JPS6324194A - Fuel aggregate - Google Patents

Fuel aggregate

Info

Publication number
JPS6324194A
JPS6324194A JP61167575A JP16757586A JPS6324194A JP S6324194 A JPS6324194 A JP S6324194A JP 61167575 A JP61167575 A JP 61167575A JP 16757586 A JP16757586 A JP 16757586A JP S6324194 A JPS6324194 A JP S6324194A
Authority
JP
Japan
Prior art keywords
fuel
fissile material
density
fuel rods
fuel assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61167575A
Other languages
Japanese (ja)
Inventor
亀井 孝信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP61167575A priority Critical patent/JPS6324194A/en
Publication of JPS6324194A publication Critical patent/JPS6324194A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Inert Electrodes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、軽水型原子炉の燃料集合体に係り、特に高転
換型軽水炉の燃料集合体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a fuel assembly for a light water reactor, and particularly to a fuel assembly for a high conversion light water reactor.

(従来の技術) 一般にPWRやBWR等°のいわゆる従来型軽水炉では
、燃料中に含まれるウラン−235等の核分裂性物質が
核分裂反応を起こしてエネルギーの放出をすると同時に
中性子を放出し、この放出された中性子の一部は同時に
炉心内に存在しているウラン−238等の親物質に吸収
される。
(Prior art) In general, in so-called conventional light water reactors such as PWR and BWR, fissile materials such as uranium-235 contained in the fuel cause a fission reaction and release energy, and at the same time emit neutrons. A part of the emitted neutrons is simultaneously absorbed by the parent material such as uranium-238 present in the reactor core.

中性子を吸収した親物質は核変換によりプルトニウム−
239等の新たな核分裂性物質に変換される。
The parent material that absorbed neutrons becomes plutonium through nuclear transmutation.
It is converted into new fissile materials such as 239.

このようにウラン−235等の燃料の消費量に対してウ
ラン−238等の親物質の中性子捕獲による新たな核分
裂性物質生成量の比を転換比と呼び、BWR等の従来型
軽水炉ではこの転換比は約0.6程度である。
In this way, the ratio of the amount of new fissile material produced by capturing neutrons of parent materials such as uranium-238 to the consumption of fuel such as uranium-235 is called the conversion ratio, and in conventional light water reactors such as BWRs, this conversion The ratio is about 0.6.

この転換比を高くして生成された核分裂性プルトニウム
を核燃料として有効利用することは、ウラン資源の有効
利用という観点からも、また核拡散防止上の観点からも
好都合でおる。近年、転換比を0.8〜1.0と高くし
てウラン−238をプルトニウムに有効に転換するとと
もに、プルトニウムを有効に利用することが可能な高転
換型軽水炉の開発が行われている。この高転換型軽水炉
では前述した転換比を高めるために炉内の減速材対燃料
の体積比(Vm/Vf)を小さくし中性子スペクトラム
を硬くする必要がある。このため燃料配列を六角格子配
列とし、体積比を小さくする手段が採用されている。こ
のようにすることで従来型軽水炉に採用されている正方
格子配列に比べその体積比を174〜1/2にすること
が可能となる。
The effective use of fissile plutonium produced by increasing this conversion ratio as nuclear fuel is advantageous both from the perspective of effective use of uranium resources and from the perspective of nuclear proliferation prevention. In recent years, high conversion type light water reactors have been developed that can effectively convert uranium-238 into plutonium by increasing the conversion ratio to 0.8 to 1.0, and can also effectively utilize plutonium. In this high conversion type light water reactor, in order to increase the conversion ratio mentioned above, it is necessary to reduce the volume ratio of moderator to fuel (Vm/Vf) in the reactor and harden the neutron spectrum. For this reason, a method is adopted in which the fuel is arranged in a hexagonal lattice arrangement to reduce the volume ratio. By doing so, it is possible to reduce the volume ratio to 174 to 1/2 compared to the square lattice arrangement employed in conventional light water reactors.

第5図は、上述したような高転換型軽水炉の炉心を構成
する燃料集合体を示してあり、燃料集合体1は六角柱形
の断面を有するチャンネルボックス2と、このチャンネ
ルボックス2内に六角格子状に配列された複数の燃料棒
3と、この燃料棒3の間に挿入される図示を省略した複
数の制御棒により構成されており、この燃料集合体1を
多数集合して炉心を形成している。また、炉心の外部雰
囲気は減速材となる軽水が充満している。
FIG. 5 shows a fuel assembly constituting the core of a high conversion light water reactor as described above. It is composed of a plurality of fuel rods 3 arranged in a lattice pattern and a plurality of control rods (not shown) inserted between the fuel rods 3, and a reactor core is formed by assembling a large number of fuel assemblies 1. are doing. In addition, the atmosphere outside the core is filled with light water, which acts as a moderator.

