JPS63241873A - Air flow controller for fuel cell - Google Patents

Air flow controller for fuel cell

Info

Publication number
JPS63241873A
JPS63241873A JP62074342A JP7434287A JPS63241873A JP S63241873 A JPS63241873 A JP S63241873A JP 62074342 A JP62074342 A JP 62074342A JP 7434287 A JP7434287 A JP 7434287A JP S63241873 A JPS63241873 A JP S63241873A
Authority
JP
Japan
Prior art keywords
deviation
air flow
flow rate
output
calculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62074342A
Other languages
Japanese (ja)
Inventor
Kazuhiro Hayakawa
和弘 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62074342A priority Critical patent/JPS63241873A/en
Publication of JPS63241873A publication Critical patent/JPS63241873A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04895Current
    • H01M8/0491Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04432Pressure differences, e.g. between anode and cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/04462Concentration; Density of anode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04783Pressure differences, e.g. between anode and cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04791Concentration; Density
    • H01M8/04805Concentration; Density of fuel cell exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/0488Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fuel Cell (AREA)
  • Automation & Control Theory (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)

Abstract

PURPOSE:To control a plant automatically and stably by introducing a controller for which target values for parameters under control and their time differentiations are inputted and to which operational control laws can be applied as they are instead of a PI controller. CONSTITUTION:If a direct current IDC is given, a target value for an interpole differential pressure DPP corresponding to the current is calculated from a memory 22. Respective target values of an output command ACW, a set value of DC voltage VDC, a target value for an interpole differential pressure DPP, and a set value for quantity of hydrogen at the outlet of an air pole CGH are compared with outputs ACW', VDC', DPP', and CGH' being quantities of present states of the actual plant by adders 21A-21D, and their feedback deviations EAC, EVD, EPP, and ECH are calculated, where EAC and EVD are added 23, so a deviation of electricity quantity EDP is obtained. Each deviation is differentiated by differentiators 24A-24C. These deviations and differentiations are inputted to controllers 25A-25C, and obtained control outputs dFI1-dFI3 are sent to changeable gain proportioning devices 24A-26C and an adder 27, so a weighted mean control output dFI is obtained.

Description

【発明の詳細な説明】 〔発明の構成〕 (産業上の利用分野) 本発明は燃料電池の空気流量制御装置に関する。[Detailed description of the invention] [Structure of the invention] (Industrial application field) The present invention relates to an air flow rate control device for a fuel cell.

(従来の技術) 電力の発生は1通常1発電機を蒸気タービン等の原動機
で回転させ、与えられた機械エネルギーを発電機にて電
気エネルギーに変換することにより実現される。一方、
蒸気タービン等を駆動する蒸気はボイラ等にて石油、ガ
ス等の燃料を燃焼させた熱エネルギーにより発生させて
いる。この燃料のもつ化学エネルギーを熱エネルギーと
して取す出して蒸気のもつエネルギーに変換し、さらに
蒸気タービン等の機械エネルギーから電気エネルギーへ
と変換する方式は効率面で不利な事から、近年燃料のも
つ化学エネルギーを直接電気エネルギーに変換する燃料
電池発電式が省エネルギー発電方式のひとつとして採用
されるようになって来た。この燃料電池は供給された燃
料を化学変化させて電力を発生するが、その出力は直流
なのでそのまま特定区域で消費する場合は直流で消費さ
れるか、あるいは直流交流変換器により交流に変換され
電力系統へ接続される。
(Prior Art) Electric power is generated by rotating a generator, usually a prime mover such as a steam turbine, and converting the applied mechanical energy into electrical energy in the generator. on the other hand,
Steam that drives a steam turbine or the like is generated using thermal energy obtained by burning fuel such as oil or gas in a boiler or the like. The method of extracting the chemical energy of this fuel as thermal energy, converting it into the energy of steam, and then converting mechanical energy such as a steam turbine into electrical energy is disadvantageous in terms of efficiency, so in recent years, Fuel cell power generation, which directly converts chemical energy into electrical energy, has come to be adopted as an energy-saving power generation method. This fuel cell generates electricity by chemically changing the supplied fuel, but the output is direct current, so if it is consumed as is in a specific area, it is consumed as direct current, or it is converted to alternating current by a DC/AC converter to generate electricity. Connected to the grid.

