JPS63243631A - Gas turbine combustor cooling structure - Google Patents

Gas turbine combustor cooling structure

Info

Publication number
JPS63243631A
JPS63243631A JP7450287A JP7450287A JPS63243631A JP S63243631 A JPS63243631 A JP S63243631A JP 7450287 A JP7450287 A JP 7450287A JP 7450287 A JP7450287 A JP 7450287A JP S63243631 A JPS63243631 A JP S63243631A
Authority
JP
Japan
Prior art keywords
cylinder
combustor
outer cylinder
cooling
inner cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7450287A
Other languages
Japanese (ja)
Other versions
JPH0769058B2 (en
Inventor
Isamu Uchimi
内見 勇
Kuniaki Aoyama
邦明 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7450287A priority Critical patent/JPH0769058B2/en
Publication of JPS63243631A publication Critical patent/JPS63243631A/en
Publication of JPH0769058B2 publication Critical patent/JPH0769058B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To reduce or eliminate problems such as heat exposure damage, cracks, shorter life, etc. of a combustor by forming axially parallel inner channels on the inner wall of the outer cylinder, and disposing communicating holes which have a diameter larger than the inner channel width, near the outer cylinder upstream end and the inner cylinder downstream end coaxially with the inner channels. CONSTITUTION:Each of multiple cylinders 3-6 having an increasingly larger diameter has a double structure in which an outer cylinder 12 and an inner cylinder 13 are overlapped. Multiple inner channels 14 having a rectangular section are formed on the inner wall of the outer cylinder in parallel with the combustor axis. Further, multiple cooling air communicating holes 15, 16 having a diameter larger than the width of the inner channels 14 are drilled in a staggered manner circumferentially near the upstream end of the outer cylinder 12 and the downstream end of the inner cylinder 13 coaxially with the inner channels 14. Because of this, a uniform cooling can be performed over the entire axial length of the combustor inner cylinder 13 by means of air cooling or film cooling. Therefore, problems of heat exposure damage, crack, shorter life, etc., of the combustor due to the increased output and temperature can be reduced or eliminated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ガスタービンの燃焼器内筒の構造に関する。[Detailed description of the invention] Industrial applications The present invention relates to the structure of a combustor inner cylinder of a gas turbine.

産業用及び航空機用のガスタービンにおいて、その燃焼
器の冷却構造の従来例として、第7及び8図に示すよう
なものがある。
2. Description of the Related Art Conventional examples of cooling structures for combustors in industrial and aircraft gas turbines include those shown in FIGS. 7 and 8.

この燃焼器(内筒)lは、内径が上流から下流に至るに
従って逐次大きくなる複数個の円筒2〜6が互いに隣接
する端部で重ね合わされた部分の隙間に、冷却空気を取
入れるための隔壁、すなわち波状のルーバ(Louve
r) 7が挿入されている。
This combustor (inner cylinder) l is designed to take in cooling air into the gap between a plurality of cylinders 2 to 6, whose inner diameters gradually increase from upstream to downstream, overlapped at their adjacent ends. Partition walls, i.e. wavy louvers
r) 7 is inserted.

第7図においては、例えば円筒の数が5個の場合を示し
ており、このうち円筒2及び3を例にとると、ルーバ6
は円筒3の内壁面及び円筒2の外壁面の夫々に当接する
部分A及びBにて接合されることによって、円筒2と円
筒3とが一体構造とされている。そして、他の円筒4〜
6においても、おなじ手段であるルーバ6が夫々の端部
の隙間に夫々連続して接合されることにより、一つの内
筒からなる燃焼器1が形成される。
FIG. 7 shows a case where the number of cylinders is five, for example. Taking cylinders 2 and 3 as an example, the louver 6
The cylinders 2 and 3 are made into an integral structure by being joined at portions A and B that contact the inner wall surface of the cylinder 3 and the outer wall surface of the cylinder 2, respectively. And the other cylinder 4~
6, the combustor 1 consisting of one inner cylinder is formed by continuously joining louvers 6, which are the same means, into the gaps between the respective ends.

そして、第8図に示すように、この燃焼器内に導入され
る外部からの冷却空気(大気)が、ルーバ7と各円筒2
〜6とで囲まれて形成された冷却空気通路C及びDを介
して、燃焼器1内部の下流側に向けて流れることによっ
て、各円筒2〜6の下流側の内壁面が冷却されている。
As shown in FIG.
The inner wall surface on the downstream side of each cylinder 2 to 6 is cooled by flowing toward the downstream side inside the combustor 1 through the cooling air passages C and D defined by the cylinders 2 to 6. .

