JPS63243051A - Production of cycloalkanone - Google Patents

Production of cycloalkanone

Info

Publication number
JPS63243051A
JPS63243051A JP62074460A JP7446087A JPS63243051A JP S63243051 A JPS63243051 A JP S63243051A JP 62074460 A JP62074460 A JP 62074460A JP 7446087 A JP7446087 A JP 7446087A JP S63243051 A JPS63243051 A JP S63243051A
Authority
JP
Japan
Prior art keywords
catalyst
compound
alcohol
cyclopentanone
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62074460A
Other languages
Japanese (ja)
Other versions
JPH0629208B2 (en
Inventor
Takashi Kumazawa
熊沢 尚
Mitsugi Kanzawa
神沢 貢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP62074460A priority Critical patent/JPH0629208B2/en
Publication of JPS63243051A publication Critical patent/JPS63243051A/en
Publication of JPH0629208B2 publication Critical patent/JPH0629208B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To facilitate separation and generation of a catalyst, improve catalyst activity and obtain the titled compound in high conversion and selectivity, by subjecting a cycloalkene to liquid oxidation in the coexistence of a specific catalyst, an active carbon and alcohol further in the presence of a specific amount of water. CONSTITUTION:A cycloalkene is subjected to liquid oxidation using at least one kind of compound selected from a palladium compound, copper compound and iron compound in the coexistence of an active carbon treated with H2O2 and alcohol and the presence of water of 10-1,000mmol. per 1mmol. palladium compound to efficiently provide the aimed compound useful as an intermediate, solvent, etc., for a high polymer compound such as nylon and polyester, plasticizer, synthetic lubricant and organic chemicals. The used catalyst can repeatedly be used because of having reduced lowering of catalyst activity when the catalyst is recovered and reused.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はシクロアルカノンの改良された製造方法に関す
るものである。さらに詳しくいえば、本発明は、例えば
ナイロンやポリエステルなどの高分子化合物、可塑剤、
合成潤滑油、その他、有機薬品の中間原料として、ある
いは溶剤などとして極めて有用なシクロアルカノンを、
対応するシクロアルケンの液相酸化により効率よく製造
する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an improved method for producing cycloalkanones. More specifically, the present invention relates to polymer compounds such as nylon and polyester, plasticizers,
Cycloalkanones are extremely useful as intermediate raw materials for synthetic lubricants and other organic chemicals, and as solvents.
The present invention relates to a method for efficiently producing the corresponding cycloalkene by liquid phase oxidation.

〔従来の技術〕[Conventional technology]

従来、環構成炭素数が5〜12のシクロアルカノンは、
各種用途の中間原料や溶剤などとして重要な化合物であ
ることが知られている。
Conventionally, cycloalkanones having 5 to 12 ring carbon atoms are
It is known to be an important compound as an intermediate raw material or solvent for various uses.

例えばシクロヘキサノンおよびシクロドデカノンからそ
れぞれ誘導されるε−カプロラクタムおよびラウリルラ
クタムは、それぞれナイロン6およびナイロン12の原
料モノマーとして重要であり、また、シクロアルカノン
を酸化して得られる各種ジカルボン酸、例えばシクロペ
ンクノンから得られるグルタル酸、シクロヘキサノンか
ら得られるアジピン酸、シクロノナノンから得られるア
ゼライン酸、シクロペンタノンの酸化三量化またはシク
ロデカノンから得られるセバシン酸、シクロヘキサノン
の酸化三量化またはシクロドデカノンから得られるドデ
カンニ酸などは、各種ナイロンやポリエステル、可塑剤
、合成潤滑油、その他有機薬品の原料などとして重要で
ある。さらに、シクロヘキサノンは汎用溶剤として多量
に用いられており、また高純度のシクロペンタノンはエ
レクトロニクス分野における特殊溶剤として近年脚光を
あびている。
For example, ε-caprolactam and lauryllactam, which are derived from cyclohexanone and cyclododecanone, respectively, are important as raw material monomers for nylon 6 and nylon 12, respectively, and various dicarboxylic acids obtained by oxidizing cycloalkanone, such as cyclo Glutaric acid obtained from penquinone, adipic acid obtained from cyclohexanone, azelaic acid obtained from cyclononanone, sebacic acid obtained from oxidative trimerization of cyclopentanone or cyclodecanone, dodecanni obtained from oxidative trimerization of cyclohexanone or cyclododecanone. Acids are important as raw materials for various nylons, polyesters, plasticizers, synthetic lubricants, and other organic chemicals. Furthermore, cyclohexanone is used in large quantities as a general-purpose solvent, and high-purity cyclopentanone has recently been in the spotlight as a special solvent in the electronics field.

ところで、シクロアルケンを酸化して対応する環状ケト
ン類を製造する試みがこれまで種々なされている。
By the way, various attempts have been made to oxidize cycloalkenes to produce corresponding cyclic ketones.

例えば、シクロアルケンを液相酸化してシクロアルカノ
ンを製造する方法として、アルコール中でパラジウム化
合物および銅化合物もしくは鉄化合物を触媒として分子
状酸素で液相酸化する方法が提案されている(特公昭6
0−330号公報、特公昭60−332号公報)。
For example, as a method for producing cycloalkanones by liquid-phase oxidation of cycloalkenes, a method has been proposed in which liquid-phase oxidation is carried out with molecular oxygen in alcohol using a palladium compound and a copper or iron compound as a catalyst (Tokuko Showa). 6
0-330, Japanese Patent Publication No. 60-332).

