling is then sent to the heating side 11 of the condenser 9 after being pressurized and heated by the refrigerant compressor 13, where the heat of condensation is used for condensation. Becomes a heat source.

11で凝縮された冷媒液は膨張弁14を経て再び5に戻
されて蒸発し前記の吸収熱の除去が行われる。
The refrigerant liquid condensed at 11 is returned to 5 through the expansion valve 14 and evaporated to remove the absorbed heat.

このように 5.13.11.14は配管により接続さ
れ、 いオ〕ゆるヒートポンプを形成し。
In this way, 5.13.11.14 are connected by piping to form a heat pump.

系全体の冷却と加熱のためにきわめて有力な省エネルギ
ー効果を与える。
Provides an extremely powerful energy saving effect for cooling and heating the entire system.

9は3と同様の構造で、lOはその低温側の伝熱面を保
有する作業液の′aaIi部である。
9 has the same structure as 3, and lO is the 'aaIi part of the working fluid that has the heat transfer surface on the low temperature side.

4と同様にその表面には4から7を経て送られてきた希
釈作業液がその上部より温液されこれを覆いつつ流下す
る。
Similar to 4, the diluted working fluid sent from 4 to 7 is heated from above and flows down while covering the surface.

10はまた配管により水凝縮器152回収水受器16を
経て真空ポンプ17に接続される。
10 is also connected via piping to a vacuum pump 17 via a water condenser 152 and a recovered water receiver 16.

15は通常冷水塔等で得られる冷却水を利用するので凝
縮する水蒸気温度は夏季において、は35〜40℃附近
となり、 したがって10の圧力もそれに見合って42
〜55mHga度を維持する。
Since No. 15 normally uses cooling water obtained from a cooling tower etc., the temperature of the condensed water vapor is around 35 to 40 degrees Celsius in the summer, and therefore the pressure of No. 10 is around 42°C.
Maintain ~55 mHga degrees.

lOを流下する作業液の液温はt8質と1a度によって
定まるが、液温は濃縮と共に次第に上昇する。
The temperature of the working liquid flowing down 1O is determined by the t8 quality and 1a degree, but the liquid temperature gradually increases with concentration.

このようにして所定の′lA縮度に達した液は濃縮液ポ
ンプ12.液々熱交換器8を経て再び4に戻り循環使用
される。
The liquid that has reached a predetermined degree of condensation in this way is pumped to the concentrate pump 12. It passes through the liquid-liquid heat exchanger 8 and returns to 4 again for circulation.

このさい11の凝縮温度は10で達成すべき濃縮度に相
当する液温より高くとり必要の伝熱量を確保することは
当然である。
In this case, it is natural that the condensation temperature in step 11 is set higher than the liquid temperature corresponding to the degree of concentration to be achieved in step 10 to ensure the necessary amount of heat transfer.

なは、 16に回収された水は必要に応じ送水ポンプ1
8により1に戻される。
The water collected in 16 is sent to water pump 1 as needed.
8 returns it to 1.

第1図は本発明を実施するさいに用いるフローシートの
1例であるが、そのほかに必要に応じて部分的な変更、
または追加を行うことにより一店発明の作用、効果を高
める可能性がある。
FIG. 1 is an example of a flow sheet used in carrying out the present invention, but other than that, partial changes may be made as necessary.
Or, by making additions, there is a possibility that the action and effect of the one-store invention can be enhanced.

第1図においては3,9の構造 を各々その器内に熱交
換用の伝熱面を設けその一方の側に作業液を層液流下さ
せ、水吸収により生ずる発熱、あるいは濃縮に必要な吸
熱を直ちに伝熱面を通じて他の側において冷媒により除
去あるいはは供給することにより、流下する液はその間
のそれぞれの器内においてはなるべく等温に保つことを
主眼としている。
In Figure 1, structures 3 and 9 are each provided with a heat transfer surface for heat exchange inside the vessel, and the working liquid is allowed to flow down in a laminar manner on one side, and the heat generated by water absorption or the heat absorption necessary for concentration is absorbed. By immediately removing or supplying the liquid with a refrigerant on the other side through the heat transfer surface, the main aim is to keep the flowing liquid as constant as possible in each vessel between them.

