JPS63243022A - Method for removing endotoxin in producing pure water - Google Patents

Method for removing endotoxin in producing pure water

Info

Publication number
JPS63243022A
JPS63243022A JP7609487A JP7609487A JPS63243022A JP S63243022 A JPS63243022 A JP S63243022A JP 7609487 A JP7609487 A JP 7609487A JP 7609487 A JP7609487 A JP 7609487A JP S63243022 A JPS63243022 A JP S63243022A
Authority
JP
Japan
Prior art keywords
water
porous spherical
exchange resin
endotoxin
spherical crosslinked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7609487A
Other languages
Japanese (ja)
Other versions
JPH078355B2 (en
Inventor
Wataru Akoin
安居院 渡
Shuji Tamura
田村 修治
Hiroshi Kuyama
久山 宏
Keizo Ogino
圭三 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Organic Chemical Industries Inc
Original Assignee
Tokyo Organic Chemical Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Organic Chemical Industries Inc filed Critical Tokyo Organic Chemical Industries Inc
Priority to JP62076094A priority Critical patent/JPH078355B2/en
Priority to US07/167,239 priority patent/US4883596A/en
Priority to IL85835A priority patent/IL85835A/en
Priority to FI881383A priority patent/FI92019C/en
Priority to EP88302589A priority patent/EP0285321B1/en
Priority to DE8888302589T priority patent/DE3865869D1/en
Priority to MX010935A priority patent/MX173464B/en
Priority to DK181488A priority patent/DK181488A/en
Priority to BR8801524A priority patent/BR8801524A/en
Priority to CA000562927A priority patent/CA1310948C/en
Priority to AU14075/88A priority patent/AU593989B2/en
Priority to KR1019880003628A priority patent/KR910008994B1/en
Priority to NZ224096A priority patent/NZ224096A/en
Publication of JPS63243022A publication Critical patent/JPS63243022A/en
Priority to US07/403,035 priority patent/US5021391A/en
Priority to US07/622,482 priority patent/US5166123A/en
Priority to SG288/92A priority patent/SG28892G/en
Publication of JPH078355B2 publication Critical patent/JPH078355B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To remove endotoxins, by treating deionized water with a carbonaceous adsorbent prepared by carbonizing a porous spherical crosslinked polymer or further activating the carbonized polymer. CONSTITUTION:A deionized water from treatment with an ion exchange resin is treated with a carbonaceous adsorbent prepared by carbonizing a porous spherical crosslinked polymer (preferably a copolymer consisting of a monovinyl monomer and polyvinyl monomer) or further activating the carbonized polymer to remove endotoxins derived from bacteria growing or propagating in a system for producing pure water. The porous spherical crosslinked polymer is infusibilized with sulfuric acid, nitrogen dioxide, chlorine, etc., thermally decomposed at 300-900 deg.C temperature, directly used or then activated with steam, aqueous solution of zinc chloride, etc., and used as the carbonaceous adsorbent.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、純水製造システム内で生育又は増殖する細菌
に由来するエンドトキシンの多孔性球状架橋合成重合体
を炭化し、または炭化し賦活した炭素質吸着剤による除
去法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to carbonizing a porous spherical crosslinked synthetic polymer of endotoxin derived from bacteria that grows or proliferates in a pure water production system, or to carbonizing and activating a porous spherical crosslinked synthetic polymer. Concerning a removal method using a carbonaceous adsorbent.

〔従来の技術〕[Conventional technology]

エンドトキシン(細菌性内毒素)はダラム陰性細菌の細
胞膜成分として存在する複合リン脂質多糖体(リポポリ
サッカライド)で代表的な発熱性物質(パイロジエン)
である。
Endotoxin (bacterial endotoxin) is a complex phospholipid polysaccharide (lipopolysaccharide) that exists as a cell membrane component of Durum-negative bacteria and is a typical pyrogen (pyrogiene).
It is.

