JPS6324266B2 - - Google Patents

Info

Publication number
JPS6324266B2
JPS6324266B2 JP55175580A JP17558080A JPS6324266B2 JP S6324266 B2 JPS6324266 B2 JP S6324266B2 JP 55175580 A JP55175580 A JP 55175580A JP 17558080 A JP17558080 A JP 17558080A JP S6324266 B2 JPS6324266 B2 JP S6324266B2
Authority
JP
Japan
Prior art keywords
insulator
electrodes
contamination
parallel
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55175580A
Other languages
Japanese (ja)
Other versions
JPS5798872A (en
Inventor
Micho Yamamoto
Koji Nakamizo
Susumu Sogabe
Yoshio Iwashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishimu Electronics Industries Co Inc
Original Assignee
Nishimu Electronics Industries Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishimu Electronics Industries Co Inc filed Critical Nishimu Electronics Industries Co Inc
Priority to JP17558080A priority Critical patent/JPS5798872A/en
Publication of JPS5798872A publication Critical patent/JPS5798872A/en
Publication of JPS6324266B2 publication Critical patent/JPS6324266B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1245Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of line insulators or spacers, e.g. ceramic overhead line cap insulators; of insulators in HV bushings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Relating To Insulation (AREA)
  • Insulators (AREA)

Description

【発明の詳細な説明】 本発明は汚損量測定用碍子に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an insulator for measuring the amount of contamination.

パイロツト碍子に付着した汚損物を測定する方
法としては、従来より筆等により汚損物を碍子下
面から洗い流しその汚損物の量を測定する方法や
碍子に汚損物を付着させたまま人工湿潤しその電
導度が汚損量により相違することを利用して汚損
物を測定する方法などがあつた。後者の方法は、
パイロツト碍子の汚損物を洗い流さず付着させた
まま測定するため、汚損物の経時的変化を測定で
き、汚損管理上有利であり、また自動測定及び遠
隔測定ができるという利点がある。
Conventional methods for measuring contaminants adhering to pilot insulators include washing the contaminants from the underside of the insulator with a brush or the like and measuring the amount of contaminants, or artificially moistening the insulator with contaminants still attached to the insulator and measuring its conductivity. There are methods to measure soiling by taking advantage of the fact that the degree of soiling differs depending on the amount of soiling. The latter method is
Since the measurement is carried out while the soiled matter remains on the pilot insulator without being washed away, it is possible to measure changes in the soiled matter over time, which is advantageous in terms of soiling control, and also has the advantage that automatic measurement and remote measurement are possible.

更に、パイロツト碍子としてはモデル化された
形状よりも実際に相関をとろうとしている実使用
碍子をそのまま用いる方が汚損物の付着分布、雨
洗効果などが同程度となり、正確な測定が可能と
なる。
Furthermore, as a pilot insulator, it is better to use an actual insulator that is being correlated rather than a modeled shape because the contaminant adhesion distribution, rain washing effect, etc. will be at the same level, and more accurate measurements will be possible. Become.