しかし、この方法は、パラジウムミラーが生成するので
、使用済み触媒の分離再生が困難であろう といる欠点がある。
However, this method has the disadvantage that palladium mirrors are produced, which may make it difficult to separate and regenerate the spent catalyst.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、このような従来のシクロアルケンを酸化して
対応するシクロアルカノンを製造する方法が有する欠点
を改良し、触媒の分離再生を容易にし、また、触媒活性
を向上させるとともに、触媒の活性低下を抑制して、高
い転化率および選択率でもって、シクロアルケンからシ
クロアルカノンを製造する実用的な方法の提供を目的と
するものである。
The present invention improves the drawbacks of the conventional method of oxidizing a cycloalkene to produce a corresponding cycloalkanone, facilitates the separation and regeneration of the catalyst, improves the catalyst activity, and improves the efficiency of the catalyst. The object of the present invention is to provide a practical method for producing cycloalkanones from cycloalkenes with high conversion and selectivity while suppressing a decrease in activity.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、前記目的を達成すべく鋭意研究を重ねた
結果、反応系に特定量の水を存在させることにより、触
媒活性を向上させ、触媒の活性低下を抑制することを見
出し、この知見に基づいて本発明を完成するに至った。
As a result of extensive research to achieve the above object, the present inventors have discovered that the presence of a specific amount of water in the reaction system improves catalytic activity and suppresses the decrease in catalytic activity. The present invention was completed based on the findings.

すなわち、本発明は、シクロアルケンを液相酸化してシ
クロアルカノンを製造するにあたり、触媒として(A)
パラジウム化合物と(B)銅化合物および鉄化合物の中
から選ばれた少なくとも1種の化合物とを用い、活性炭
およびアルコールの共存下、水をパラジウム化合物1ミ
リモルあたり10〜1000ミリモル存在させて該シク
ロアルケンを液相酸化することを特徴とするシクロアル
カノンの製造方法を提供するものである。
That is, the present invention uses (A) as a catalyst when producing a cycloalkanone by liquid phase oxidation of a cycloalkene.
The cycloalkene is prepared by using a palladium compound and (B) at least one compound selected from copper compounds and iron compounds, in the presence of activated carbon and alcohol, and in the presence of 10 to 1000 mmol of water per 1 mmol of the palladium compound. The present invention provides a method for producing a cycloalkanone, which is characterized by carrying out liquid phase oxidation of a cycloalkanone.

本発明方法において、原料として用いるシクロアルケン
は、少なくとも不飽和結合1個を有する無置換または置
換基を有するものであり、好ましいものとしては、環構
成炭素数が5〜12の不飽和結合1個を有する無置換ま
たは環上に低級アルキル基をもつシクロアルケンが挙げ
られる。このようなものとしては、例えばシクロペンテ
ン、メチルシクロペンテン各異性体、シクロヘキセン、
メチルシクロヘキセン各異性体、エチルシクロヘキセン
各異性体、シクロオクテン、シクロドデセンなどを、原
料の入手の容易さおよび得られるシクロアルカノンの有
用性などから、特に好ましく挙げることができる。
In the method of the present invention, the cycloalkene used as a raw material is unsubstituted or has a substituent having at least one unsaturated bond, and preferably one having 5 to 12 ring carbon atoms and one unsaturated bond. Examples include cycloalkenes which are unsubstituted or have a lower alkyl group on the ring. Examples of such substances include cyclopentene, methylcyclopentene isomers, cyclohexene,
Particularly preferred are methylcyclohexene isomers, ethylcyclohexene isomers, cyclooctene, cyclododecene, etc. from the viewpoint of easy availability of raw materials and usefulness of the resulting cycloalkanones.

前記シクロペンテンは、エチレン生産量の4〜5重量%
副生ずるシクロペンタジェンの部分水添により、またシ
クロヘキセンは、シクロヘキサンの部分脱水素やクロロ
シクロヘキサンの脱塩酸などにより容易に得ることがで
きるし、メチルシクロヘキセン各異性体およびエチルシ
クロヘキセン各異性体は、それぞれトルエンおよびエチ
ルベンゼンの水添により得られるメチルシクロヘキサン
およびエチルシクロヘキサンを部分脱水素することによ
り、容易に得ることができる。また、シクロオクテンは
アセチレンの四量化により得られるシクロオクタテトラ
エンを部分水添することにより得られ、一方シクロドデ
センはブタジェンの三量化により得られるシクロドデカ
トリエンを部分水添することにより容易に得られる。
The cyclopentene accounts for 4 to 5% by weight of the ethylene production amount.
Cyclohexene can be easily obtained by partial hydrogenation of the by-produced cyclopentadiene, cyclohexene can be easily obtained by partial dehydrogenation of cyclohexane, dehydrochlorination of chlorocyclohexane, etc., and each isomer of methylcyclohexene and each isomer of ethylcyclohexene can be obtained, respectively. It can be easily obtained by partially dehydrogenating methylcyclohexane and ethylcyclohexane obtained by hydrogenating toluene and ethylbenzene. Additionally, cyclooctene can be obtained by partially hydrogenating cyclooctatetraene obtained by tetramerizing acetylene, while cyclododecene can be easily obtained by partially hydrogenating cyclododecatriene obtained by trimerizing butadiene. .