第4図は炭化水素を原燃料とする代表的な水冷式燃料電
池プラントの説明図である。図中、一点a線で示されて
いる部分が燃料電池プラント1である。
FIG. 4 is an explanatory diagram of a typical water-cooled fuel cell plant that uses hydrocarbons as raw fuel. In the figure, the part indicated by a dotted line a is the fuel cell plant 1.

原燃料は原燃料制御弁10により流量が制御されミキサ
14に入る。一方ミキサ14には蒸気発生器I5から蒸
気制御弁16により流量が制御された蒸気が入る。ミキ
サ14で蒸気と混合した原燃料は改質器4に入り、ここ
で加熱され水素に改質される。改質された燃料は次に高
温変成器8.低温変成器9を経て水素含有率のより高い
改質燃料となる。改質燃料は改質燃料制御弁11により
流量が制御され燃料電池5の燃料極5Aに入り、電気エ
ネルギー源としてその水素の一部が消費され、残りは前
記の改質器4のメインバーナ12で燃焼し改質器4の加
熱用高温ガスとなり燃料電池5の空気極5Bからの排空
気と合流し燃焼器7を経てターボコンプレッサのタービ
ン2に入り、これに連結したコンプレッサ3を駆動する
The raw fuel enters the mixer 14 with its flow rate controlled by the raw fuel control valve 10. On the other hand, the mixer 14 receives steam whose flow rate is controlled by the steam control valve 16 from the steam generator I5. The raw fuel mixed with steam in the mixer 14 enters the reformer 4, where it is heated and reformed into hydrogen. The reformed fuel is then passed through a high temperature shift converter 8. It passes through the low-temperature shift converter 9 and becomes reformed fuel with a higher hydrogen content. The reformed fuel enters the fuel electrode 5A of the fuel cell 5 with its flow rate controlled by the reformed fuel control valve 11, where a part of the hydrogen is consumed as an electrical energy source, and the rest is sent to the main burner 12 of the reformer 4. The gas is combusted and becomes high-temperature gas for heating the reformer 4, which joins the exhaust air from the air electrode 5B of the fuel cell 5, passes through the combustor 7, enters the turbine 2 of the turbo compressor, and drives the compressor 3 connected thereto.

コンプレッサ3の吐出空気は空気制御弁13により流量
が制御され燃料電池5の空気極5Bに入る。
The flow rate of the air discharged from the compressor 3 is controlled by the air control valve 13 and enters the air electrode 5B of the fuel cell 5.

空気極5Bに入った空気中の酸素の一部は燃料極5Aの
水素と反応し、残りは排空気として空気極5Bから排出
され、前記の改質器4のメインバーナ12からの排気と
合流し、燃焼器7を経由してターボコンプレッサのター
ビン2を駆動するために利用される。
A part of the oxygen in the air that has entered the air electrode 5B reacts with hydrogen in the fuel electrode 5A, and the rest is discharged from the air electrode 5B as exhaust air, joining with the exhaust air from the main burner 12 of the reformer 4. It is used to drive the turbine 2 of the turbo compressor via the combustor 7.

燃料電池5の冷却は電池冷却水循環ポンプ19により電
池冷却水を蒸気発生器15がら冷却板5C。
The fuel cell 5 is cooled by a battery cooling water circulation pump 19 that supplies battery cooling water to the steam generator 15 and to the cooling plate 5C.

蒸気発生器15へと循環して行っている。この電池冷却
水の温度制御は電池冷却水温度制御弁17により蒸気発
生器15で発生した蒸気の熱交換器20における冷却量
を調節することで行われている。
It is circulated to the steam generator 15. This temperature control of the battery cooling water is performed by adjusting the amount of cooling of the steam generated in the steam generator 15 in the heat exchanger 20 using the battery cooling water temperature control valve 17.