人工湿潤法に用いるパイロツト碍子には導電度
測定用として碍子表面に電極を設ける必要がある
が、その電極の配置として汚損量測定の誤差を少
なくするよう汚損分布に影響を受け難い構成とす
ることが望ましい。特に懸垂碍子の汚損耐電圧は
主に下面の汚損量によつて決まることから、下面
の汚損量を知ることが重要である。第1図は碍子
下面を18区分(放射状に6区分、同心状に3区
分)し、自然汚損暴露し、その各区分の等価塩分
量を測定したものの平均的な一例を示したもので
あり、図中の黒丸は等価塩分量のある単位であ
り、その密度によつて付着量の大きさを表わして
いる。また図中の矢印は海塩汚損をもたらす海風
の方向を表わしている。この図から理解できるよ
うに外周側よりも内周側が汚損物の付着密度が高
く、また汚損源と反対側の方向が高くなつてい
る。第2図は碍子下面の溝及びひだへの付着状態
を表わし、矢印は風の方向を表わしたものであ
る。これで見られるように汚損物は矢印で示され
る風の方向側aに集中して付着しており、特にひ
だの風上側aに多く、風下側bには著しく少くな
つており、同心円状にみると汚損物の付着分布の
差が非常に大きいことがわかる。従来の電極配置
としては、碍子下面の中心部付近と外周部とに同
心円状の電極を設けるか、それを基本構成として
変形工夫したものがあつたが、上述したような汚
損分布を考えると、電極間の付着分布差による測
定むらや誤差が生じ易く正確な測定値が得られな
いばかりでなく、ひだの風下側の付着量が少い場
合は測定不可能となる欠点がある。また、パイロ
ツト碍子下面の所要個所に電極を設け、局所値を
求めるものもあるが、これも付着分布差のある碍
子下面全体の汚損量を測定する場合にはサンプル
数が少く、正確な測定値が得られないという欠点
がある。
The pilot insulator used in the artificial wetting method requires electrodes to be provided on the surface of the insulator for measuring conductivity, but the arrangement of the electrodes should be designed so that it is not easily affected by the contamination distribution so as to reduce the error in measuring the amount of contamination. is desirable. In particular, since the contamination withstand voltage of a suspended insulator is mainly determined by the amount of contamination on the lower surface, it is important to know the amount of contamination on the lower surface. Figure 1 shows an average example of the results obtained by dividing the lower surface of an insulator into 18 sections (6 sections radially and 3 sections concentrically), exposing it to natural pollution, and measuring the equivalent salt content in each section. The black circles in the figure are units of equivalent salt content, and their density represents the amount of adhesion. The arrows in the figure indicate the direction of the sea breeze that causes sea salt pollution. As can be understood from this figure, the adhesion density of contaminants is higher on the inner circumferential side than on the outer circumferential side, and is higher in the direction opposite to the contamination source. Figure 2 shows the state of attachment to the grooves and folds on the lower surface of the insulator, and the arrows indicate the direction of the wind. As can be seen, the contaminants are concentrated on the wind direction side a indicated by the arrow, and are particularly concentrated on the windward side a of the folds, and are noticeably less on the leeward side b. It can be seen that there is a very large difference in the distribution of contaminants. Conventional electrode arrangements include providing concentric electrodes near the center and outer periphery of the lower surface of the insulator, or modifying the basic structure, but considering the contamination distribution as described above, Not only is it difficult to obtain accurate measurement values because measurement unevenness and errors are likely to occur due to differences in the adhesion distribution between the electrodes, but there is also the drawback that measurement is impossible if the amount of adhesion on the leeward side of the pleats is small. In addition, there are methods that obtain local values by installing electrodes at required locations on the lower surface of the pilot insulator, but this also requires a small number of samples to measure the amount of contamination on the entire lower surface of the insulator, which has a difference in adhesion distribution, so that accurate measurements cannot be obtained. The disadvantage is that it cannot be obtained.

本発明は上述した従来のパイロツト碍子の欠点
を解消し、実使用碍子の汚損分布を考慮に入れた
電極配置とした汚損量測定用碍子を提供すること
を目的とするものである。
An object of the present invention is to eliminate the above-mentioned drawbacks of the conventional pilot insulator, and to provide an insulator for measuring the amount of contamination that has an electrode arrangement that takes into consideration the distribution of contamination in an actually used insulator.