この冷却方式は公知の技術とされ、一般的にはフィルム
冷却方式と呼称されている。
This cooling method is a well-known technique and is generally called a film cooling method.

一方、燃焼器1内で燃焼を行うために供される燃料は、
燃焼器lの上流側すなわち円筒1に設けられた噴射ノズ
ル8からこの燃焼器(内筒)内に噴流人する1次空気と
混合して、燃焼が行なわれている。
On the other hand, the fuel provided for combustion in the combustor 1 is
Combustion is performed by mixing with primary air that flows into the combustor (inner cylinder) from an injection nozzle 8 provided on the upstream side of the combustor l, that is, in the cylinder 1.

更に、燃焼器1の下流側すなわち主として円筒部 6の円周上にも開口した集散の2次空気供給口11から
流入する2次空気との再混合により、この燃焼器の後流
側に接続しているタービン(図示せず)入口で適切な燃
焼ガス温度に維持されるように、そのガス温度が下げら
れる。
Furthermore, the air is connected to the downstream side of the combustor 1 by remixing it with secondary air flowing in from the secondary air supply port 11 which is also opened on the downstream side of the combustor 1, that is, mainly on the circumference of the cylindrical part 6. The gas temperature is reduced to maintain a suitable combustion gas temperature at the inlet of a turbine (not shown).

発明が解決しようとする問題点 以上述べた従来のガスタービンの燃焼器の冷却構造は、
しかし、次のような問題点があった。
Problems to be Solved by the Invention The conventional gas turbine combustor cooling structure described above has the following problems:
However, there were the following problems.

最近のガスタービンの出力増大に伴って、その燃焼器出
口ガス温度の上昇のために、燃焼器をなす内筒のメタル
温度が上昇する傾向にある。
With the recent increase in the output of gas turbines, the temperature of the gas at the exit of the combustor has increased, so the metal temperature of the inner cylinder forming the combustor has tended to increase.

しかして、この高温に対応させて、入手しうる希少で高
価な超耐熱合金板を採用しても、従来の冷却方式(フィ
ルム冷却)を施す場合には燃焼器内筒の全長にわたり、
平均的に冷却されずに、各円筒2〜6の下流側では高温
となり、一方これらのルーバ7を設けている上流側付近
では低温となり過ぎる傾向がかなり強かった。
However, even if a rare and expensive super heat-resistant alloy plate is adopted to cope with this high temperature, when applying the conventional cooling method (film cooling), the entire length of the combustor inner cylinder is
There was a strong tendency that the downstream side of each cylinder 2 to 6 became high temperature without being cooled on average, while the temperature near the upstream side where these louvers 7 were provided was too low.

従ってこれらの円筒2〜7の壁面においては、焼損、ク
ラックの発生及び寿命の低下等を避けることができなく
なった。
Therefore, on the wall surfaces of these cylinders 2 to 7, it is no longer possible to avoid burnout, occurrence of cracks, and shortened lifespan.

問題点を解決するための手段 本発明は、このような従来の問題点を解決するために、
逐次内径が大きくなる複数個の円筒の互いに隣接する端
部を接続して一つの内筒を形成するガスタービンの燃焼
器において、これら円筒部々を外側筒及び内側筒を重ね
合わせた二重構造として、この外側筒の内壁面に前記燃
焼器内筒の軸線方向に対して平行に伸びる多数の内溝を
設けるとともに、更にこれらの内溝夫々の同一軸線上に
沿って、前記各外側筒上流側及び各内側筒下流側の夫々
端部付近の円周方向に、前記内溝の幅よりも大きな径を
有する多数の連通口を千鳥状に穿設したものである。
Means for Solving the Problems In order to solve these conventional problems, the present invention provides the following:
In a gas turbine combustor, which forms a single inner cylinder by connecting the adjacent ends of a plurality of cylinders whose inner diameters gradually increase, these cylindrical parts have a double structure in which an outer cylinder and an inner cylinder are overlapped. A large number of inner grooves extending parallel to the axial direction of the combustor inner cylinder are provided on the inner wall surface of the outer cylinder, and along the same axis of each of these inner grooves, a groove is formed upstream of each of the outer cylinders. A large number of communication ports having a diameter larger than the width of the inner groove are bored in a staggered manner in the circumferential direction near the end portions of the side and the downstream side of each inner cylinder.