これに対して第2図は比較的大量の作業液を循環する場
合に有利な方法で3,9の 内部には特に熱交換のため
の伝熱面を設けず、これをスプレィ塔または気液接触を
さらに効果的に行うための充填塔等により構成する。
On the other hand, Fig. 2 is an advantageous method when circulating a relatively large amount of working fluid, and there is no heat transfer surface for heat exchange inside the chambers 3 and 9, and this is used in a spray tower or a gas-liquid system. It is constructed with a packed tower etc. for more effective contact.

それぞれの塔頂へ供給する作業液をあらかじめ冷却また
は加熱するための熱交換器は塔と切離して設けている。
A heat exchanger for pre-cooling or heating the working fluid supplied to the top of each tower is provided separately from the tower.

このようなプロセスによれば3,9の 内部は断熱的に
操作されそれぞれの入口において作業液が保有する負ま
たは正の顕熱により3.9の内部で必要とする潜熱を 
まかなうものである。
According to this process, the interior of 3.9 is operated adiabatically, and the necessary latent heat inside 3.9 is generated by the negative or positive sensible heat held by the working fluid at each inlet.
It is something that will be covered.

また15のように外部冷却水を用いる間接熱交換方式の
代わりに、バロメトリックコンデシサーと称する公知の
方式により、冷却水と水蒸気とを減圧された槽内で直接
接触させて、その温度差を最小で稼働させることも可能
である。
In addition, instead of the indirect heat exchange method using external cooling water as shown in No. 15, a known method called a barometric condenser is used to bring the cooling water and steam into direct contact in a depressurized tank and reduce the temperature difference. It is also possible to operate with a minimum.

次に1の機能を向上するための手段について述べる。Next, the means for improving the first function will be described.

1の内部には氷が次第に生成蓄積するが氷の密度は0℃
において 0.915g/ceと 水に比較して小さい
ので水面に浮かび、やがてはその表面を氷層で覆う状況
になる。そのような状態では表面よりの水の蒸発がいち
じるしく低下するのでこれを防ぐ必要がある。
Ice gradually forms and accumulates inside 1, but the density of the ice is 0℃.
Since it is small compared to water at 0.915 g/ce, it floats on the water surface and eventually becomes covered with a layer of ice. Under such conditions, water evaporation from the surface is significantly reduced, so it is necessary to prevent this.

たとえば第3図は表面に生成する氷層を攪はん羽根22
を用い機械的にたえず破砕する方法である。
For example, Figure 3 shows the blade 22 that stirs the ice layer that forms on the surface.
This method uses continuous mechanical crushing.

第4図は1の底部の水層を循環ポンプ23で汲出し、 
これを分液管24より氷層の全面に温液し、たえず氷の
表面に水石を形成する方法である。
In Figure 4, the water layer at the bottom of 1 is pumped out with a circulation pump 23,
This is a method in which a hot liquid is applied to the entire surface of the ice layer from the separating tube 24, and water stone is constantly formed on the surface of the ice.

もちろん第3図と第4図の方法を併用して水の有効蒸発
面を確保することも可能である。
Of course, it is also possible to use the methods shown in FIGS. 3 and 4 in combination to ensure an effective evaporation surface for water.

第5図はさらに水の有効蒸発面積を拡大する方法である
FIG. 5 shows a method for further expanding the effective evaporation area of water.

1の内部には懸吊枠芯26が多数一定間隔で垂直に槽内
に配設されている。
Inside the tank 1, a large number of hanging frame cores 26 are arranged vertically at regular intervals in the tank.

26は平面状の網目枠組構造のもので、 1の断面をほ
ぼ占めるごとき表面積を持ち、かつ十分の強度を持つよ
うに作られている。
26 has a planar mesh framework structure, has a surface area that almost occupies the cross section of 1, and is made to have sufficient strength.

1の内部に残存する水は、底部より循環ポンプ23で汲
出され24を経てスプレィノズル25より並置されてい
る各々の26の上端面に均一に1液され、壬直面を覆い
ながら下方液面に向かって流下する。
The water remaining inside 1 is pumped out from the bottom by a circulation pump 23, passed through 24, and sprayed uniformly onto the upper end surface of each 26 arranged side by side from a spray nozzle 25, and is distributed to the lower liquid surface while covering the bottom surface. flowing towards.

このような状況の下で流下液は減圧下で沸騰しその蒸発
潜熱により0℃の下で氷結が行われる。
Under these conditions, the flowing liquid boils under reduced pressure and freezes at 0°C due to its latent heat of vaporization.