これらの環状オレフィン類は、酸化反応を阻害しない範
囲で飽和のシクロアルカン類を含有していてもよい。
These cyclic olefins may contain saturated cycloalkanes as long as the oxidation reaction is not inhibited.

本発明方法においては、触媒として、(A)パラジウム
化合物と、(B)銅化合物および鉄化合物の中から選ば
れた少なくとも1種の化合物とから成る複合系触媒が用
いられる。
In the method of the present invention, a composite catalyst comprising (A) a palladium compound and (B) at least one compound selected from copper compounds and iron compounds is used.

前記触媒の(A)成分として用いられるパラジウム化合
物としては、例えばハロゲン化物、無機酸塩、有機酸塩
、有機錯塩などが挙げられるが、これらの中で塩化パラ
ジウム、特に二塩化パラジウムが好適である。この(A
)成分の添加量は、通常環状オレフィン類に対して0.
001〜10重景%、好蛍石くは0.01〜4重量%の
範囲で選ばれる。
Examples of the palladium compound used as component (A) of the catalyst include halides, inorganic acid salts, organic acid salts, organic complex salts, etc. Among these, palladium chloride, particularly palladium dichloride, is preferred. . This (A
) component is usually added in an amount of 0.
The amount of fluorite is selected in the range of 0.01 to 10% by weight, and the amount of fluorite is selected in the range of 0.01 to 4% by weight.

また、(B)成分として用いられる銅化合物、鉄化合物
としては、例えばハロゲン化物、無機酸塩、有機酸塩、
有機錯塩などが挙げられるが、これらのなかで、塩化第
二銅、塩化第二鉄などの塩化物が好適である。これらの
化合物はそれぞれ単独で用いてもよいし、2種以上組み
合わせて用いてもよく、その添加量は環状オレフィン類
に対し、通常0.01〜20重量%、好ましくは0.1
〜10重量%の゛範囲で選ばれる。
In addition, examples of the copper compound and iron compound used as component (B) include halides, inorganic acid salts, organic acid salts,
Examples include organic complex salts, among which chlorides such as cupric chloride and ferric chloride are preferred. These compounds may be used alone or in combination of two or more, and the amount added is usually 0.01 to 20% by weight, preferably 0.1% by weight, based on the cyclic olefin.
-10% by weight.

本発明においては、活性炭を共存させる必要がある。活
性炭は前記触媒の担体として存在してもよいし、触媒と
は分離した状態で存在してもよい。
In the present invention, it is necessary to coexist activated carbon. Activated carbon may be present as a carrier for the catalyst, or may be present separately from the catalyst.

活性炭の存在は、転化率および選択率が向上し、触媒の
分離再生を容易にする。
The presence of activated carbon improves conversion and selectivity and facilitates separation and regeneration of the catalyst.

活性炭にパラジウム化合物または銅もしくは鉄化合物を
担持させる方法については特に制限はなく、従来慣用さ
れている方法を用いることができる。例えば、二塩化パ
ラジウムおよび銅または鉄の塩化物を所定濃度で含有す
る塩酸酸性水溶液中に、活性炭所定量を加え、好ましく
は60〜100℃の温度に加熱して蒸発乾固し、次いで
このものを空気流通下に好ましくは50〜300℃の範
囲の温度で通常2〜8時間程度焼成することにより、活
性炭にパラジウム化合物と銅または鉄化合物点が担持さ
れた触媒が得られる。このようにして得られた触媒中の
金属元素の担持量はそれぞれ通常0.01〜10重量%
、好ましくは0.1〜3重量%の範囲にあることが望ま
しい。
There is no particular restriction on the method of supporting the palladium compound or the copper or iron compound on activated carbon, and any conventionally used method can be used. For example, a predetermined amount of activated carbon is added to a hydrochloric acid aqueous solution containing palladium dichloride and copper or iron chloride at a predetermined concentration, and the activated carbon is heated to a temperature of preferably 60 to 100°C to evaporate to dryness. A catalyst in which a palladium compound and copper or iron compound points are supported on activated carbon can be obtained by calcining the mixture under air circulation at a temperature preferably in the range of 50 to 300° C. for usually about 2 to 8 hours. The amount of metal elements supported in the catalyst thus obtained is usually 0.01 to 10% by weight.
, preferably in the range of 0.1 to 3% by weight.

ここで用いる活性炭は様々なものがあるが、例えば木材
、ヤシガラ、リグニン、牛骨、亜炭、石炭などを原料と
して炭化し、これを活性化し、さらに必要に応じて造粒
したものが用いられる。とくに好ましくはこれらの活性
炭を過酸化水素で処理したものが用いられる。過酸化水
素の処理法は過酸化水素を活性炭に接触させる方法であ
ればよく、液相または気相で接触させるこ七により行ね
れる。添加する活性炭の量は特に限定されないが、通常
は、パラジウム化合物1ミリモルあたり、5〜50g1
好ましくは7〜25gである。
There are various types of activated carbon used here, but for example, those made by carbonizing wood, coconut shell, lignin, cow bone, lignite, coal, etc. as raw materials, activating this, and granulating it if necessary are used. Particularly preferably, activated carbon treated with hydrogen peroxide is used. The method for treating hydrogen peroxide may be any method in which hydrogen peroxide is brought into contact with activated carbon, and this can be carried out by bringing hydrogen peroxide into contact with activated carbon in a liquid phase or a gas phase. The amount of activated carbon to be added is not particularly limited, but is usually 5 to 50 g per mmol of palladium compound.
Preferably it is 7 to 25 g.