作用 このような手段によれば、燃焼器内筒をなす各円筒部々
を外側筒及び内側筒を重ね合わせた二重構造として、こ
の外側筒には内溝を設け、かっこの内溝の同一軸線上に
沿って、外側筒の上流側及び内側筒の下流側の夫々端部
付近の円周方向に、連通口を設けるので、この内溝内に
冷却空気を流動させることができる。
According to this method, each cylindrical part forming the inner cylinder of the combustor has a double structure in which the outer cylinder and the inner cylinder are overlapped, and the outer cylinder is provided with an inner groove, and the inner grooves of the brackets have the same inner groove. Since communication ports are provided along the axis in the circumferential direction near the upstream ends of the outer tube and the downstream ends of the inner tube, cooling air can flow into the inner grooves.

実施例 以下、第1〜6図を参照して、本発明による、ガスター
ビンの燃焼器冷却構造の一実施例について詳述する。な
お、これらの図において、第7及び8図に示したものと
同一の部分には同一の符号を付して、その詳細な説明は
省略する。
EXAMPLE Hereinafter, an example of a combustor cooling structure for a gas turbine according to the present invention will be described in detail with reference to FIGS. 1 to 6. In these figures, the same parts as shown in FIGS. 7 and 8 are designated by the same reference numerals, and detailed explanation thereof will be omitted.

しかして、本発明によれば、第1〜3図に示すように、
逐次内径が大きくなる複数個の円筒3〜6夫々は、外側
筒12及び内側筒13が重ね合わされの軸線方向に対し
て平行に伸びる断面が矩形状の多数の内溝14が機械的
手段等(図示せず)により設けられている。
According to the present invention, as shown in FIGS. 1 to 3,
Each of the plurality of cylinders 3 to 6 whose inner diameter increases successively is formed by mechanical means, etc. ( (not shown).

更に、第4〜5図に示すように、これらの内溝夫々の同
一軸線上に沿って、各外側筒12上流側(第4図参照)
及び各内側筒13下流側(第5図参照)の夫々端部付近
の円周方向には、内溝14の幅よりも十分大きな径を有
する多数の冷却空気の連通口15及び16が千鳥状に穿
設される。なお、これらの連通口の内径は好適には少な
くとも内溝14の幅よりも2倍以上の大きさが望まれる
Furthermore, as shown in FIGS. 4 and 5, along the same axis of each of these inner grooves, the upstream side of each outer cylinder 12 (see FIG. 4)
A large number of cooling air communication ports 15 and 16 having a diameter sufficiently larger than the width of the inner groove 14 are arranged in a staggered manner in the circumferential direction near the respective ends of the downstream side of each inner cylinder 13 (see FIG. 5). to be drilled. The inner diameter of these communication ports is preferably at least twice the width of the inner groove 14.

そして、第6図に示すように、このような構造とされた
、各円筒部3〜6の隣接する端部においては、内径の小
さい側の円筒(例えば円筒3)の外側筒12と内径の大
きい側の円筒(例えば円筒4)の内側筒13とが円周溶
接1〜されても良い。また、こ □れらの外側筒12と
内側筒13とが、夫々燃焼器(内筒)1の軸線方向に対
して平行に延長され、該延長部(図示せず)にて接合さ
れても良い。この結果、一つの内筒からなる燃焼器lが
形成されることとなる。なお、円筒2内においては、通
常、燃焼によるその壁面への加熱温度が他の円筒3〜6
に比べて高くないので、連通口15及び16が必ずしも
設けられなくとも良い。
As shown in FIG. 6, in the adjacent ends of each of the cylindrical parts 3 to 6 having such a structure, the outer cylinder 12 of the cylinder with the smaller inner diameter (for example, cylinder 3) and the inner diameter The inner cylinder 13 of the larger cylinder (for example cylinder 4) may be circumferentially welded. Moreover, even if these outer cylinder 12 and inner cylinder 13 are each extended parallel to the axial direction of the combustor (inner cylinder) 1 and joined at the extension part (not shown), good. As a result, a combustor l consisting of one inner cylinder is formed. In addition, in the cylinder 2, the heating temperature of the wall surface due to combustion is usually higher than that of the other cylinders 3 to 6.
The communication ports 15 and 16 do not necessarily need to be provided, since they are not expensive compared to the above.

以上のような構成により、燃焼器1の外部から段階的に
導入される冷却空気は、第2図に示す各円筒3〜6の外
側筒12の連通口15から流入し、更に外側筒12の多
数の内1M14を上流側から下流側へ通過した後、第3
図に示す内側筒13の連通口16を経て、燃焼器【内に
放出することとなる。
With the above configuration, the cooling air introduced from the outside of the combustor 1 in stages flows in from the communication port 15 of the outer cylinder 12 of each cylinder 3 to 6 shown in FIG. After passing 1M14 of the large number from upstream to downstream, the third
It is discharged into the combustor through the communication port 16 of the inner cylinder 13 shown in the figure.