かくて26の表面には次第に附着水27が形成され、そ
れに応じて残存水28の量は減少する。
In this way, adhering water 27 is gradually formed on the surface of 26, and the amount of residual water 28 decreases accordingly.

27の附着量は次第に増加し、隣接する水面同士の間隔
は狭まるので26の表面積、相互間隔、28の初期量等
をあらかじめ算出し、発生水蒸気はつねにその隙間を通
り系外に排出できるように、 また最終的に蓄積する生
成水の量が最大値になるように:A!IIlされ以上は
冷蓄熱サイクルについての説明であるが、このようにし
て1の内部に替えられた冷蓄熱を放出するサイクルに関
しては従来の氷菩熱方法と本質的な差はない。
The amount of 27 attached will gradually increase and the distance between adjacent water surfaces will narrow, so the surface area of 26, mutual spacing, initial amount of 28, etc. are calculated in advance so that the generated water vapor can always be discharged out of the system through the gap. , Also, so that the amount of generated water that ultimately accumulates becomes the maximum value: A! The above is a description of the cold heat storage cycle, but there is no essential difference from the conventional ice-burning heat method in terms of the cycle in which the cold heat stored in the interior of 1 is released in this way.

第1図において冷水ポンプ19は1の下層に残留する0
℃の水を汲出し、 これを冷負荷20に導き所定の冷熱
を与えたのち、昇温した水は再び還水ライン21より1
に戻り、残存する氷を 融解し80kcal/−氷の冷
蓄熱の払い出しを行い、再び19.20と循環する。
In FIG. 1, the cold water pump 19 remains in the lower layer of 1.
After pumping out the water at ℃ and leading it to the cold load 20 and giving it a predetermined amount of cold heat, the heated water is returned to the water return line 21 through the water return line 21.
Return to 19.20, melt the remaining ice, discharge 80 kcal/- of cold heat stored in the ice, and cycle again at 19.20.

このようにして1の内部に氷が残存する間はこれと接す
る水温は0℃に保たれる。
In this way, while the ice remains inside 1, the temperature of the water in contact with it is maintained at 0°C.

[発明の効果コ 以上図面により説明したように本発明は氷を生成し蓄積
する氷谷冷方法に関して従来より行われている公知の方
式にくらべて多くの長所を持つ。
[Effects of the Invention] As explained above with reference to the drawings, the present invention has many advantages over conventionally known methods of ice valley cooling for generating and accumulating ice.

第1の長所は1の内部で水の蒸発を利用して自己冷却を
行うために熱交換面を設けて間接冷却し、伝熱面に氷を
生成させる従来の方式のもつ伝熱係数の劣下とこれを補
うための伝熱面を介しての大きな温度差の設定を下戻な
らしめることが可能となる。これは13の動力消費の低
減にも役立つ。
The first advantage is that the heat transfer coefficient is inferior to that of the conventional method, which uses water evaporation to achieve self-cooling by providing a heat exchange surface for indirect cooling, and generates ice on the heat transfer surface. It becomes possible to set a large temperature difference between the bottom and the heat transfer surface to compensate for this. This also helps reduce the power consumption of 13.

第2の長所は適当な作業液を選定することにより3の内
部における水蒸気の氷結を防ぐことができ、 これによ
る操作の安定性はもちろん熱交換器の伝熱係数の低下と
それを補うための4.5間の温度差の増大を 防ぐこと
ができる。
The second advantage is that by selecting an appropriate working fluid, it is possible to prevent the water vapor from freezing inside 3, which not only improves operational stability but also reduces the heat transfer coefficient of the heat exchanger and It is possible to prevent an increase in the temperature difference between 4.5 and 5.

これもまた13の動力消費の低減をもたらす。This also results in a reduction in power consumption of 13.

第3の長所は作用液の3における冷却と9における濃縮
とをヒートポンプによって連結して1つの熱サイクルと
した点である。
The third advantage is that the cooling of the working fluid in step 3 and the concentration in step 9 are connected by a heat pump to form one thermal cycle.

これによりエネルギー消費量はもちろん設備費の低減に
も大いに貢献する。
This greatly contributes to reducing not only energy consumption but also equipment costs.

第4の長所は蓄冷槽の構造、材質に関するものである。The fourth advantage relates to the structure and material of the cold storage tank.