(発明が解決しようとする問題点) 上述した炉心の最外周部では炉心周囲に充満している軽
水の効果で中性子スペクトラムは軟化している。核燃料
であるウラン−235やプルトニウム−239、プルト
ニウム241の中性子に対する核反応断面積は、中性子
エネルギーが低下する程大きくなるため、炉心最外周部
に位置する燃料集合体内の出力勾配は、第6図に示すよ
うに急激なものとなってしまい、燃料健全性上の問題が
おった。
(Problems to be Solved by the Invention) At the outermost periphery of the core, the neutron spectrum is softened by the effect of the light water that is filled around the core. The nuclear reaction cross section of the nuclear fuels uranium-235, plutonium-239, and plutonium-241 with respect to neutrons increases as the neutron energy decreases, so the power gradient in the fuel assembly located at the outermost part of the core is as shown in Figure 6. As shown in Figure 2, the increase in fuel consumption became rapid, resulting in fuel integrity problems.

本発明は上述した問題点を解決するためになされたもの
で、炉心最外周部に位置する燃料集合体内の出力密度の
急激な勾配をなくして燃料集合体内の出力分布の平坦化
が可能となる燃料集合体を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and it is possible to flatten the power distribution within the fuel assembly by eliminating the sharp gradient in the power density within the fuel assembly located at the outermost periphery of the core. The purpose is to provide fuel assemblies.

[発明の構成] (問題点を解決するための手段) 本発明によれば、複数の燃料棒を稠密格子状に収容し、
これを多数集合して炉心を構成する燃料集合体において
、この炉心最外周部に配置された燃料集合体の内部が核
分裂性物質密度の小さい燃料棒から構成された領域と核
分裂性物質密度の大きい燃料棒から構成された領域とを
有していることを特徴とする燃料集合体が得られる。
[Structure of the Invention] (Means for Solving the Problems) According to the present invention, a plurality of fuel rods are housed in a dense grid,
In a fuel assembly that composes a reactor core by assembling a large number of these, the inside of the fuel assembly placed at the outermost part of the core is comprised of fuel rods with a low density of fissile material and a region with a high density of fissile material. A fuel assembly is obtained which is characterized in that it has a region made up of fuel rods.

(作 用) 本発明では、炉心最外周部に配置された燃料集合体内に
、核分裂性物質密度の小さい領域と核分裂性物質密度の
大きい領域とを設けることで炉心最外周部に配置された
燃料集合体内の出力分イ[の平坦化ができる。
(Function) In the present invention, a region with a low fissile material density and a region with a high fissile material density are provided in the fuel assembly located at the outermost periphery of the reactor core. The output within the aggregate can be flattened.

(実施例) 以下、本発明の一実施例を図を参照にしながら説明する
(Example) An example of the present invention will be described below with reference to the drawings.

第1図tよ本発明を適用した原子炉容器内の炉心4を示
しており、図示したように炉心4は六角柱状の多数の燃
料集合体により構成されている。炉心最外周部に配置さ
れた燃料集合体5が本発明を適用した燃料集合体である
。符号6は通常の燃料集合体を示している。
FIG. 1t shows a reactor core 4 in a reactor vessel to which the present invention is applied, and as shown, the reactor core 4 is composed of a large number of hexagonal columnar fuel assemblies. A fuel assembly 5 arranged at the outermost periphery of the core is a fuel assembly to which the present invention is applied. Reference numeral 6 indicates a normal fuel assembly.

第2図は第1図のA部拡大図で必る。燃料棒は高濃縮ペ
レットを装荷した高濃縮燃料棒7と低濃縮ペレットを装
荷した低濃縮燃料棒8からなり、高濃縮燃料棒7により
高濃縮領域9が、低濃縮燃料棒8により低濃縮領域10
がそれぞれ形成されている。
Figure 2 is an enlarged view of section A in Figure 1. The fuel rods consist of high enrichment fuel rods 7 loaded with high enrichment pellets and low enrichment fuel rods 8 loaded with low enrichment pellets.The high enrichment fuel rods 7 provide a high enrichment region 9, and the low enrichment fuel rods 8 provide a low enrichment region. 10
are formed respectively.