このような冷却空気流れの過程において、内溝14内に
冷却空気を流動させることにより、燃焼器1内で高温燃
焼ガスに曝される各内側筒13を十分に冷却するばかり
か、同時に内側筒lの連通口16から冷却空気を燃焼器
l内に放出することにより、フィルム冷却の作用をも相
乗的に行うことができる。
In the process of such a cooling air flow, by flowing the cooling air into the inner groove 14, not only each inner cylinder 13 exposed to high temperature combustion gas in the combustor 1 is sufficiently cooled, but also the inner cylinder 13 is cooled at the same time. By discharging cooling air into the combustor l from the communication port 16 of the combustor l, the effect of film cooling can also be performed synergistically.

以上のように空気冷却及びフィルム冷却を各円筒3〜6
の区間毎にて行うことにより、従って、総体的には燃焼
器(内筒)■の軸線方向全長にわたって、均一な冷却を
効率的に行うことができる。
As described above, air cooling and film cooling are applied to each cylinder 3 to 6.
By performing the cooling in each section, uniform cooling can be efficiently performed overall over the entire axial length of the combustor (inner cylinder) (2).

発明の効果 以上詳述したように、本考案によれば、燃焼2に内筒の
軸線方向全長にわたって空気冷却及びフィルム冷却によ
る均一な冷却を行うことができるため、よってガスター
ビンの出力増大による高温化ることかできる。
Effects of the Invention As detailed above, according to the present invention, uniform cooling can be performed by air cooling and film cooling over the entire axial length of the inner cylinder during combustion 2, so that high temperature due to increased output of the gas turbine can be achieved. It is possible to change.

しかも、この燃焼器の向上の結果、高温ガスタービンの
系内金体の信頼性及び性能を増大させることができる。
Moreover, as a result of this combustor improvement, the reliability and performance of the high temperature gas turbine system can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるガスタービンの燃焼器冷却構造の
一例を示す要部縦断面図、第2図は第1図の主に外側筒
側を示す■−■線斜視図、第3図は第1図の主に内側筒
側を示す■−■線斜視図、第4図は第2図の■−■線縦
線面断面図5図は第3図の■−V線縦線面断面図6図は
その燃焼器内筒の全体を示す組立概観図、第7図は従来
のガスタービンの燃焼器冷却構造を示す組立概観図、第
8図は第7図のルーバの接合部分の一部を示す■−■線
断面図である。 l・・燃焼器(内筒)、2〜6・・円筒、12・・外側
筒、13・・内側筒、14・・内溝、15.16・・第
4図
FIG. 1 is a longitudinal cross-sectional view of a main part showing an example of the combustor cooling structure of a gas turbine according to the present invention, FIG. 2 is a perspective view taken along the line ■-■ mainly showing the outer cylinder side of FIG. 1, and FIG. Fig. 1 is a perspective view taken along the line ■-■ mainly showing the inner cylinder side; Fig. 4 is a sectional view along the vertical line ■-■ in Fig. 2; and Fig. 5 is a cross-section taken along the vertical line ■-V in Fig. 3. Fig. 6 is an assembled overview diagram showing the entire combustor inner cylinder, Fig. 7 is an assembled overview diagram showing the combustor cooling structure of a conventional gas turbine, and Fig. 8 is a part of the joint of the louver in Fig. 7. FIG. l...Combustor (inner cylinder), 2-6...Cylinder, 12...Outer cylinder, 13...Inner cylinder, 14...Inner groove, 15.16...Figure 4

Claims (1)

【特許請求の範囲】[Claims] 逐次内径が大きくなる複数個の円筒の互いに隣接する端
部を接続して一つの内筒を形成するガスタービンの燃焼
器において、これら円筒夫々を外側筒及び内側筒を重ね
合わせた二重構造として、この外側筒の内壁面に前記燃
焼器内筒の軸線方向に対して平行に伸びる多数の内溝を
設けるとともに、更にこれらの内溝夫々の同一軸線上に
沿って、前記各外側筒上流側及び各内側筒下流側の夫々
端部付近の円周方向に、前記内溝の幅よりも大きな径を
有する多数の連通口を千鳥状に穿設してなるガスタービ
ンの燃焼器冷却構造。
In a gas turbine combustor that forms one inner cylinder by connecting the adjacent ends of a plurality of cylinders whose inner diameters gradually increase, each of these cylinders is constructed as a double structure in which an outer cylinder and an inner cylinder are overlapped. , a large number of inner grooves extending parallel to the axial direction of the combustor inner cylinder are provided on the inner wall surface of the outer cylinder, and further, along the same axis of each of these inner grooves, a groove is formed on the upstream side of each outer cylinder. and a combustor cooling structure for a gas turbine, in which a large number of communication ports having a diameter larger than the width of the inner groove are bored in a staggered manner in the circumferential direction near the downstream end of each inner cylinder.
JP7450287A 1987-03-30 1987-03-30 Gas turbine combustor cooling structure Expired - Lifetime JPH0769058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7450287A JPH0769058B2 (en) 1987-03-30 1987-03-30 Gas turbine combustor cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7450287A JPH0769058B2 (en) 1987-03-30 1987-03-30 Gas turbine combustor cooling structure