以下、図面に示す実施例に基いて本発明を説明
すれば、第3図(正断面図)及び第4図(底面
図)に示すように実使用を基体として使用したパ
イロツト碍子1の下面に平行電極の組{(2A−
1),(2B−1)},{(2A−2),(2B−2)}…を
中心部付近より放射状に設けたものであり、これ
らはそれぞれ並列接続してリード線3により汚損
量測定器に導かれる。電極の材質としては、従来
のように導電性塗料、メツキ等が考えられるが剥
離の問題や電蝕及び腐蝕による耐久性、耐候性の
点からは好ましくないので、白金又はその合金な
どの材料を使用することによりこれらの欠点を解
消でき、また表面の滑らかさ、固有抵抗の低さの
点でも望ましい。また、電極間に与える電圧を直
流とすると電蝕作用が生じるので適当な交流、例
えば数KHzの高周波電流とすれば電蝕作用を防止
できる。
Hereinafter, the present invention will be explained based on the embodiments shown in the drawings. As shown in FIG. 3 (front sectional view) and FIG. Set of parallel electrodes {(2A−
1), (2B-1)}, {(2A-2), (2B-2)}... are installed radially from near the center, and these are connected in parallel and the lead wire 3 reduces the amount of contamination. guided by measuring instruments. Conventional materials such as conductive paint and plating are conceivable as the material for the electrodes, but these are undesirable in terms of peeling problems, durability against electrolytic corrosion and corrosion, and weather resistance, so materials such as platinum or its alloys are recommended. By using it, these drawbacks can be overcome, and it is also desirable for its smooth surface and low specific resistance. Further, if the voltage applied between the electrodes is a direct current, galvanic corrosion occurs, so if a suitable alternating current, for example, a high frequency current of several kilohertz, is used, the galvanic corrosion can be prevented.

本発明のように平行電極を放射状に配置するこ
とにより、個々の電極では電極の長手方向には汚
損物の付着密度差があつても電極の幅方向にはほ
とんど付着密度差が無いため、電極間の平均的汚
損度を得ることができる。
By arranging parallel electrodes radially as in the present invention, even if there is a difference in the adhesion density of contaminants in the longitudinal direction of the individual electrodes, there is almost no difference in the adhesion density in the width direction of the electrodes. It is possible to obtain an average degree of contamination between

第5図に示すのは本発明の他の実施例であり、
平行電極の配置として一組ごとの電極(主電極)
間に更にブリツジ電極4を設け、また隣り合う片
方の電極どうしを同心円弧状の導電体5にて接続
したものであり、ブリツジ電極4を設けた理由
は、測定時に水蒸気などで人工湿潤した際、電極
間が広すぎて水滴が連結し難いことがあるためで
あり、このブリツジ電極4により水滴の電気的な
連結を補助し、測定値のばらつきを減少させるも
のである。第5図に示したブリツジ電極4は主電
極に対して平行な線状電極であるが、第7図−A
に示すようにお互いに連続しない多数の弧立電極
の集合であつてもよい。この場合、お互いのブリ
ツジ電極4′の間隔ができるだけ等しくなるよう
に、例えば十字状の電極とすると良い。また第7
図−Bに示すように主電極2A,2B間に偶数本
の中間電極4″を設け、これを交互に接続して主
電極2A,2Bに接続することにより、汚損量の
少い場所における測定感度の上昇を図ることがで
きる。
Another embodiment of the invention is shown in FIG.
One set of electrodes (main electrode) as a parallel electrode arrangement
A bridge electrode 4 is further provided in between, and the adjacent electrodes are connected to each other by a concentric arc-shaped conductor 5.The reason for providing the bridge electrode 4 is that when artificially moistened with water vapor etc. during measurement, This is because the distance between the electrodes is too wide and it may be difficult for the water droplets to connect.The bridge electrode 4 assists in electrically connecting the water droplets and reduces variations in measured values. The bridge electrode 4 shown in FIG. 5 is a linear electrode parallel to the main electrode.
As shown in the figure, it may be a collection of a large number of erected electrodes that are not continuous with each other. In this case, it is preferable to use, for example, a cross-shaped electrode so that the distance between the bridge electrodes 4' is as equal as possible. Also the 7th
As shown in Figure B, an even number of intermediate electrodes 4'' are provided between the main electrodes 2A and 2B, and by connecting these alternately to the main electrodes 2A and 2B, measurements can be taken in areas with a small amount of contamination. Sensitivity can be increased.