これが直接人体の血液に静脈注射などを介して混入する
と強烈な発熱反応を引き起こしたり、血管収縮、アドレ
ナリンに対する感受性の増大、血液凝固の促進と続いて
起こる低下等を起こし、場合によってはショック死に至
る。したがって各国局方とも注射用水には、細菌はもち
ろん発熱性物質を含んではならないと定めである。
If this directly enters the human blood via intravenous injection, it can cause an intense fever reaction, vasoconstriction, increased sensitivity to adrenaline, acceleration of blood coagulation and subsequent decline, and in some cases, death from shock. . Therefore, each national local government stipulates that water for injection must not contain bacteria or pyrogens.

発熱性物質を含まない水を得るには、通常、局方精製水
の蒸留操作によるが、1回程度の蒸留ではリムルステス
ト〔カブトガニの血球抽出物リムルス・アメーボサイト
・ライセイト(LimulusAmerbocyte 
Lysate )とエンドトキシンとのゲル化反応によ
る定量法〕で陽性を呈することが多い。
In order to obtain water that does not contain pyrogens, it is usually done by distillation of pharmacopoeically purified water.
lysate) and endotoxin] is often positive.

過去、発熱性物質の除去技術として粉末または粒状活性
炭や各種イオン交換樹脂による処理が試みられたが、発
熱性物質の負荷変動によりリークがしばしば起こり安定
した処荷効果を期待することができなかった。最近では
、日本特許989,058「発熱性物質を含まない糖類
精製液をうる方法」、日本特許738.632 1−透
過処理によりパイロジエン、微生物を含まない注射用水
溶液をうる方法」にみられるように、透過膜を利用した
膜分離法が用いられるようになってきた。
In the past, treatments using powdered or granular activated carbon and various ion exchange resins were attempted as pyrogen removal techniques, but leaks often occurred due to fluctuations in the pyrogen load, making it impossible to expect a stable treatment effect. . Recently, as seen in Japanese Patent No. 989,058, ``Method for Obtaining a Purified Saccharide Solution Free of Pyrogenic Substances,'' and Japanese Patent No. 738.632, ``Method for Obtaining an Injectable Aqueous Solution Free of Pyrogens and Microorganisms by Permeabilization''. Membrane separation methods using permeable membranes have come to be used.

膜分離法は、超純水製造システムの一要素に組み込まれ
、具体的には、発熱性物質、各種イオン、有機物等を多
量に含む市水を活性炭または(および)イオン交換樹脂
に通水した後、貯水し、さらに滅醒のための紫外線殺菌
器、再生型混床式イオン交換樹脂塔、次いで限外濾過膜
または逆浸透膜等の透過膜で処理する方法である。しか
し細菌は元来、増殖性を有しており、超純水レベルの低
栄養水中でも生育、増殖し得る菌があり、殺菌されても
システム内に止まり、エンドトキシンは死菌数の増加に
伴い上昇をたどり強いては取水口にある透過膜の急速な
目すまりなどの膜の予期せぬ性能低下の原因となり得る
ことが推定されている。そこで水のエンドトキシンによ
る汚染を効果的に防ぐ方法が強く要望されている。
The membrane separation method is incorporated as an element of the ultrapure water production system, and specifically involves passing city water, which contains large amounts of pyrogens, various ions, organic substances, etc., through activated carbon or (and) ion exchange resin. After that, the water is stored and further treated with an ultraviolet sterilizer for sterilization, a regenerating mixed bed ion exchange resin column, and then a permeable membrane such as an ultrafiltration membrane or a reverse osmosis membrane. However, bacteria are inherently proliferative, and some bacteria can grow and multiply even in low-nutrient water at the ultrapure level, and even after being sterilized, they remain in the system, and endotoxins increase as the number of dead bacteria increases. It is estimated that if the water is forced to continue rising, it may cause unexpected performance deterioration of the membrane, such as rapid clogging of the permeable membrane at the water intake. Therefore, there is a strong need for a method to effectively prevent water from being contaminated by endotoxins.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、純水の製造においてエンドトキシンを
超極微量濃度になるように除去するための方法を提供す
ることにある。
An object of the present invention is to provide a method for removing endotoxin to an ultra-trace concentration in the production of pure water.