Publications (2)

Publication Number Publication Date
JPS63243631A true JPS63243631A (en) 1988-10-11
JPH0769058B2 JPH0769058B2 (en) 1995-07-26

Family

ID=13549155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7450287A Expired - Lifetime JPH0769058B2 (en) 1987-03-30 1987-03-30 Gas turbine combustor cooling structure

Country Status (1)

Country Link
JP (1) JPH0769058B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04320717A (en) * 1991-04-16 1992-11-11 General Electric Co <Ge> Method and device for injecting diluting air
JP2009103438A (en) * 2007-10-22 2009-05-14 Snecma Combustion chamber with optimized dilution and turbomachine provided with the same
EP2375160A2 (en) 2010-04-06 2011-10-12 Gas Turbine Efficiency Sweden AB Angled seal cooling system
CN113172265A (en) * 2021-04-15 2021-07-27 西安航天动力试验技术研究所 Anti-cavity-crossing high-temperature gas generation device body and machining method thereof
CN116202106A (en) * 2023-03-08 2023-06-02 中国科学院工程热物理研究所 Engine combustion chamber flame tube structure with coupling design of air film holes and blending holes

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04320717A (en) * 1991-04-16 1992-11-11 General Electric Co <Ge> Method and device for injecting diluting air
JP2009103438A (en) * 2007-10-22 2009-05-14 Snecma Combustion chamber with optimized dilution and turbomachine provided with the same
EP2375160A2 (en) 2010-04-06 2011-10-12 Gas Turbine Efficiency Sweden AB Angled seal cooling system
CN113172265A (en) * 2021-04-15 2021-07-27 西安航天动力试验技术研究所 Anti-cavity-crossing high-temperature gas generation device body and machining method thereof
CN116202106A (en) * 2023-03-08 2023-06-02 中国科学院工程热物理研究所 Engine combustion chamber flame tube structure with coupling design of air film holes and blending holes
CN116202106B (en) * 2023-03-08 2024-05-03 中国科学院工程热物理研究所 Engine combustion chamber flame tube structure with coupling design of air film holes and blending holes

Also Published As

Publication number Publication date
JPH0769058B2 (en) 1995-07-26

Similar Documents

Publication Publication Date Title
US4642993A (en) Combustor liner wall
US7464554B2 (en) Gas turbine combustor heat shield panel or exhaust panel including a cooling device
US3507115A (en) Recuperative heat exchanger for gas turbines
EP0911486B1 (en) Gas turbine stationary blade cooling
US7389583B2 (en) Method of manufacturing a stator component
US4805397A (en) Combustion chamber structure for a turbojet engine
JP4150938B2 (en) High temperature gas control structure for gas turbine
US9238970B2 (en) Blade outer air seal assembly leading edge core configuration
US20050268613A1 (en) Method and apparatus for cooling combustor liner and transition piece of a gas turbine
US8544277B2 (en) Turbulated aft-end liner assembly and cooling method
US8894363B2 (en) Cooling module design and method for cooling components of a gas turbine system
US6890148B2 (en) Transition duct cooling system
JP4452919B2 (en) Components subject to high thermal loads during operation and methods for manufacturing such components
US20100186415A1 (en) Turbulated aft-end liner assembly and related cooling method
JP4677086B2 (en) Film cooled combustor liner and method of manufacturing the same
US7870739B2 (en) Gas turbine engine curved diffuser with partial impingement cooling apparatus for transitions
US20050175444A1 (en) Cooling system for an airfoil vane
US5160241A (en) Multi-port air channeling assembly
JP3110338B2 (en) Combustor cooling structure with steam
EP3018418B1 (en) Combustor wall with aperture body with cooling circuit
GB2262573A (en) Turbine casing assembly.
US11204169B2 (en) Combustor of gas turbine engine and method
US11454451B2 (en) Tube bank heat exchanger
GB2339468A (en) Cross-flame tube for gas-turbine engine
JP4546100B2 (en) Method and apparatus for heat exchange

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070726

Year of fee payment: 12