本発明によれば傍冷槽は水を蓄え、減圧下で運転される
のみであるので通常の鋼材製タンクで足り、加圧下で冷
媒を使用するさいの各種法律的規制を受けることもなく
て安価である。また設ii!場所に対する各種の制限も
ない。
According to the present invention, the side cooling tank only stores water and operates under reduced pressure, so a normal steel tank is sufficient, and there is no need to be subject to various legal regulations when using refrigerant under pressure. It's cheap. Set ii again! There are no restrictions on location.

また作業液を構成する添加物質も1月8r等の特に腐食
に問題のない溶質を選ぶことにより装置材料も安価でか
つ長期の寿命を持つものを選択できる。
Furthermore, by selecting a solute that does not cause any corrosion problems, such as additives constituting the working fluid, it is possible to select equipment materials that are inexpensive and have a long service life.

さらに第5の長所として水蒸発を吸収するさいの作業液
の冷却と希薄作業液の濃縮加熱とに用いるヒートポンプ
システムは多用される冷媒R−12等を用いるもので、
このような標準冷凍システムを利用することは動力効率
や設備費の点からみてもきわめて有利である。また3、
9においては 冷媒系と作業液系とは互いに伝熱面にお
いて隔離されているために冷媒系への水分等の混入はま
ったくなく、 冷媒の損失や冷凍サイクル構成機器の腐
食等の恐れも皆無である。
Furthermore, the fifth advantage is that the heat pump system used for cooling the working liquid when absorbing water evaporation and concentrating and heating the dilute working liquid uses a frequently used refrigerant such as R-12.
Using such a standard refrigeration system is extremely advantageous in terms of power efficiency and equipment costs. Also 3,
In No. 9, the refrigerant system and working fluid system are isolated from each other in terms of heat transfer, so there is no chance of moisture entering the refrigerant system, and there is no risk of loss of refrigerant or corrosion of refrigeration cycle components. be.

[実  施  例コ 作業液としてL i B rの水溶液を用いて図1に示
した方式により氷にょる谷冷を行った。
[Example 1] An aqueous solution of L i Br was used as the working liquid, and valley cooling with ice was performed according to the method shown in FIG. 1 .

4に供給する水溶液のbiBra度を約 20%(M量
比)とした。
The biBra degree of the aqueous solution supplied to No. 4 was set to about 20% (M ratio).

蓄冷時にはまず1の内部を6により 約4maHHに減圧し水の沸騰、蒸発を行いながら次第
にこれを冷却した。
During cold storage, the pressure inside 1 was first reduced to about 4 maHH using 6, and the water was boiled and evaporated while gradually cooling down.

蒸発した蒸気は2より3の凝縮側4に送り、内部に設け
られた伝熱面を上部より流下する約20%濃度(M量比
)の作業液に吸収させた。
The evaporated steam was sent to the condensing side 4 from 2 to 3, and was absorbed by the working liquid having a concentration of about 20% (M ratio) flowing down from the upper part on the heat transfer surface provided inside.

かくて若干の過冷却を経過したのち、水温は0%附近に
戻り氷の精品が生じ蒸発が続くにつれてその菩積量が増
大したが、 この時1の圧力は約4m1(Hに保つこと
ができた。
After a slight supercooling, the water temperature returned to around 0%, and ice crystals were produced, and as evaporation continued, the volume of the water increased, but at this time the pressure of 1 could be maintained at about 4 m1 (H). did it.

また1の内部に第3図と第4図に示すような手段を併泪
することによりその表面が氷で全面的に覆われることを
防いだ。
Furthermore, by installing a means as shown in FIGS. 3 and 4 inside the container 1, it was possible to prevent the surface from being completely covered with ice.

氷の析出は仕込水量に対して約40〜60%程度で行っ
たが特に開運はなく、蒸発量の低下や氷の生成による配
管等の開基はみられなかった。
Ice was deposited at about 40 to 60% of the amount of water charged, but there was no particular problem, and no decrease in evaporation or opening of pipes due to ice formation was observed.

4を出る作業液は水分の吸収により 約10.5%までに濃度が低下するが、冷却缶の冷媒蒸
発温度は一5℃附近に保たれ、前記作業液の冷却に必要
な温度差を与えた。
The concentration of the working liquid exiting the cooling tank decreases to about 10.5% due to water absorption, but the refrigerant evaporation temperature in the cooling can is maintained at around -5°C, providing the temperature difference necessary for cooling the working liquid. Ta.