このような構成の燃料集合体においてその出力分布を第
3図に示す。図中aおよびbは第2図のaおよびbの位
置にそれぞれ対応している。図示したように、炉心外周
部の軽水の影響を受けるbの位置近傍においても従来の
ような出力密度の急激な上昇が見られない。1なわら出
力分布の平坦化がはかれる。
FIG. 3 shows the power distribution of a fuel assembly having such a configuration. In the figure, a and b correspond to positions a and b in FIG. 2, respectively. As shown in the figure, even in the vicinity of position b, which is affected by light water on the outer periphery of the core, there is no sharp increase in power density as in the conventional case. 1, the output distribution is flattened.

上述実施例では燃料の濃縮度の相違により核分裂性物質
密度の大小の領域を分割したが、例えば本発明の他の実
施例として、低濃縮領域を構成する燃料棒にプルトニウ
ム低寞化昨燃料を、高濃縮領域を構成する燃料棒にプル
トニウム高富化度燃料を用いても同様な効果が得られる
In the above-mentioned embodiment, regions of large and small fissile material densities were divided based on the difference in fuel enrichment, but in another embodiment of the present invention, for example, plutonium low-density fuel was used in the fuel rods constituting the low enrichment region. A similar effect can be obtained by using high plutonium enrichment fuel in the fuel rods constituting the high enrichment region.

さらに本発明の他の実施例として、第4図に示すように
低濃縮領域10の代わりに燃料棒のロッド径を他の燃料
棒よりも細くした燃料棒11を用いてこれを核分裂性物
質密度の小さい領域12としてもよい。この場合図示し
たように核分裂性物質密度の小さい領域12と核分裂性
物質密度の大きい領域13とは分割壁14により分割す
ることが望ましい。
Furthermore, as another embodiment of the present invention, as shown in FIG. 4, a fuel rod 11 having a rod diameter smaller than that of other fuel rods is used in place of the low enrichment region 10, and the fissile material density is increased. It may be a small area 12. In this case, as shown in the figure, it is desirable that a region 12 with a low density of fissile material and a region 13 with a high density of fissile material be divided by a dividing wall 14.

[発明の効果] 以上説明したように本発明の燃料集合体によれば、軽水
の効果を受ける炉心最外周部の燃料集合体においてもそ
の燃料集合体内の出力分布の平坦化が可能となる。
[Effects of the Invention] As explained above, according to the fuel assembly of the present invention, it is possible to flatten the power distribution within the fuel assembly even in the fuel assembly at the outermost periphery of the core, which is subject to the effect of light water.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る燃料集合体を適用した炉心の構成
を示す図、第2図は第1図のA部拡大断面図、第3図は
実施例の燃料集合体内の出力分布を示す図、第4図は本
発明に係る他の実施例の燃料集合体を示す横断面図、第
5図は従来の燃料集合体を示す横断面図、第6図は従来
の燃料集合体内の出力分布を示す図である。 2・・・・・・・・・チャンネルボックス4・・・・・
・・・・炉心 5・・・・・・・・・燃料集合体 7・・・・・・・・・高濃縮燃料棒 8・・・・・・・・・低濃縮燃料棒 9・・・・・・・・・高濃縮領域 10・・・・・・・・・低濃縮領域 11・・・・・・・・・小ロッド径燃料12・・・・・
・・・・核分裂性物質密度の小さい領域13・・・・・
・・・・核分裂性物質密度の大ぎい領域14・・・・・
・・・・分離壁 第1図 第2図 婁合体肉位ス 第3図 第4図 第5図 第6図
Fig. 1 is a diagram showing the configuration of a reactor core to which the fuel assembly according to the present invention is applied, Fig. 2 is an enlarged sectional view of section A in Fig. 1, and Fig. 3 shows the power distribution in the fuel assembly of the embodiment. 4 is a cross-sectional view showing a fuel assembly according to another embodiment of the present invention, FIG. 5 is a cross-sectional view showing a conventional fuel assembly, and FIG. 6 is a cross-sectional view showing a conventional fuel assembly. It is a figure showing distribution. 2...Channel box 4...
... Core 5 ... Fuel assembly 7 ... Highly enriched fuel rods 8 ... Low enriched fuel rods 9 ... ......High enrichment region 10...Low enrichment region 11...Small rod diameter fuel 12...
...Region 13 with low fissile material density...
...Region of high fissile material density 14...
・・・・Separation wall Fig. 1 Fig. 2 Combination body posture Fig. 3 Fig. 4 Fig. 5 Fig. 6