燃料電池5は燃料極5Aの水素と空気極5Bの酸素との
触媒反応によって空気極5Bが正極、燃料極5Aが負極
となるように電気エネルギーを発生し、その両極間に接
続された電気的負荷にその電気エネルギーを供給する。
The fuel cell 5 generates electrical energy through a catalytic reaction between hydrogen at the fuel electrode 5A and oxygen at the air electrode 5B so that the air electrode 5B becomes a positive electrode and the fuel electrode 5A becomes a negative electrode. Supply that electrical energy to the load.

その際発生した電気エネルギーに略比例して両極入口に
各々供給された水素と酸素が反応して水になり、未反応
分が各掻出口より排出されることになる。
The hydrogen and oxygen respectively supplied to the inlets of both poles react in approximately proportion to the electrical energy generated at that time and become water, and the unreacted portion is discharged from each scraping port.

通常、この燃料電池5の直流出力は変換器6にて交流に
変換され、電力系統に送り出される。
Normally, the DC output of the fuel cell 5 is converted into AC by a converter 6 and sent to the power system.

以上が燃料電池プラントの基本構成と概略の動作である
The above is the basic configuration and general operation of the fuel cell plant.

第5図は従来の空気流量制御装置を示したものであるが
、燃料電池の直流電流35に対応する補正前空気流量指
令38を演算する。一方、出方指令3゜に対して変換器
実出力31をフィードバックして偏差をとり、また直流
電圧設定33に対して直流電圧32をフィードバックし
て偏差をとり1両偏差の和をPI量制御て出力偏差補正
34を演算し、これに対し直流電流35に対応する補正
量制限36による制限演算より補正37を決める。更に
補正前空気流量指令38に補正37を加算して空気流量
指令39を演算し、これに対して実空気流量40をフィ
ードバックし、この偏差より空気制御弁13をPI量制
御るものであった。
FIG. 5 shows a conventional air flow rate control device, which calculates a pre-correction air flow rate command 38 corresponding to a direct current 35 of a fuel cell. On the other hand, the converter actual output 31 is fed back to the output command 3° to take the deviation, and the DC voltage 32 is fed back to the DC voltage setting 33 to take the deviation, and the sum of the 1-car deviations is controlled by the PI amount. An output deviation correction 34 is calculated, and a correction 37 is determined by a limit calculation based on a correction amount limit 36 corresponding to the DC current 35. Further, a correction 37 is added to the pre-correction air flow rate command 38 to calculate an air flow rate command 39, and an actual air flow rate 40 is fed back to this, and the air control valve 13 is controlled by the PI amount based on this deviation. .

(発明が解決しようとする問題点) 一般に、燃料電池の燃料極と空気極間の差圧は各々の極
から、改質器のメインバーナ排気と排空気との合流点ま
での圧損の差によって生じ、従って各々極を流れる改質
燃料および空気の流量が極間差圧と密接に関連する。ま
た、燃料電池における燃料極ど空気極間の電解質層は強
度が非常に弱いため、極間差圧を常に小さく保つ必要が
ある。
(Problem to be Solved by the Invention) Generally, the differential pressure between the fuel electrode and the air electrode of a fuel cell is determined by the difference in pressure drop from each pole to the confluence point of the main burner exhaust and exhaust air of the reformer. The flow rates of reformate and air that occur and thus flow through each pole are closely related to the interpole differential pressure. Furthermore, since the electrolyte layer between the fuel electrode and the air electrode in a fuel cell has very low strength, it is necessary to always keep the pressure difference between the electrodes small.

従来はこの極間差圧を小さく保つ方法のひとつとして、
運転員が手動で空気流量調節を行っていた。
Conventionally, one way to keep this differential pressure between poles small is to
The operator was manually adjusting the air flow rate.