作業液よりの氷や溶解塩の析出は全く見られなかった。No precipitation of ice or dissolved salts from the working fluid was observed.

回収された作業液は9の蒸発側1oに送り、内部に設け
られた伝熱面を流下する間に加熱側IIで約53℃で凝
縮されるR−12の蒸気により加熱を受ける。
The recovered working liquid is sent to the evaporation side 1o of 9, and is heated by the R-12 vapor condensed at about 53° C. on the heating side II while flowing down the heat transfer surface provided inside.

IOは 15. IG、 +7に接続し約55mm1g
の減圧下に保たれた。
IO is 15. IG, connected to +7, approximately 55mm 1g
was maintained under reduced pressure.

このようにして前記約10.5%の作業液は約46℃で
沸騰をはじめ伝熱面を流下しなから液温約48℃で約2
0%まで濃縮され再び4に戻される。
In this way, the approximately 10.5% working liquid begins to boil at approximately 46°C and does not flow down the heat transfer surface, so that the approximately 10.5% working liquid begins to boil at approximately 46°C and does not flow down the heat transfer surface.
It is concentrated to 0% and returned to 4.

発生した水蒸気は15において冷却水により冷却され、
約40℃で凝縮し回収されたのち18で1へ戻した。
The generated water vapor is cooled by cooling water at 15,
After being condensed and recovered at about 40°C, it was returned to 1 at 18°C.

作業液や回収水の循環には適宜液に熱交換器を設けて熱
効率の向上を計った。
Heat exchangers were installed as appropriate for the circulation of working fluid and recovered water to improve thermal efficiency.

前記R−12の@環系はスクリュー冷凍機により常法の
冷凍技術により行った。
The @ring system of R-12 was prepared using a screw refrigerator using a conventional freezing technique.

その効率は全系の熱損失や機械効率を含めて製氷量1 
ton当り約42kW、 COPは約2.2であっ た
The efficiency is 1 ice production including heat loss of the whole system and mechanical efficiency.
The power output was approximately 42kW per ton, and the COP was approximately 2.2.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は氷を利用する舒冷熱方法を説明するためのフロ
ーシートの一例である。 第2図は第1図において3及び9の熱交換機能と水蒸気
の吸収、蒸発を行う物質移動機能が一体化しているのに
対し、 これを分離した方法を示すためのフローシート
の一部である。 第3図、第4図はそれぞれ水層表面に形成される水面を
@砕したり、表面に散水したりすることにより、水面を
常に広く露出させる方法を示す図である。 第5図は1の内部に結氷面積を多く設けるための手段の
一例を示す図である。 各図の記号は共通で以下の通りである。
FIG. 1 is an example of a flow sheet for explaining a cooling method using ice. Figure 2 is a part of a flow sheet showing a method to separate the heat exchange functions 3 and 9 and the mass transfer function of absorbing and evaporating water vapor, which are integrated in Figure 1. be. FIGS. 3 and 4 are diagrams showing a method of constantly exposing a wide water surface by crushing the water surface formed on the surface of the water layer or by sprinkling water on the surface, respectively. FIG. 5 is a diagram showing an example of means for providing a large frozen area inside the container 1. The symbols in each figure are common and are as follows.

Claims (1)