本発明方法においては、アルコール共存下に水を存在さ
せて酸化を行うことが必要である。
In the method of the present invention, it is necessary to carry out oxidation in the presence of water in the presence of alcohol.

アルコールとしては、炭素数1〜2oの脂肪族アルコー
ル、脂環式アルコールおよびこれらの芳香環置換アルコ
ールが好ましく、直鎖状のものでも分枝鎖状のものでも
よいし、第一級、第二級、第三級のいずれのものであっ
てもよい。このようなアルコールとしては、例えばメチ
ルアルコール、エチルアルコール、n−プロピルアルコ
ール、イソプロピルアルコール、n−ブチルアルコール
、イソブチルアルコール、5ec−ブチルアルコール、
tert−ブチルアルコール、ペンチルアルコール、ヘ
キシルアルコール、ヘプチルアルコール、n−オクチル
アルコール、2−エチルヘキシルアルコール、ノニルア
ルコールなどの脂肪族アルコール、シクロペンチルアル
コール、シクロヘキシルアルコールなどの脂環式アルコ
ール、ベンジルアルコール、フェニルエチルアルコール
、フェニルプロピルアルコールなどの芳香環置換アルコ
ールなどを挙げることができる。
As the alcohol, aliphatic alcohols, alicyclic alcohols, and aromatic ring-substituted alcohols having 1 to 2 carbon atoms are preferable, and they may be linear or branched, and may be primary or secondary. It may be either grade 3 or grade 3. Examples of such alcohols include methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, 5ec-butyl alcohol,
Aliphatic alcohols such as tert-butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, n-octyl alcohol, 2-ethylhexyl alcohol, nonyl alcohol, alicyclic alcohols such as cyclopentyl alcohol and cyclohexyl alcohol, benzyl alcohol, phenylethyl alcohol and aromatic ring-substituted alcohols such as phenylpropyl alcohol.

これらのアルコールはそれぞれ単独で用いてもよいし、
2種以上組み合わせて用いてもよく、また本発明の目的
を損なわない範囲で、該アルコールと相溶性のある溶剤
、例えばジオキサン、テトラヒドロフランなどのエーテ
ル類、アセトン、メチルエチルケトンなどのケトン類、
酢酸メチル、酢酸エチルなどのエステル類、シクロヘキ
サンなどの脂環式炭化水素類、ベンゼン、トルエンなど
の芳香族炭化水素類などを含有していてもよい。
Each of these alcohols may be used alone, or
Two or more types may be used in combination, and solvents that are compatible with the alcohol, such as ethers such as dioxane and tetrahydrofuran, ketones such as acetone and methyl ethyl ketone, as long as the object of the present invention is not impaired.
It may contain esters such as methyl acetate and ethyl acetate, alicyclic hydrocarbons such as cyclohexane, aromatic hydrocarbons such as benzene and toluene, and the like.

水はパラジウム化合物1ミリモルあたり、10〜100
 Q、ミリモル、好ましくは30〜600、特に好まし
くは40〜400ミリモル反応系に添加する。水の量が
10ミリモル未満では触媒の活性が向上せず、1000
ミリモルを超えると触媒の活性低下が起こる。
Water is 10 to 100 per mmol of palladium compound.
Q, mmol, preferably 30 to 600, particularly preferably 40 to 400 mmol, is added to the reaction system. If the amount of water is less than 10 mmol, the activity of the catalyst will not improve;
When the amount exceeds millimole, the activity of the catalyst decreases.

本発明方法においては、酸化剤として過酸化水素、te
rt−ブチルパーオキサイドなどの過酸化物や酸素など
を用いることができるが、分子状酸素を用いることが好
ましく、例えば、純酸素ガスや、酸素ガスを反応に不活
性な希釈剤、例えば窒素、ヘリウム、アルゴンなどで希
釈した混合ガス、あるいは空気などが用いられる。
In the method of the present invention, hydrogen peroxide, te
Peroxides such as rt-butyl peroxide, oxygen, etc. can be used, but it is preferable to use molecular oxygen. For example, pure oxygen gas or a diluent inert to the reaction of oxygen gas, such as nitrogen, A mixed gas diluted with helium, argon, etc., or air is used.

次に、本発明の実施態様の好適な1例について説明する
と、まず、シクロアルケン100重量部に対し、アルコ
ールを好ましくは10〜1000重量部の範囲で加え、
これに触媒として、活性炭に(A)成分および/または
(B)成分が担持されたものをそれぞれ所定量添加し、
次いで、分子状酸素などの酸化剤を用いてシクロアルケ
ンを通常、20〜200℃、好ましくは30〜100 
’Cの範囲において液相酸化を行う。反応圧力について
は、反応系が液相を保つのに必要な圧力以上であれば特
に制限はないが、通常、常圧ないし20kg/cal−
Gの範囲で酸化が行われる。反応温度があまり低すぎる
と反応速度が遅くて実用的でなく、一方200°Cを超
えると副反応や溶媒の損失が増大する上に、設備が高価
なものとなる。
Next, to explain one preferred example of the embodiment of the present invention, first, alcohol is preferably added in a range of 10 to 1000 parts by weight to 100 parts by weight of cycloalkene,
To this, a predetermined amount of activated carbon supported with component (A) and/or component (B) is added as a catalyst,
Next, the cycloalkene is heated using an oxidizing agent such as molecular oxygen, usually at 20-200°C, preferably at 30-100°C.
Liquid phase oxidation is carried out in the 'C range. There is no particular restriction on the reaction pressure as long as it is at least the pressure necessary to maintain the liquid phase of the reaction system, but it is usually between normal pressure and 20 kg/cal-
Oxidation is carried out in the G range. If the reaction temperature is too low, the reaction rate will be slow and impractical, while if it exceeds 200°C, side reactions and loss of solvent will increase, and the equipment will become expensive.