また、燃料電池の化学反応において空気極の酸素量、す
なわち空気流量が不足すると、直流電圧の低下と同時に
空気量に水素が発生する現象が起る。空気極出口には水
素量検出器が設けられており、この水素量が増加すると
空気流量を増加させる等の手動調節を運転員が行ってい
た。
Furthermore, in the chemical reaction of a fuel cell, if the amount of oxygen at the air electrode, that is, the flow rate of air is insufficient, a phenomenon occurs in which hydrogen is generated in the amount of air at the same time as the DC voltage decreases. A hydrogen amount detector is installed at the air electrode outlet, and when the hydrogen amount increases, the operator makes manual adjustments such as increasing the air flow rate.

このように、従来の空気流量制御装置は前記のようなプ
ラントの状況により運転員が手動で流量調節を行わねば
ならない問題点があった。
As described above, the conventional air flow rate control device has a problem in that an operator must manually adjust the flow rate depending on the plant situation.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明による燃料電池の空気流量制御装置は。 (Means for solving problems) An air flow control device for a fuel cell according to the present invention.

極間差圧の調節と空気極の水素発生に対して空気流量を
調節することが有効であることから、直流電流に応じた
空気流量指令に対し、出力指令と実出力との偏差、直流
電圧、設定と実直流電圧との偏差、極間差圧設定と実差
圧との偏差および空気極出口の水素量設定と実水素量と
の偏差に対応する流量補正を加えた空気流量指令により
空気流量を制御することにより、その結果として自動で
安定したプラント運転を与えることを特徴としている。
Since adjusting the air flow rate is effective for adjusting the differential pressure between the electrodes and hydrogen generation at the air electrode, the deviation between the output command and the actual output, the DC voltage, and the air flow rate command according to the DC current are effective. , air flow rate command with flow rate correction corresponding to the deviation between the setting and the actual DC voltage, the deviation between the inter-electrode differential pressure setting and the actual differential pressure, and the deviation between the hydrogen amount setting at the air electrode outlet and the actual hydrogen amount. It is characterized by automatically providing stable plant operation as a result of controlling the flow rate.

更に、本発明は、PI量制御器かわりに被制御パラメー
タの目標値とその時間微分を入力し、運転員が運転する
時の制御則をそのまま適用可能な制御器を導入したこと
を特徴としている。
Furthermore, the present invention is characterized by the introduction of a controller that inputs the target value of the controlled parameter and its time derivative instead of the PI quantity controller, and allows the control law used by the operator to be applied as is. .

(作 用) これによって、低負荷状態から定格出力状態まで、自動
で安定にプラントを制御することができる燃料電池の空
気流量制御装置を提供することにある。
(Function) The object of the present invention is to provide an air flow control device for a fuel cell that can automatically and stably control a plant from a low load state to a rated output state.

(実施例) 以下、図面を参照して本発明の一実施例を説明する。第
1図は本発明の一実施例に係る燃料電池の空気流量制御
装置の構成図である。第1図において、22は極間差圧
のスケジュールメモリで直流電流IDCが入力されると
、極間差圧目標DPPが出力される。21は出力指令A
CWと実出力AcW′との偏差EAC=、ACW−AC
W’ 、直流電圧設定VDCと実際の直流電圧VDC:
’ との偏差EVD=VDC−VDC’ 、極間差圧目
標D P Pと実差圧DPP’ との偏差EPP=DP
P−DPP′、空気極出口水素量設定CGHと実際の水
素量CGH’ との偏差ECH=CGH−CGH’ を
演算する加算器、23は偏差EACとEVDとの和ED
P=EAC+EVD (以下、EDP、EPP。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram of an air flow control device for a fuel cell according to an embodiment of the present invention. In FIG. 1, reference numeral 22 denotes a schedule memory for the inter-electrode differential pressure, which outputs the inter-electrode differential pressure target DPP when the DC current IDC is input. 21 is output command A
Deviation between CW and actual output AcW′ EAC=, ACW−AC
W', DC voltage setting VDC and actual DC voltage VDC:
' Deviation between EVD = VDC - VDC', deviation between target differential pressure D P P and actual differential pressure DPP' EPP = DP
P-DPP', an adder that calculates the deviation ECH=CGH-CGH' between the air electrode outlet hydrogen amount setting CGH and the actual hydrogen amount CGH'; 23 is the sum ED of the deviation EAC and EVD;
P=EAC+EVD (hereinafter referred to as EDP and EPP).