【特許請求の範囲】 1、水を蓄冷槽1に蓄え蓄冷時にはこれを減圧下で沸騰
させ、液を自己冷却し、0℃以下 で氷を生成させて蓄冷熱を行うさいに蒸発 する水蒸気を、水蒸気吸収器3の凝縮側4 に導き濃縮された不凍性水溶液(以下作業 液と称す)に吸収されて生ずる吸収熱を冷 却側5における冷媒の蒸発で奪い、得られ た冷媒蒸気は冷媒圧縮機13により昇圧、昇温して濃縮
器9の加熱側11に送り凝縮させて加熱源として利用し
、一方希釈された作 業液は9の蒸発側10に送って減圧下で蒸発、濃縮し、
得られた冷媒液と濃縮された作業 液はそれぞれ 5、4に適宜戻すことを特徴とする氷を
利用する蓄冷熱方法 2、特許請求範囲1において1の内部に複数の平面状の
懸吊枠芯26を吊し、これに内部の残存水を循環水ポン
プ23により汲出し分液管24、スレーノズル群25を
経て26の上端部に均一に潅水し、水が26の表面を流
下するさいに、その一部が蒸発することにより自 己冷却をし一部を流下面に氷結させること を特徴とする氷を利用する蓄冷熱方法。
[Scope of Claims] 1. Water is stored in a cold storage tank 1, and when storing water, it is boiled under reduced pressure, the liquid is self-cooled, and ice is generated at a temperature below 0°C to remove water vapor that evaporates during cold storage. The heat of absorption generated by being absorbed by the concentrated antifreeze aqueous solution (hereinafter referred to as working liquid) introduced into the condensing side 4 of the steam absorber 3 is removed by the evaporation of the refrigerant on the cooling side 5, and the obtained refrigerant vapor is converted into a refrigerant. The compressor 13 raises the pressure and temperature, and sends it to the heating side 11 of the concentrator 9, where it is condensed and used as a heating source, while the diluted working liquid is sent to the evaporation side 10 of 9, where it is evaporated and concentrated under reduced pressure. ,
The obtained refrigerant liquid and the concentrated working liquid are appropriately returned to 5 and 4, respectively.Cold storage heat method using ice 2, Claim 1 includes a plurality of planar hanging frames inside 1. The wick 26 is suspended, and the remaining water inside is pumped out by the circulating water pump 23, and the upper end of the wick 26 is uniformly watered through the liquid separation pipe 24 and the Slay nozzle group 25, and as the water flows down the surface of the wick 26, , a cold storage heat method using ice, characterized by self-cooling by evaporating a part of it, and freezing a part of it on the flowing surface.
JP7529587A 1987-03-28 1987-03-28 Cold-heat accumulating method utilizing ice Pending JPS63243665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7529587A JPS63243665A (en) 1987-03-28 1987-03-28 Cold-heat accumulating method utilizing ice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7529587A JPS63243665A (en) 1987-03-28 1987-03-28 Cold-heat accumulating method utilizing ice

Publications (1)

Publication Number Publication Date
JPS63243665A true JPS63243665A (en) 1988-10-11

Family

ID=13572111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7529587A Pending JPS63243665A (en) 1987-03-28 1987-03-28 Cold-heat accumulating method utilizing ice

Country Status (1)

Country Link
JP (1) JPS63243665A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02187581A (en) * 1989-01-13 1990-07-23 Shimizu Corp In-tube ice making unit and in-tube ice making method
JPH06241628A (en) * 1993-02-19 1994-09-02 Nkk Corp Vacuum ice making device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02187581A (en) * 1989-01-13 1990-07-23 Shimizu Corp In-tube ice making unit and in-tube ice making method
JPH06241628A (en) * 1993-02-19 1994-09-02 Nkk Corp Vacuum ice making device

Similar Documents

Publication Publication Date Title
US4003213A (en) Triple-point heat pump
JP4326155B2 (en) Chemical heat pump
JPH0120334B2 (en)
CN112158903B (en) Seawater desalination device based on solution dehumidification
US3404536A (en) In situ flash freezing and washing of concentrated solutions
CN106524578B (en) Absorption type energy storage system, energy supply system and method
JPS58164974A (en) Heat pump
JP3043408B2 (en) Method and apparatus for cooling and purifying water
CN206514443U (en) Energy supplying system based on low valley power storage
US3385074A (en) Freeze crystallization, washing and remelting on a common rotary surface
CN206399038U (en) Absorption-type energy-accumulation system and energy supplying system
JPS63243665A (en) Cold-heat accumulating method utilizing ice
JP2560104B2 (en) In-pipe ice making unit and in-pipe ice making method
CN109350991B (en) Solution active crystallization device for absorption type chemical energy storage
CN206724385U (en) Central air conditioner system based on low valley power storage
CN210570083U (en) Phase-change energy tower
CN206875630U (en) Central air conditioner system based on low valley power storage
CN203782136U (en) High-temperature steam cooling system
CN107651720A (en) A kind of multistage humidification dehumidification type sea water desalinating unit with loop type gravity assisted heat pipe structure
JPH07280401A (en) Vacuum ice-making apparatus
CN103206803B (en) Multiple transpiration-cooled aqua-ammonia absorption system
CN201834782U (en) Seawater desalination device
SU1749461A1 (en) Refrigeration plant for rock refrigeration
WO2000029333A1 (en) A device for desalinizing sea water
JP2554783B2 (en) Cold heat supply equipment