本発明はいま一つの目的は、各種用途の超純水または超
々純水の製造を可能とするエンド]・キシンの改良され
た除去法を提供することにある。
Another object of the present invention is to provide an improved method for removing endo]xins that enables the production of ultrapure or ultra-superpure water for various uses.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の上記目的は次のエンドトキシン除去法により達
成される。
The above object of the present invention is achieved by the following endotoxin removal method.

イオン交換樹脂処理工程からの脱イオン水を多孔性球状
架橋重合体を炭化し、または炭化し賦活した炭素質吸着
剤により処理することを特徴とする純水製造におけるエ
ンドトキシン除去法。
A method for removing endotoxins in pure water production, which comprises treating deionized water from an ion exchange resin treatment step with a carbonaceous adsorbent that has been carbonized or activated by carbonizing a porous spherical crosslinked polymer.

上記多孔性球状架橋重合体を熱分解により炭化して得ら
れる炭素質吸着剤とは、特開昭51−126390号、
特開昭49−53594号、特開昭53−50088号
、特開昭52−30799号、特開昭51.−6361
9号等に記載された方法により製造されるものである。
The carbonaceous adsorbent obtained by carbonizing the above-mentioned porous spherical crosslinked polymer by thermal decomposition is disclosed in JP-A-51-126390,
JP-A-49-53594, JP-A-53-50088, JP-A-52-30799, JP-A-51. -6361
It is manufactured by the method described in No. 9 etc.

この多孔性球状重合体は、一般にモノビニルモノマーと
ポリビニルモノマーからなる共重合体が最も好ましい。
The most preferred porous spherical polymer is generally a copolymer consisting of a monovinyl monomer and a polyvinyl monomer.

これは、上記モノマーを公知の懸濁重合法によって製造
され、球状の共重合体が得られる。
This is produced by using the above monomers by a known suspension polymerization method to obtain a spherical copolymer.

具体的に示せば、スチレンとジビニルベンゼンからなる
ものが最もよく知られている。そして他のモノビニルモ
ノマーと他のポリビニルモノマーであっても)熱水発明
を達成することができる。
Specifically, one made of styrene and divinylbenzene is the most well-known. and even with other monovinyl monomers and other polyvinyl monomers) hydrothermal invention can be achieved.

そして多孔性を得るには、懸濁重合の際多孔性を得るに
充分たる公知の添加剤を加えて重合を行うことが肝要で
ある。この典型的な添加剤としては、沈殿剤と称せられ
るモノマーには溶解し、且つ生成共重合体を膨潤しない
溶剤、また膨潤剤と称せられるモノマーには溶解し、且
つ生成共重合体を膨潤する溶剤、あるいは上述の膨潤剤
と沈殿剤が共存せる混合溶剤、更に、これら膨潤剤及び
との膨潤剤と均一液相を形成し得るモノビニル線状重合
体からなる有機液体、そしてモノマー混合物に可溶性で
あり、生成共重合体に対して不活性である、例えばポリ
アルキレングリコールの如き不溶性高分子が挙げられる
が、これ等に限定されることなく、他の公知の多孔質を
形成せる剤を用いることも当然可能である。
In order to obtain porosity, it is important to add known additives sufficient to obtain porosity during suspension polymerization. Typical additives include solvents that dissolve in monomers called precipitants but do not swell the produced copolymer, and solvents that dissolve in monomers called swelling agents and swell the produced copolymer. A solvent or a mixed solvent in which the above-mentioned swelling agent and precipitant coexist, an organic liquid consisting of a monovinyl linear polymer that can form a uniform liquid phase with these swelling agents and the swelling agent, and a monomer mixture that is soluble in the monomer mixture. Examples include, but are not limited to, insoluble polymers such as polyalkylene glycol, which are inert to the produced copolymer, but other known porous forming agents may be used. Of course it is also possible.