ECHを総称して述べる場合はeと記載する)を演算す
る加算器、24は偏差の時間微分dEDP=dEDP/
dt、dEpp=dEPP/dt、dECH=dECH
/dt (以下、dEDP、dEPP、dECHを総称
して述べる場合はΔeと記載する)を演算する微分器で
ある。25は各状1重量の偏差および偏差の微分値を入
力し、各制御出力ΔUを次の制御則1〜5に基づいて演
算する制御器である。
24 is the time differential of the deviation dEDP=dEDP/
dt, dEpp=dEPP/dt, dECH=dECH
/dt (hereinafter, when dEDP, dEPP, and dECH are collectively referred to, they will be referred to as Δe). Reference numeral 25 denotes a controller which inputs the deviation of each weight and the differential value of the deviation and calculates each control output ΔU based on the following control laws 1 to 5.

制御則1;偏差eがjJE方向に大で、偏差の微分値Δ
eが負方向に大のとき、制御出力△Uを正方向に小とす
る。
Control law 1: The deviation e is large in the jJE direction, and the differential value Δ of the deviation
When e is large in the negative direction, the control output ΔU is made small in the positive direction.

制御則2;偏差eが正方向に大で、偏差の微分値Δeが
正方向に大のとき、制御出力ΔUを正方向に大とする。
Control law 2: When the deviation e is large in the positive direction and the differential value Δe of the deviation is large in the positive direction, the control output ΔU is made large in the positive direction.

制御則3;偏差eが零に近い時は、偏差の微分値Δeが
いかなる値でも、制御出力ΔUを零に近い値とする。
Control law 3: When the deviation e is close to zero, the control output ΔU is set to a value close to zero, regardless of the value of the differential value Δe of the deviation.

制御則4;偏差eが負方向に大で、偏差の微分値Δeが
負方向に大のとき、制御出力ΔUを負方向に大とする。
Control law 4: When the deviation e is large in the negative direction and the differential value Δe of the deviation is large in the negative direction, the control output ΔU is made large in the negative direction.

制御則5;偏差eが負方向に大で、偏差の微分値Δeが
正方向に大のとき、制御出力ΔUを負方向に小とする。
Control law 5: When the deviation e is large in the negative direction and the differential value Δe of the deviation is large in the positive direction, the control output ΔU is made small in the negative direction.

第2図は、この制御器25の具体的な演算手法を説明す
る図である。同図において、各グラフは横軸に偏差e、
偏差の微分値Δeおよび制御出力ΔUを一100〜10
0%でとり、縦軸に前記の「正方向に大」、「正方向に
小」、「零」、「負方向に小」および「負方向に大」と
いう概念を集合で表わしたときの各概念の属する測度μ
を0〜1でとり、前記の各制御則を表現したものである
FIG. 2 is a diagram illustrating a specific calculation method of this controller 25. In the same figure, each graph has a deviation e on the horizontal axis,
The differential value Δe of the deviation and the control output ΔU are -100 to 10.
0%, and the vertical axis represents the concepts of "large in the positive direction", "small in the positive direction", "zero", "small in the negative direction", and "large in the negative direction" as a set. Measure μ to which each concept belongs
is taken from 0 to 1, and each control law described above is expressed.