次に導電体5を設けた理由は、同電位となる主
電極どうしを導電体5で接続することにより主電
極の電極抵抗を下げ、また不測の原因によつて主
電極の一部が断線しても迂回回路を形成させるこ
とにより測定誤差の発生を防止するためである。
従つて、この場合は、平行電極の組は偶数である
必要があり、交互にリード線によつて接続されて
測定器に導かれる。第5図において6は碍子1の
所要個所に熔着された測定値補正用半導体温度セ
ンサーである。碍子下面を湿潤させ電気抵抗によ
り測定する場合、表面の温度により湿潤された汚
損物の電導度は常温付近の1℃変化で約2%変化
するため、測定する碍子の表面温度を逐次測定し
測定値を補正する必要がある。このセンサー6を
碍子下面に熔着することによつて測定値の温度補
正を自動的に行うことが可能となる。
Next, the reason for providing the conductor 5 is to lower the electrode resistance of the main electrodes by connecting the main electrodes with the same potential with the conductor 5, and also to avoid disconnection of part of the main electrodes due to unforeseen causes. This is to prevent measurement errors from occurring by forming a detour circuit.
Therefore, in this case, the sets of parallel electrodes must be an even number and are alternately connected by lead wires and guided to the measuring instrument. In FIG. 5, reference numeral 6 denotes a semiconductor temperature sensor for correcting measured values, which is welded to a required location on the insulator 1. When measuring the electrical resistance by moistening the bottom surface of the insulator, the conductivity of the moist soiled material changes by about 2% with a 1°C change in temperature around room temperature, depending on the surface temperature, so the surface temperature of the insulator to be measured is successively measured. It is necessary to correct the value. By welding this sensor 6 to the lower surface of the insulator, it becomes possible to automatically correct the temperature of the measured value.

第8図は汚損量測定方式の概要を示すもので、
7は高周波電流源、8は増幅器、9は温度補正用
増幅器、10は記録計である。
Figure 8 shows an overview of the contamination amount measurement method.
7 is a high frequency current source, 8 is an amplifier, 9 is a temperature correction amplifier, and 10 is a recorder.

第9図に示すのは、長幹碍子のような多ひだ碍
子の汚損量を測定するための碍子であり、4つ又
は5つのひだ部を有する碍子ブロツク11を3段
積み重ねて上下の支持金具12,13及び連結棒
14により連結して13ひだの碍子を形成したもの
である。この段数は、実使用長幹碍子のひだ数に
応じて適宜決めることができる。各碍子ブロツク
11には上下の笠部を除いた中2枚の笠部にAの
範囲において汚損測定用の平行電極の組を設け
る。電極は第10図の展開図及び第11図の正面
図に示すように2枚の笠部の表裏面にわたつて形
成し、電極の各組は前記した懸垂碍子用の測定碍
子と同様、主電極15,16及びこれらの主電極
の間に配設されるブリツジ電極17とから構成さ
れる。このブリツジ電極は前述の第7図−Aで示
したような弧立電極の集合としてもよい。これら
の平行電極は主電極どうしを並列接続してリード
線18,19により碍子ブロツク11の中空部を
通して汚損量測定器に導く。
What is shown in FIG. 9 is an insulator for measuring the amount of contamination of a multi-fold insulator such as a long-stem insulator, in which three insulator blocks 11 each having four or five pleats are stacked together with upper and lower support metal fittings. 12, 13 and connecting rod 14 to form a 13-fold insulator. The number of stages can be appropriately determined depending on the number of folds of the long trunk insulator actually used. In each insulator block 11, a set of parallel electrodes for contamination measurement is provided in the area A on the middle two caps excluding the upper and lower caps. The electrodes are formed across the front and back surfaces of the two caps, as shown in the developed view in Figure 10 and the front view in Figure 11, and each set of electrodes is formed on the main side, similar to the measurement insulator for the suspension insulator described above. It is composed of electrodes 15, 16 and a bridge electrode 17 disposed between these main electrodes. This bridge electrode may be a set of upright electrodes as shown in FIG. 7-A. These parallel electrodes connect the main electrodes in parallel and are led to the contamination amount measuring device through the hollow part of the insulator block 11 by lead wires 18 and 19.