このような方法により製造された多孔性架橋共重合体は
、場合によっては、公知の方法によってスルホン化また
はクロルメチル化等を行な(・、次いでアミン化したイ
オン交換樹脂であっても前述の多孔性共重合体同様に好
ましいものである。これらの多孔性球状架橋共重合体は
、市販のものであってもよい。例えば前出のアンノく−
ライトのイオン交換樹脂シリーズや、合成吸着剤シリー
ズでもよく、さらにダイヤイオン(三菱化成工業■登録
商標)、ダウエックス(ダウケミカル社登録商標)等の
多々の市販のものを使用できることは当然である。
The porous crosslinked copolymer produced by such a method may be subjected to sulfonation or chloromethylation by a known method (and then, even if the aminated ion exchange resin is used, the above-mentioned porous These porous spherical crosslinked copolymers may be commercially available.For example, the above-mentioned Anno.
Wright's ion exchange resin series or synthetic adsorbent series may be used, and of course, many commercially available products such as Diaion (registered trademark of Mitsubishi Chemical Corporation) and DOWEX (registered trademark of Dow Chemical Corporation) can also be used. .

このようにして得られた多孔性球状架橋共重合体を公知
の方法で炭化処理することにより所望の吸着剤が生成さ
れる。
The porous spherical crosslinked copolymer thus obtained is carbonized by a known method to produce the desired adsorbent.

この多孔性球状架橋重合体を硫酸、二酸化窒素、塩素な
どで不融化処理し、300−900℃の温度において熱
分解すれば所望の炭素質吸着剤が得られる。このように
して得られた吸着剤はそのままでも使用可能であるが、
所γにより水蒸気、塩化亜鉛水溶液などによって十分賦
活して使用することもできる。
The desired carbonaceous adsorbent can be obtained by treating this porous spherical crosslinked polymer with sulfuric acid, nitrogen dioxide, chlorine, etc. to make it infusible, and then thermally decomposing it at a temperature of 300 to 900°C. The adsorbent obtained in this way can be used as is, but
It can also be used by sufficiently activating it with water vapor, zinc chloride aqueous solution, etc. depending on γ.

このような吸着剤の具体例としてはローム・アンドII
 ハース社製のアンバーンーブ(Ambersorb)
XEシリーズが知られている。この吸着剤は球形で灰分
が少なく、耐摩耗性と物理強度の強い特徴を有している
。これら二義的な特徴は、純水中のエンドトキシンの処
理に格別な意味を持つ。
A specific example of such an adsorbent is Rohm & II
Ambersorb manufactured by Haas
The XE series is known. This adsorbent is spherical, has low ash content, and has strong wear resistance and physical strength. These secondary features have special implications for the treatment of endotoxins in pure water.

当該吸着剤によるエンドトキシンの効果的吸着性に加え
てこれらの特徴ゆえに水質を悪化させることなく純水中
のエンドトキシンの処理を可能にしている。
These features, in addition to the effective adsorption of endotoxin by the adsorbent, make it possible to treat endotoxin in pure water without degrading water quality.

すなわち通常の水処理用の活性炭は、不定形のため細菌
の生育の温床となるばかりか、物理強度や耐摩耗性が弱
いため破砕して、微粒子となり処理系内に残存し、水質
を悪化させる等のトラブルを生じる。この吸着剤と市販
の粉末または粒状活性炭との最大の相違はその物理構造
が活性炭とは根本的に異なり多孔性球状重合体の骨格構
造を、炭化、賦活後も、なおそのまま保持していること
である。この相違がパイロジエンに対する吸着量の多大
な差に寄与しているものと思われる。
In other words, activated carbon for normal water treatment not only becomes a breeding ground for bacteria due to its amorphous shape, but also has low physical strength and wear resistance, so it shatters and becomes fine particles that remain in the treatment system, worsening water quality. This may cause other troubles. The biggest difference between this adsorbent and commercially available powdered or granular activated carbon is that its physical structure is fundamentally different from activated carbon in that it retains the skeletal structure of a porous spherical polymer even after carbonization and activation. It is. It is thought that this difference contributes to the large difference in the amount of pyrodiene adsorbed.