反応時間は、反応温度や触媒の種類および添加量などに
よって異なるが、通常10分〜24時間の範囲である。
The reaction time varies depending on the reaction temperature, the type of catalyst, the amount added, etc., but is usually in the range of 10 minutes to 24 hours.

このようにして得られたシクロアルカノンは通常用いら
れている方法に従って、蒸留やその他の手段により単離
される。また、例えばろ過、遠心分離、沈降などの手段
によって容易に分離、回収することができる。そして、
反応液を濾過して回収された触媒は再使用しても活性の
低下が小さい。
The cycloalkanone thus obtained is isolated by distillation or other means according to commonly used methods. Furthermore, it can be easily separated and recovered by means such as filtration, centrifugation, and sedimentation. and,
Even if the catalyst recovered by filtering the reaction solution is reused, its activity will not decrease much.

〔実施例〕〔Example〕

次に実施例により本発明をさらに詳細に説明するが、本
発明はこれらの例によってなんら限定されるものではな
い。
EXAMPLES Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to these examples in any way.

実施例1 煎寡聞製 二塩化パラジウム(PdC1z )Immo 1を濃塩
酸10m1に溶解し、これに純水10m1を加えて希釈
した。この溶液に粒状活性炭8gを加えて、湯浴上にて
80℃で蒸発乾固したのち、これを空気流通下に250
℃で4時間焼成し、パラジウムが1.3重量%担持され
た活性炭担持触媒を得た。
Example 1 Palladium dichloride (PdC1z) Immo 1 manufactured by Senkohun Co., Ltd. was dissolved in 10 ml of concentrated hydrochloric acid, and 10 ml of pure water was added to dilute the solution. 8 g of granular activated carbon was added to this solution and evaporated to dryness at 80°C on a hot water bath.
It was calcined at ℃ for 4 hours to obtain an activated carbon-supported catalyst in which 1.3% by weight of palladium was supported.

反応方式 内容積200mj!のステンレス製オートクレーブに、
上記の活性炭担持触媒3.5g、エタノール40mA、
シクロペンテン6.8gおよび塩化第二銅(CuC12
・2H20)0.8mg原子、水56mmol  (1
mjiりを入れた。このオートクレーブに、酸素を9k
g/CIJG圧入し、50℃で6時間、攪拌しながら反
応させた。反応後、反応液と触媒を濾別し、濾液を分析
した結果、シクロペンテンの転化率は85%、シクロペ
ンタノンの選択率は87%であり、シクロペンタノンの
収率は74%であった。
Reaction method internal volume 200 mj! in a stainless steel autoclave,
3.5 g of the above activated carbon supported catalyst, 40 mA of ethanol,
6.8 g of cyclopentene and cupric chloride (CuC12
・2H20) 0.8 mg atom, water 56 mmol (1
I added mjiri. Add 9k of oxygen to this autoclave.
g/CIJG was injected under pressure, and the mixture was reacted at 50° C. for 6 hours with stirring. After the reaction, the reaction solution and catalyst were separated by filtration, and the filtrate was analyzed, and the results showed that the conversion rate of cyclopentene was 85%, the selectivity of cyclopentanone was 87%, and the yield of cyclopentanone was 74%. .

次に、濾別した触媒を内容積200mJのステンレス製
オートクレーブに入れ、先に示した反応方式と同様の操
作を行った。この方式による触媒の繰り返し使用を5回
行い、5回目の反応液を分析した結果、シクロペンテン
の転化率は82%、シクロペンタノンの選択率は83%
であり、シクロペンタノンの収率は68%であった。
Next, the filtered catalyst was placed in a stainless steel autoclave with an internal volume of 200 mJ, and the same reaction method as described above was carried out. The catalyst was repeatedly used in this manner five times, and the fifth reaction solution was analyzed. As a result, the conversion rate of cyclopentene was 82%, and the selectivity of cyclopentanone was 83%.
The yield of cyclopentanone was 68%.

実施例2 実施例1において、添加する水の量を112mmol(
2mA)に変えた以外は、実施例1の反応方式と同様の
操作を行った。その結果、シクロペンテンの転化率は8
7%、シクロペンタノンの選択率は86%であり、シク
ロペンタノンの収率は75%であった。また、触媒の繰
り返し使用を5回行い、5回目の反応液を分析した結果
、シクロペンテンの転化率は81%、シクロペンタノン
の選択率は89%であり、シクロペンタノンの収率は7
2%であった。
Example 2 In Example 1, the amount of water added was 112 mmol (
The same reaction method as in Example 1 was performed except that the current was changed to 2 mA). As a result, the conversion rate of cyclopentene was 8
7%, the selectivity for cyclopentanone was 86%, and the yield of cyclopentanone was 75%. Furthermore, as a result of repeating the use of the catalyst 5 times and analyzing the reaction solution at the 5th time, the conversion rate of cyclopentene was 81%, the selectivity of cyclopentanone was 89%, and the yield of cyclopentanone was 7.
It was 2%.