図中20は隣り合う主電極どうしを接続する導
電体、21は碍子ブロツク11の所要個所に熔着
された測定値補正用半導体温度センサー、22は
同温度センサー21から碍子ブロツク11の中空
部を通して測定器に導くリード線である。
In the figure, 20 is a conductor that connects adjacent main electrodes, 21 is a semiconductor temperature sensor for correcting measured values that is welded to the required location of the insulator block 11, and 22 is a conductor that is passed from the temperature sensor 21 to the hollow part of the insulator block 11. This is the lead wire that leads to the measuring instrument.

なお、以上の実施例では懸垂碍子及び長幹碍子
に対する測定用碍子を示したが、その他ステーシ
ヨンポスト碍子やブツシング等の碍子についても
同様に構成することができる。
In the above embodiments, measurement insulators for suspension insulators and long-stem insulators have been shown, but other insulators such as station post insulators and bushings can be constructed in the same way.

上述したように、本発明によれば、実使用碍子
又は実使用碍子と形状及び表面状態を同等とした
パイロツト碍子を使用するため、汚損物の付着、
雨洗効果が実際の碍子と同様に現われ、また上述
したような電極配置としたため汚損物の付着分布
にむらがあつても測定誤差を生じ難いなどの効果
があり、従来のパイロツト碍子と比較して格段の
信頼性を期待できるものである。
As described above, according to the present invention, since an actual insulator or a pilot insulator having the same shape and surface condition as an actual insulator is used, there is no possibility of the attachment of contaminants,
Compared to conventional pilot insulators, it has the effect of rain washing similar to that of an actual insulator, and because of the electrode arrangement described above, measurement errors are less likely to occur even if the distribution of contaminants is uneven. Therefore, it can be expected to be extremely reliable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は汚損物の付着分布図、第2図は碍子に
おける汚損物の付着状態を示す説明図、第3図は
本発明に係るパイロツト碍子の正断面図、第4図
はその底面図、第5図は他の実施例を示す底面
図、第6図は第5図における−線矢視図、第
7図は他の平行電極の構成を示す拡大図、第8図
は汚損量測定方式の概要を示す系統図、第9図は
長幹碍子用の測定碍子を示す縦断面図、第10図
は電極の配列構成を示す展開図、第11図は碍子
ブロツクの正面図である。
FIG. 1 is a distribution diagram of the adhesion of contaminants, FIG. 2 is an explanatory diagram showing the state of adhesion of contaminants on the insulator, FIG. 3 is a front sectional view of the pilot insulator according to the present invention, and FIG. 4 is a bottom view thereof. Fig. 5 is a bottom view showing another embodiment, Fig. 6 is a view taken along the - line in Fig. 5, Fig. 7 is an enlarged view showing the configuration of another parallel electrode, and Fig. 8 is a contamination amount measurement method. FIG. 9 is a longitudinal sectional view showing a measuring insulator for long-stem insulators, FIG. 10 is a developed view showing the arrangement of electrodes, and FIG. 11 is a front view of the insulator block.