この炭素質吸着剤をもって脱イオン水を処理するには、
この吸着剤を適当な大きさのカラムに充2填して脱イオ
ン水を通過させる方法なPを用いることができる。
To treat deionized water with this carbonaceous adsorbent,
A method can be used in which this adsorbent is packed into a column of an appropriate size and deionized water is passed through it.

本発明の方法は簡易型の純水製造システムに組み入れる
には、イオン交換樹脂処理からの脱イオン水中 ン水、または活性炭処理およびイオン交換樹脂処理から
の脱イオン水を前記炭素質吸着剤をもって処理するよう
にすればよい。
In order to incorporate the method of the present invention into a simple water purification system, it is necessary to treat deionized water from ion exchange resin treatment or deionized water from activated carbon treatment and ion exchange resin treatment with the carbonaceous adsorbent. Just do it.

発熱物質を含まない注射用水などの医療用超純水、また
は最近の半導体素子の高集積化に伴ない、これの製造に
必要な超々純水ではエンドトキシンの発生源である生菌
数を0.02/ml以下と厳しい水準を要求している。
Medical ultrapure water, such as water for injection that does not contain pyrogens, or ultra-ultrapure water, which is required for the production of highly integrated semiconductor devices in recent years, has a viable bacterial count of 0.0, which is the source of endotoxins. A strict standard of 0.02/ml or less is required.

このような超純水ないし超々純水製造において、生菌は
紫外線により殺菌されるが、エンドトキシンが死菌より
水中に放出されるので紫外線殺菌処理の後、再生型混床
型イオン交換樹脂塔による処理の前において本発明のエ
ンドトキシン除去処理を行なうか、または最終段の透過
膜処理の前に本発明のエンドトキシン除去処理を行うの
が好ましい。
In the production of ultrapure or ultra-superpure water, living bacteria are sterilized by ultraviolet rays, but since endotoxin is released from the dead bacteria into the water, after ultraviolet sterilization treatment, a regenerated mixed bed ion exchange resin column is used. It is preferable to perform the endotoxin removal treatment of the present invention before the treatment, or to perform the endotoxin removal treatment of the present invention before the final stage of permeable membrane treatment.

すなわち、超純水ないし超々純水の製造においては、イ
オン交換樹脂塔、貯水槽、紫外線殺菌器、再生型混床式
イオン交換樹脂塔、および限外濾過膜もしくは逆浸透膜
などの透過膜からなる一連の処理において貯水槽と透過
膜との間の任意の箇所−只 − で本発明によるエンドトキシン除去を実施すればよい。
In other words, in the production of ultrapure water or ultra-ultrapure water, ion exchange resin towers, water storage tanks, ultraviolet sterilizers, regenerative mixed bed ion exchange resin towers, and permeable membranes such as ultrafiltration membranes or reverse osmosis membranes are used. Endotoxin removal according to the present invention may be carried out at any location between the water storage tank and the permeable membrane in a series of treatments.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、極めて簡単な方法で、エンドトキシン
を含まない純水を安定して大量に製造することができる
According to the present invention, endotoxin-free pure water can be stably produced in large quantities by an extremely simple method.

〔実 施 例〕〔Example〕

以下に実施例を示し、本発明を具体的に説明する。 EXAMPLES The present invention will be specifically explained below with reference to Examples.