Claims (4)

【特許請求の範囲】[Claims] (1)複数の燃料棒を稠密格子状に収容し、これを多数
集合して炉心を構成する燃料集合体において、 前記炉心最外周部に配置された前記燃料集合体の内部が
核分裂性物質密度の小さい燃料棒から構成された領域と
核分裂性物質密度の大きい燃料棒から構成された領域と
を有していることを特徴とする燃料集合体。
(1) In a fuel assembly in which a plurality of fuel rods are housed in a dense lattice and a large number of these are assembled to constitute a reactor core, the interior of the fuel assembly arranged at the outermost periphery of the core has a fissile material density. 1. A fuel assembly comprising a region made up of fuel rods with a small density of fissile material and a region made up of fuel rods with a large density of fissile material.
(2)核分裂性物質密度の小さい燃料棒が低濃縮度の燃
料棒で、核分裂性物質密度の大きい燃料棒が高濃縮度の
燃料棒であることを特徴とする特許請求の範囲第1項記
載の燃料集合体。
(2) Claim 1, characterized in that the fuel rods with low fissile material density are low enrichment fuel rods, and the fuel rods with high fissile material density are high enrichment fuel rods. fuel assembly.
(3)核分裂性物質密度の小さい燃料棒がプルトニウム
低富化度燃料捧で、核分裂性物質密度の大きい燃料棒が
プルトニウム高富化度燃料棒であることを特徴とする特
許請求の範囲第1項記載の燃料集合体。
(3) Claim 1, characterized in that the fuel rods with a low density of fissile material are fuel rods with a low enrichment of plutonium, and the fuel rods with a high density of fissile material are fuel rods with a high enrichment of plutonium. Fuel assembly as described.
(4)核分裂性物質密度の小さい燃料棒のロッド径が、
該核分裂性物質密度の大きい燃料棒のロッド径よりも小
さいことを特徴とする特許請求の範囲第1項記載の燃料
集合体。
(4) The rod diameter of the fuel rod with low fissile material density is
The fuel assembly according to claim 1, characterized in that the rod diameter is smaller than the rod diameter of the fuel rod having a high fissile material density.
JP61167575A 1986-07-16 1986-07-16 Fuel aggregate Pending JPS6324194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61167575A JPS6324194A (en) 1986-07-16 1986-07-16 Fuel aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61167575A JPS6324194A (en) 1986-07-16 1986-07-16 Fuel aggregate

Publications (1)

Publication Number Publication Date
JPS6324194A true JPS6324194A (en) 1988-02-01

Family

ID=15852284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61167575A Pending JPS6324194A (en) 1986-07-16 1986-07-16 Fuel aggregate

Country Status (1)

Country Link
JP (1) JPS6324194A (en)

Similar Documents

Publication Publication Date Title
US6002735A (en) Nuclear fuel pellet
US5991354A (en) Nuclear fuel pellet
JPH0450551B2 (en)
JP2007514141A (en) Fuel assemblies for pressurized water reactors containing enriched uranium without plutonium
JPH0666977A (en) Fuel assembly containing plutonium and core of atomic reactor
JPH0345354B2 (en)
JPH0339277B2 (en)
JPS6324194A (en) Fuel aggregate
JPH04357493A (en) Structure of fuel assembly
JPS60201284A (en) Fuel aggregate
JPH07244182A (en) Fuel assembly and reader core
JPH05232276A (en) Core of nuclear reactor
JP2972255B2 (en) Reactor
JPS6361990A (en) Fuel aggregate
JPH0450795A (en) Fuel assembly
JP3135644B2 (en) Reactor core
JPH065320B2 (en) Fuel assembly for boiling water reactor
JPH0552475B2 (en)
JP2002196090A (en) Fuel assembly
JPH0545482A (en) Fuel assembly
JPS60205281A (en) Fuel aggregate for boiling-water type reactor
JP2632726B2 (en) Fuel assembly for boiling water reactor
JPS61147184A (en) Fuel aggregate
JPS6244683A (en) Fuel aggregate for boiling water type reactor
JPH0658419B2 (en) Boiling water reactor