Claims (1)

【特許請求の範囲】 1 実使用碍子と形状及び表面状態を同等とした
パイロツト碍子の表面に、汚損量測定用の平行電
極の組を当該パイロツト碍子の中心部に対して放
射状に複数組配列し、しかも当該複数組の平行電
極を並列接続したことを特徴とする汚損量測定用
碍子。 2 平行電極の各組は、二本の主電極と、その間
隔内に形成される該主電極とは連続しない複数の
ブリツジ電極とから構成されることを特徴とする
特許請求の範囲第1項記載の汚損量測定用碍子。 3 平行電極の各組は、二本の主電極と、その間
隔内に形成される前記主電極と平行な複数の中間
電極とからなり、且つ各中間電極を交互に接続し
てそれぞれ主電極に並列接続したことを特徴とす
る特許請求の範囲第1項記載の汚損量測定用碍
子。
[Scope of Claims] 1. On the surface of a pilot insulator that has the same shape and surface condition as an actually used insulator, a plurality of sets of parallel electrodes for measuring the amount of contamination are arranged radially around the center of the pilot insulator. An insulator for measuring the amount of contamination, further comprising a plurality of sets of parallel electrodes connected in parallel. 2. Claim 1, wherein each set of parallel electrodes is composed of two main electrodes and a plurality of bridge electrodes that are formed within the interval between them and are not continuous with the main electrodes. The described insulator for measuring the amount of contamination. 3. Each set of parallel electrodes consists of two main electrodes and a plurality of intermediate electrodes parallel to the main electrodes formed within the interval between them, and each intermediate electrode is connected alternately to the main electrode. The insulator for measuring the amount of contamination according to claim 1, which is connected in parallel.
JP17558080A 1980-12-11 1980-12-11 Insulator for measuring contamination amount Granted JPS5798872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17558080A JPS5798872A (en) 1980-12-11 1980-12-11 Insulator for measuring contamination amount

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17558080A JPS5798872A (en) 1980-12-11 1980-12-11 Insulator for measuring contamination amount

Publications (2)

Publication Number Publication Date
JPS5798872A JPS5798872A (en) 1982-06-19
JPS6324266B2 true JPS6324266B2 (en) 1988-05-19

Family

ID=15998561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17558080A Granted JPS5798872A (en) 1980-12-11 1980-12-11 Insulator for measuring contamination amount

Country Status (1)

Country Link
JP (1) JPS5798872A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5483011A (en) * 1977-12-14 1979-07-02 Nippon Sheet Glass Co Ltd Glass production using preheated material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5483011A (en) * 1977-12-14 1979-07-02 Nippon Sheet Glass Co Ltd Glass production using preheated material

Also Published As

Publication number Publication date
JPS5798872A (en) 1982-06-19

Similar Documents

Publication Publication Date Title
US9157828B2 (en) Method and apparatus for differential voltage grid-based moisture monitoring of structures
US2215213A (en) Electrode for measuring electrolytic effects
JP2004528552A5 (en)
EP3173778A1 (en) Dryness/wetness response sensor having high-speed response and high sensitivity
JP3358070B2 (en) Chip resistor and method of adjusting its resistance
JPS6324266B2 (en)
CN100516891C (en) Two-range DC potentiometer
CN109612921A (en) A kind of corrosion monitoring sensor and preparation method thereof
CN106018492A (en) Method, device and system for detecting insulator surface dirt and moisture
Wei et al. A wetness sensor for detecting condensation on tomato plants in greenhouses
CN105203849A (en) Method and device for accurately determining film-thickness-direction resistivity of film material
JP2835656B2 (en) Bioimpedance measurement method
JP2001124816A (en) Insulator contamination detecting device
CN212391566U (en) Power plant is total to case bus post insulator condensation on-line monitoring device
CA1114018A (en) Method for detecting the fouling of a membrane covered electrochemical cell
Singh et al. Contamination Level Assessment in Porcelain Disc Insulator using Detrended Fluctuation Analysis
DE2629051C2 (en) Heat transfer meter
JP6536608B2 (en) Pollution monitoring device
DE2330033C3 (en) Measuring device for determining the amount of urine and urine flow rate in urological examinations
JPS61294347A (en) Film diagnostic device
JP3067921B2 (en) Soil detection sensor
JPH063307A (en) Humidity sensor
JPS592354B2 (en) Automatic insulator stain measurement device
Soderholm Stray-voltage problems in dairy milking parlors
JPS6130175Y2 (en)