実施例 1゜ 水道水を原水とし、粒状活性炭塔、ゲル型カチオン交換
樹脂塔、ゲル型アニオン交換樹脂塔、次いで混床式多孔
性球状架橋重合体からなるイオン交換樹脂塔からなる脱
イオン水製造装置を室温(約20℃)で1回あたり約4
時間取水量約100リツトルで間欠運転したところ約2
週間後から脱イオン水中にエンドトキシンが平均1.5
 n97mlレベルでリークしてきた。
Example 1〜Production of deionized water using tap water as raw water and using a granular activated carbon column, a gel type cation exchange resin column, a gel type anion exchange resin column, and then a mixed bed type ion exchange resin column made of a porous spherical crosslinked polymer. Approximately 4 times per use at room temperature (approximately 20°C)
When operated intermittently with an hourly water intake of approximately 100 liters, approximately 2
Average endotoxin level in deionized water after 1.5 weeks
It leaked at n97ml level.

そこで両ゲル型カチオンおよびアニオン交換樹脂を常法
にしたがって再生し再び通水を開始したが、28目より
脱イオン水中にエンドトキシンの上記レベルでのリーク
が起こった。
Therefore, both gel-type cation and anion exchange resins were regenerated according to a conventional method and water flow was started again, but from the 28th point onward, endotoxin leaked into the deionized water at the above level.

原因を調べたところ活性炭塔の粒状活性炭床が細菌の生
育の温床となっていることがわかった。
An investigation into the cause revealed that the granular activated carbon bed in the activated carbon tower was a breeding ground for bacteria.

そこで処理水の配管を三つの配管に分は同量の水が流れ
るようにし、第1の配管に3002のアンバーソープ3
47を詰めたカラムを、第2の配管に3002のカルボ
ン社のピッツバーグ粒状活性炭カラムを、第3の配管に
比較のため300 fの炭化していない多孔性球状架橋
重合体であるアンバーライ) XAD−2をつげ、通水
を開始した。
Therefore, the treated water pipes are arranged so that the same amount of water flows through three pipes, and the first pipe is filled with 3002 Amber Soap 3.
In the second pipe, a 3002 Calvon Pittsburgh granular activated carbon column was packed, and in the third pipe for comparison, a 300 f non-carbonized porous spherical cross-linked polymer Amberly) XAD. -2 was turned on and water flow started.

エンドトキシンの検出限界0.01杼/fnlでの処理
量は次のとおりであった。
The amount of endotoxin processed at the detection limit of 0.01 shuttle/fnl was as follows.

実施例 2゜ 水道水を原水とし、粒状活性炭塔、ゲル型カチオン交換
樹脂塔、アニオン交換樹脂塔、混床式多孔性球状架橋重
合体からなるイオン交換樹脂塔で処理した脱イオン水2
007の貯水槽(常時2007維持できる様自動的に原
水側脱イオン水製造装置が作動する)に入れ、紫外線殺
菌器、再生型混床式イオン交換樹脂塔、限外沖過膜次い
で使用点(蛇口)に至り未使用水は貯水槽に戻るように
なっている実験室用小型超純水製造システムにおいて、
採水(1日あたり約100 A純度18.2 MΩ−c
m)開始1週間後、再生型混床式イオン交換樹脂塔と限
外濾過膜の間にあるサンプリングポイントより採水して
分析したところ、エンドトキシンが0.5n2ノア存在
した。
Example 2゜Deionized water 2 using tap water as raw water and treated with an ion exchange resin tower consisting of a granular activated carbon tower, a gel type cation exchange resin tower, an anion exchange resin tower, and a mixed bed type porous spherical crosslinked polymer
007 water storage tank (the deionized water production equipment on the raw water side is automatically activated to maintain 2007 water at all times), an ultraviolet sterilizer, a regenerative mixed bed ion exchange resin tower, an ultraviolet filtration membrane, and then the point of use ( In a small ultrapure water production system for laboratory use, unused water reaches the faucet and returns to the water tank.
Water sampling (approximately 100 A purity 18.2 MΩ-c per day)
m) One week after the start, water was sampled from a sampling point located between the regenerated mixed bed ion exchange resin tower and the ultrafiltration membrane and analyzed, and endotoxin was found to be present at 0.5n2 noa.