実施例3 実施例1において、添加する水の量を224mmo I
  (4m/りに変えた以外は、実施例1の反応方式と
同様の操作を行った。その結果、シクロペンテンの転化
率は82%、シクロペンタノンの選択率は86%であり
、シクロペンタノンの収率は70%であった。また、触
媒の繰り返し使用を5回行い、5回目の反応液を分析し
た結果、シクロペンテンの転化率は72%、シクロペン
タノンの選択率は90%であり、シクロペンタノンの収
率は65%であった。
Example 3 In Example 1, the amount of water added was 224 mmo I
(Other than changing the reaction rate to 4 m/liter, the same operation as in the reaction method of Example 1 was performed. As a result, the conversion rate of cyclopentene was 82%, the selectivity of cyclopentanone was 86%, and cyclopentanone The yield of cyclopentene was 70%.The catalyst was used 5 times and the reaction solution of the 5th time was analyzed, and the conversion rate of cyclopentene was 72%, and the selectivity of cyclopentanone was 90%. , the yield of cyclopentanone was 65%.

比較例1 煎寡里製 。Comparative example 1 Made by Senokusato.

二塩化パラジウム(PdC1z )1mmo 1を濃塩
酸10m1に溶解し、これに純水10mβを加えて希釈
した。この溶液に粒状活性炭8gを加えて、湯浴上にて
80℃で蒸発乾固したのち、これを空気流通下に250
℃で4時間焼成し、パラジウムが1.3重量%担持され
た活性炭担持触媒を得た。
1 mmol of palladium dichloride (PdC1z) was dissolved in 10 ml of concentrated hydrochloric acid, and 10 mβ of pure water was added thereto for dilution. 8 g of granular activated carbon was added to this solution and evaporated to dryness at 80°C on a hot water bath.
It was calcined at ℃ for 4 hours to obtain an activated carbon-supported catalyst in which 1.3% by weight of palladium was supported.

反応方式 内容積200mβのステンレス製オートクレーブに、上
記の活性炭担持触媒3.5g、エタノール40mβ、シ
クロペンテン6.8gおよび塩化第二銅(CuC12・
2H20)0.8nw原子を入れた。
Reaction method In a stainless steel autoclave with an internal volume of 200 mβ, 3.5 g of the above activated carbon-supported catalyst, 40 mβ of ethanol, 6.8 g of cyclopentene, and cupric chloride (CuC12.
2H20) 0.8nw atoms were added.

このオートクレーブに、酸素を9kg/cJG圧入し、
50℃で6時間、攪拌しながら反応させた。反応後、反
応液と触媒を濾別し、濾液を分析した結果、シクロペン
テンの転化率は80%、シクロペンタノンの選択率は8
1%であり、シクロペンタノンの収率は65%であった
Oxygen was pressurized at 9 kg/cJG into this autoclave,
The reaction was carried out at 50° C. for 6 hours with stirring. After the reaction, the reaction solution and catalyst were separated by filtration, and the filtrate was analyzed. As a result, the conversion rate of cyclopentene was 80%, and the selectivity of cyclopentanone was 8.
1%, and the yield of cyclopentanone was 65%.

次に、濾別した触媒を内容積200 m Itのステン
レス製オートクレーブに入れ、先に示した反応方式と同
様の操作を行った。この方式による触媒の繰り返し使用
を5回行い、5回目の反応液を分析した結果、シクロペ
ンテンの転化率は52%、シクロペンタノンの選択率は
76%であり、シクロペンタノンの収率は39%であっ
た。
Next, the filtered catalyst was placed in a stainless steel autoclave having an internal volume of 200 m It, and the same reaction method as described above was carried out. The catalyst was repeatedly used in this manner five times, and the fifth reaction solution was analyzed. As a result, the conversion rate of cyclopentene was 52%, the selectivity of cyclopentanone was 76%, and the yield of cyclopentanone was 39%. %Met.

実施例4 触媒の調製 粒状活性炭16gを、35%過酸化水素溶液1m14に
純水100mAを加えた水溶液中に浸漬して、室温で1
時間かきまぜたのち、湯浴上にて80℃で蒸発乾固した
Example 4 Preparation of catalyst 16 g of granular activated carbon was immersed in an aqueous solution of 1 mL of 35% hydrogen peroxide solution and 100 mA of pure water.
After stirring for an hour, the mixture was evaporated to dryness at 80°C on a hot water bath.

一方、二塩化パラジウム(PdCI2)1mmo1を濃
塩酸10m1に溶解し、これに純水10m1を加えて希
釈した。この溶液に前記の過酸化水素処理した粒状活性
炭8gを加えて、湯浴上にて80℃で蒸発乾固したのち
、これを空気流通下に250℃で4時間焼成し、パラジ
ウムが1.3重量%担持された活性炭担持触媒を得た。
On the other hand, 1 mmol of palladium dichloride (PdCI2) was dissolved in 10 ml of concentrated hydrochloric acid, and 10 ml of pure water was added to dilute the solution. To this solution, 8 g of the granular activated carbon treated with hydrogen peroxide was added, and the mixture was evaporated to dryness at 80°C on a hot water bath. This was then calcined at 250°C for 4 hours under air circulation, resulting in a palladium content of 1.3 An activated carbon-supported catalyst having a weight percent support was obtained.