そこで、500 fのアンバーソープXE−340を充
填したカラムを紫外線殺菌器の後に入れたところ9日間
通水しても系内のエンドトキシンレベルは検出限界(0
,01n?/ml  )以下であったが、同量のクレハ
化学社製球状活性炭BAC−MPの場合は4日間でエン
ドトキシンのリークがはじまった。
Therefore, when a column filled with 500 f Amber Soap XE-340 was placed after the ultraviolet sterilizer, the endotoxin level in the system remained below the detection limit (0
,01n? However, in the case of the same amount of spherical activated carbon BAC-MP manufactured by Kureha Chemical Co., Ltd., endotoxin leakage started within 4 days.

手続補正書(自発) 昭和62年4月16日Procedural amendment (voluntary) April 16, 1986

Claims (1)

【特許請求の範囲】[Claims] 1、イオン交換樹脂処理工程からの脱イオン水を多孔性
球状架橋重合体を炭化し、または炭化し賦活した炭素質
吸着剤により処理することを特徴とする純水製造におけ
るエンドトキシン除去法。
1. A method for removing endotoxins in pure water production, which comprises treating deionized water from an ion-exchange resin treatment step with a carbonaceous adsorbent obtained by carbonizing a porous spherical crosslinked polymer or by carbonizing and activating it.
JP62076094A 1987-03-31 1987-03-31 Endotoxin removal method in ultrapure water Expired - Lifetime JPH078355B2 (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
JP62076094A JPH078355B2 (en) 1987-03-31 1987-03-31 Endotoxin removal method in ultrapure water
US07/167,239 US4883596A (en) 1987-03-31 1988-03-11 Carbonaceous adsorbent for removal of pyrogen and method of producing pure water using same
IL85835A IL85835A (en) 1987-03-31 1988-03-23 Carbonaceous adsorbent for removal of pyrogen and method of producing pure water using same
FI881383A FI92019C (en) 1987-03-31 1988-03-23 Method for removing pyrogen dissolved in water
EP88302589A EP0285321B1 (en) 1987-03-31 1988-03-24 Carbonaceous adsorbent for removal of pyrogen and method of producing pure water using same
DE8888302589T DE3865869D1 (en) 1987-03-31 1988-03-24 CARBONATED SORCENT FOR SEPARATING PYROGEN AND USING THEM FOR PRODUCING PURE WATER.
MX010935A MX173464B (en) 1987-03-31 1988-03-29 METHOD FOR REMOVING A PYROGENIC SUBSTANCE DISSOLVED IN WATER AND PRODUCING PURE WATER
CA000562927A CA1310948C (en) 1987-03-31 1988-03-30 Carbonaceous adsorbent for removal of pyrogen and method of producingpure water using same
BR8801524A BR8801524A (en) 1987-03-31 1988-03-30 CARBONACEOUS ADSORBENT FOR USE IN THE REMOVAL OF PIROGEN DISSOLVED IN WATER, PROCESS FOR THE REMOVAL OF PIROGEN DISSOLVED IN WATER, PROCESS FOR THE REMOVAL OF ENDOXIN IN THE PRODUCTION OF PURE WATER AND PROCESS FOR THE PRODUCTION OF PURE WATER OR ULTRA-SUPERPURE WATER
DK181488A DK181488A (en) 1987-03-31 1988-03-30 CARBON-CONTAINED ABSORBENT AND PROCEDURE FOR THE REMOVAL OF PYROGENES DISSOLVED IN WATER AND PROCEDURE FOR THE PREPARATION OF SUPERRENT WATER
AU14075/88A AU593989B2 (en) 1987-03-31 1988-03-31 Carbonaceous adsorbent for removal of pyrogen and method of pure water using same
KR1019880003628A KR910008994B1 (en) 1987-03-31 1988-03-31 Purified water making method using carbonaceous absorbent
NZ224096A NZ224096A (en) 1987-03-31 1988-03-31 Carbonaceous adsorbent for removal of pyrogen and method of producing pure water using same
US07/403,035 US5021391A (en) 1987-03-31 1989-09-01 Carbonaceous adsorbent for removal of pyrogen and method of producing pure water using same
US07/622,482 US5166123A (en) 1987-03-31 1990-12-05 Carbonaceous adsorbent for removal of pyrogen from water
SG288/92A SG28892G (en) 1987-03-31 1992-03-09 Carbonaceous adsorbent for removal of pyrogen and method of producing pure water using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62076094A JPH078355B2 (en) 1987-03-31 1987-03-31 Endotoxin removal method in ultrapure water