反庭友人 内容積200m1のステンレス製オートクレーブに、上
記の活性炭担持触媒3.5g、エタノール40 m 1
4、シクロペンテン6.8gおよび塩化第二銅(CuC
1z  ・2Hz O)0.8ntr原子、水112m
mo 1  (2mlを入れた。このオートクレーブに
、酸素を9kg/cdG圧太し、50℃で6時間、攪拌
しながら反応させた。反応後、反応液と触媒を濾別し、
濾液を分析した結果、シクロペンテンの転化率は91%
、シクロペンタノンのM損率は88%であり、シクロペ
ンタノンの収率は80%であった。
In a stainless steel autoclave with an internal volume of 200 m1, 3.5 g of the above activated carbon-supported catalyst and 40 m1 of ethanol were placed.
4. 6.8 g of cyclopentene and cupric chloride (CuC
1z ・2Hz O) 0.8ntr atom, water 112m
Mo 1 (2 ml) was added to this autoclave, and 9 kg/cdG of oxygen was added to the autoclave, and the reaction was carried out at 50°C for 6 hours with stirring. After the reaction, the reaction solution and catalyst were separated by filtration.
As a result of analyzing the filtrate, the conversion rate of cyclopentene was 91%.
The M loss rate of cyclopentanone was 88%, and the yield of cyclopentanone was 80%.

次に、濾別した触媒を内容積200mj!のステンレス
製オートクレーブに入れ、先に示した反応方式と同様の
操作を行った。この方式による触媒の繰り返し使用を5
回行い、5回目の反応液を分析した結果、シクロペンテ
ンの転化率は82%、シクロペンタノンの選択率は90
%であり、シクロペンタノンの収率は74%であった。
Next, the filtered catalyst has an internal volume of 200mj! The mixture was placed in a stainless steel autoclave, and the same reaction method as described above was performed. Repeated use of catalyst using this method
As a result of analyzing the reaction solution of the fifth time, the conversion rate of cyclopentene was 82%, and the selectivity of cyclopentanone was 90%.
%, and the yield of cyclopentanone was 74%.

実施例5 実施例4において、添加する塩化第二銅(CuCI2 
・2HzO)の量を166■原子に変えた以外は実施例
4の反応方式と同様の操作を行った。
Example 5 In Example 4, cupric chloride (CuCI2
The same reaction method as in Example 4 was carried out except that the amount of 2HzO) was changed to 166 ■ atoms.

その結果、シクロペンテンの転化率は95%、シクロペ
ンタノンの選択率は88%であり、シクロペンタノンの
収率は83%であった。
As a result, the conversion rate of cyclopentene was 95%, the selectivity of cyclopentanone was 88%, and the yield of cyclopentanone was 83%.

また、触媒の繰り返し使用を5回行い、5回目の反応液
を分析した結果、シクロペンテンの転化率は94%、シ
クロペンタノンの選択率は85%であり、シクロペンタ
ノンの収率は80%であった。
In addition, the catalyst was repeatedly used 5 times and the reaction solution of the 5th time was analyzed. As a result, the conversion rate of cyclopentene was 94%, the selectivity of cyclopentanone was 85%, and the yield of cyclopentanone was 80%. Met.

実施例6 内容積200mβのステンレス製オートクレーブに、P
dC1z O,4,mmo 1、エタノール40m1l
、シクロペンテン6、8 g 、塩化第二銅(Cuc 
12−2H20)0.8w原子、水112mm。
Example 6 In a stainless steel autoclave with an internal volume of 200 mβ, P
dC1z O,4, mmo 1, ethanol 40ml 1l
, cyclopentene 6.8 g, cupric chloride (Cuc
12-2H20) 0.8w atom, water 112mm.

]  (2rr+jりおよび粉状活性炭6gを入れた。] (Added 2rr+j and 6g of powdered activated carbon.

このオートクレーブに、酸素を9kg10JG圧入し、
50℃で6時間、攪拌しながら反応させた。反応後、反
応液と触媒を濾別し、濾液を分析した結果、シクロペン
テンの転化率は84%、シクロペンタノンの選択率は8
8%であり、シクロペンタノンの収率は74%であった
Into this autoclave, pressurize 9 kg of oxygen at 10 JG.
The reaction was carried out at 50° C. for 6 hours with stirring. After the reaction, the reaction solution and catalyst were separated by filtration, and the filtrate was analyzed, and the conversion rate of cyclopentene was 84%, and the selectivity of cyclopentanone was 8.
The yield of cyclopentanone was 74%.

また、触媒の繰り返し使用を5回行い、5回目の反応液
を分析した結果、シクロペンテンの転化率は85%、シ
クロペンタノンの選択率は86%であり、シクロペンタ
ノンの収率ば73%であった。
Furthermore, as a result of repeating the use of the catalyst five times and analyzing the reaction solution for the fifth time, the conversion rate of cyclopentene was 85%, the selectivity of cyclopentanone was 86%, and the yield of cyclopentanone was 73%. Met.

〔発明の効果〕〔Effect of the invention〕

本発明のシクロアルカノンの製造方法によると、シクロ
アルケンから、高い転化率と選択率でもって対応するシ
クロアルカノンが得られる上に、触媒として用いられる
高価なパラジウムは活性炭を共存させることにより、容
易に分離回収することができる。また、本発明に用いる
触媒・は回収して再使用しても触媒活性の低下が小さく
、繰り返し使用が可能であり、本発明方法は実用的価値
の高い方法といえる。
According to the method for producing a cycloalkanone of the present invention, the corresponding cycloalkanone can be obtained from a cycloalkene with high conversion rate and selectivity, and the expensive palladium used as a catalyst can be used in the coexistence of activated carbon. It can be easily separated and recovered. In addition, even if the catalyst used in the present invention is recovered and reused, there is little decrease in catalytic activity, and repeated use is possible, so the method of the present invention can be said to be a method of high practical value.

Claims (1)

【特許請求の範囲】 1、シクロアルケンを液相酸化してシクロアルカノンを
製造するにあたり、触媒として( A)パラジウム化合物と(B)銅化合物および鉄化合物
の中から選ばれた少なくとも1種の化合物とを用い、活
性炭およびアルコールの共存下、水をパラジウム化合物
1ミリモルあたり10〜1000ミリモル存在させて該
シクロアルケンを液相酸化することを特徴とするシクロ
アルカノンの製造方法。 2、活性炭が過酸化水素で処理されている特許請求の範
囲第1項記載のシクロアルカノンの製造方法。
[Claims] 1. In producing a cycloalkanone by liquid phase oxidation of a cycloalkene, at least one selected from (A) a palladium compound and (B) a copper compound and an iron compound is used as a catalyst. 1. A method for producing a cycloalkanone, which comprises oxidizing the cycloalkanone in a liquid phase using a compound in the presence of activated carbon and an alcohol in the presence of 10 to 1000 mmol of water per 1 mmol of the palladium compound. 2. The method for producing a cycloalkanone according to claim 1, wherein the activated carbon is treated with hydrogen peroxide.
JP62074460A 1987-03-30 1987-03-30 Method for producing cycloalkanone Expired - Lifetime JPH0629208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62074460A JPH0629208B2 (en) 1987-03-30 1987-03-30 Method for producing cycloalkanone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62074460A JPH0629208B2 (en) 1987-03-30 1987-03-30 Method for producing cycloalkanone

Publications (2)

Publication Number Publication Date
JPS63243051A true JPS63243051A (en) 1988-10-07
JPH0629208B2 JPH0629208B2 (en) 1994-04-20

Family

ID=13547885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62074460A Expired - Lifetime JPH0629208B2 (en) 1987-03-30 1987-03-30 Method for producing cycloalkanone

Country Status (1)

Country Link
JP (1) JPH0629208B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57156428A (en) * 1981-03-20 1982-09-27 Agency Of Ind Science & Technol Preparation of cyclohexanone
JPS57156429A (en) * 1981-03-24 1982-09-27 Agency Of Ind Science & Technol Preparation of cyclohexanone
JPS58144345A (en) * 1982-02-17 1983-08-27 Agency Of Ind Science & Technol Production of cyclopentanone

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57156428A (en) * 1981-03-20 1982-09-27 Agency Of Ind Science & Technol Preparation of cyclohexanone
JPS57156429A (en) * 1981-03-24 1982-09-27 Agency Of Ind Science & Technol Preparation of cyclohexanone
JPS58144345A (en) * 1982-02-17 1983-08-27 Agency Of Ind Science & Technol Production of cyclopentanone

Also Published As

Publication number Publication date
JPH0629208B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
EP1619176B1 (en) Process for producing cycloalkanol and/or cycloalkanone
US6479705B2 (en) Process for preparing ketone, alcohol and hydroperoxide
JPH01226840A (en) Production of phenols and/or cyclohexanones
KR20090052807A (en) Process for producing cycloalkanol and/or cycloalkanone
JPS63243051A (en) Production of cycloalkanone
JPS63280039A (en) Production of cycloalkanone
US4394298A (en) Hydrogenation catalyst
RU2288211C2 (en) Method for catalytic decomposition of c6-c12-cycloalkyl hydroperoxides
JPWO2005105716A1 (en) Process for producing cycloalkanol and / or cycloalkanone
JPS62249941A (en) Production of cyclic ketone
JPH022867B2 (en)
JPS63104932A (en) Post treatment of reaction mixture containing cyclohexylhydroperoxide
JP5124959B2 (en) Process for producing cycloalkanol and / or cycloalkanone
JP3772209B2 (en) Production method of carboxylic acid
JP2719928B2 (en) Method for stereoisomerizing methyl-delta-4-tetrahydrophthalic anhydride
JPH0436142B2 (en)
JPS6160621A (en) Production of carbonyl compound
JP3526345B2 (en) Method for producing arylalkyl hydroperoxides
JP2006160726A (en) Method for oxidizing hydrocarbons
JP4635571B2 (en) Catalyst used for oxidation reaction of aliphatic cyclic hydrocarbons and oxidation method using the same
JP3433766B2 (en) Method for producing acyclic esters having an aromatic group
JP3401768B2 (en) Production method of lactones
JPS6362500B2 (en)
JP2004307430A (en) Method for producing 2-adamantanone
JP2000302703A (en) Preparation of cyclo-olefines