Publications (2)

Publication Number Publication Date
JPS63243022A true JPS63243022A (en) 1988-10-07
JPH078355B2 JPH078355B2 (en) 1995-02-01

Family

ID=13595263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62076094A Expired - Lifetime JPH078355B2 (en) 1987-03-31 1987-03-31 Endotoxin removal method in ultrapure water

Country Status (1)

Country Link
JP (1) JPH078355B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002032568A1 (en) * 2000-10-18 2002-04-25 Toyo Kohan Co., Ltd. Particulate support for separation/purification or extraction and process for producing the same
JP2011195624A (en) * 2010-03-17 2011-10-06 Nippon Shokubai Co Ltd Vinylpyrrolidone polymer and method of manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5350088A (en) * 1976-10-19 1978-05-08 Sumitomo Chem Co Ltd Production of spherical activated carbon

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5350088A (en) * 1976-10-19 1978-05-08 Sumitomo Chem Co Ltd Production of spherical activated carbon

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002032568A1 (en) * 2000-10-18 2002-04-25 Toyo Kohan Co., Ltd. Particulate support for separation/purification or extraction and process for producing the same
CN1322914C (en) * 2000-10-18 2007-06-27 东洋钢钣株式会社 Particulate support for separation/purification or extraction and process for producing the same
JP2011195624A (en) * 2010-03-17 2011-10-06 Nippon Shokubai Co Ltd Vinylpyrrolidone polymer and method of manufacturing the same

Also Published As

Publication number Publication date
JPH078355B2 (en) 1995-02-01

Similar Documents

Publication Publication Date Title
CA1310948C (en) Carbonaceous adsorbent for removal of pyrogen and method of producingpure water using same
US6745903B2 (en) Methods for the on-line, on-demand preparation of sterile, water-for-injection grade water
US4292408A (en) Mass and a method of preparing same of living cells of organisms for adsorbing metal ions from a physiological solution, and employment of the mass for enriching metals
US3268441A (en) Water recovery by electrodialysis
US4045553A (en) Method of treating silver impregnated activated carbon
US5166123A (en) Carbonaceous adsorbent for removal of pyrogen from water
CN112591960A (en) Preparation process of micromolecular water
JPS63243022A (en) Method for removing endotoxin in producing pure water
SU628804A3 (en) Method of purification of organic solutions from accompoanying admixtures
JPH0724824B2 (en) Removal method of endotoxin in pure water production
GB2197860A (en) Apparatus for and the method of water purification
TWI706917B (en) Water treatment device, ultrapure water manufacturing device and water treatment method
JPH0521028B2 (en)
JPS5876099A (en) Purification of antibiotic
JPH09225324A (en) Regeneration of ion exchange resin or synthetic adsorbing material for removing organic impurities
Saunders Demineralised water for pharmaceutical purposes
BR102015025482A2 (en) Adsorbent Preparation Process for PB (II) ION REMOVAL IN WATER FROM TANINE AND CARBON NANOTUBES
JPH07116658A (en) High-order treatment of waste water
RU2057144C1 (en) Method for purification of solutions of polyvinylpyrrolidone
JP2880913B2 (en) How to purify tap water
JPH0632815B2 (en) Disinfectant, its manufacturing method and water purification method using the same
JPH0113899B2 (en)
JPH04244288A (en) Apparatus for making ultra-pure water
KR20230091398A (en) Absorbent for simultaneous removal of radioactive material and orgarnic matter from wastewater and Manufacturing method thereof
JPH1190433A (en) Deionized water producing apparatus