即ち、同図の(制御則1)について見れば、このときの
偏差eから測度μeを算出するため、偏差eは正方向に
10%から100%までを大と定義し、その測度μeを
偏差が10%のときを0として偏差eが増すに従って徐
々に増し、偏差70%で測度μeを最高の1として、そ
の後は再び減らして偏差100%で0とするパターンp
g工を設けている。ここで、偏差70%を測度最高とし
てそれ以降測度を減少させる理由は、偏差eとしては7
0%付近が最大で、それ以上の偏差は正常な制御状態で
は生じ難いことを意味している。
That is, looking at (control law 1) in the same figure, in order to calculate the measure μe from the deviation e at this time, the deviation e is defined as large from 10% to 100% in the positive direction, and the measure μe is calculated as the deviation A pattern p in which the measure μe is set to 0 when is 10%, increases gradually as the deviation e increases, reaches a maximum of 1 at a deviation of 70%, and then decreases again to 0 at a deviation of 100%.
We have a g engineering facility. Here, the reason why the deviation is set to be the highest at 70% and the measure is decreased thereafter is that the deviation e is 7
The maximum value is around 0%, which means that deviations larger than that are unlikely to occur under normal control conditions.

次に、その偏差の微分値Δeから測度μΔeを算出する
ため、偏差の微分値Δeは、−10%から一100%ま
でを小と定義し、その測度μΔeは。
Next, in order to calculate the measure μΔe from the differential value Δe of the deviation, the differential value Δe of the deviation is defined as small from -10% to -100%, and the measure μΔe is.

−60%で最高の1とするパターンPΔ8□を設けてい
る。
A pattern PΔ8□ is provided in which the maximum value is 1 at −60%.

更に、その制御出力ΔUは、−20%から+70%まで
を正方向に小と定義し、+20%で測度μΔUが最高の
1となるパターンPΔU1を設けている。
Further, the control output ΔU is defined as being small in the positive direction from −20% to +70%, and a pattern PΔU1 is provided in which the measure μΔU becomes the highest 1 at +20%.

これらのパターンP。tt pΔ0工、PΔU工から判
るように、制御則1は、制御偏差eが正方向に大である
が、その偏差の微分値Δeが負方向に大つまり偏差が急
速に回復方向に向っている場合には。
These patterns P. As can be seen from pΔ0 and PΔU, in control law 1, the control deviation e is large in the positive direction, but the differential value Δe of that deviation is large in the negative direction, which means that the deviation is quickly heading toward recovery. in case of.

制御出力ΔUは小として修正動作をひかえ目にし。The control output ΔU is kept small and correction operations are performed sparingly.

逆方向への制御の行き過ぎを防止することを意味する。This means preventing excessive control in the opposite direction.

また、このときの制御出力ΔUの大きさは偏差eと偏差
の微分値Δeの大きさに応じて決める。
Further, the magnitude of the control output ΔU at this time is determined according to the magnitude of the deviation e and the differential value Δe of the deviation.

以下、同様にして制御則2〜5についても1図示パター
ンP。2〜Pos、PΔo2〜PΔes+PΔU2〜P
ΔU5 を設ける。
Hereinafter, one illustrated pattern P is used for control laws 2 to 5 in the same manner. 2~Pos, PΔo2~PΔes+PΔU2~P
ΔU5 is provided.

各制御器25は、前記制御則1〜5を備え、そこに入力
する偏差eと、偏差の微分値Δeをそれらの制御則に基
づき、先ずeとΔeの各パターンから得られる測度μe
、μΔeを求め、その小さい方μM I Nで制御出力
ΔUのパターンの上部を切り取り、残り部分PBΔUを
各制御則につき求めて、それらの最大値μMAXを演算
し、誤られるパターンPμMAXΔUの平均値を各制御
器25の出力dFIiとする。
Each controller 25 is equipped with the control laws 1 to 5, and first calculates the deviation e inputted therein and the differential value Δe of the deviation based on those control laws, and first calculates the measure μe obtained from each pattern of e and Δe.
, μΔe, cut off the upper part of the pattern of control output ΔU using the smaller μM I N, find the remaining portion PBΔU for each control law, calculate their maximum value μMAX, and calculate the average value of the erroneous pattern PμMAXΔU. The output of each controller 25 is dFIi.

例えば、e=40%、Δe=30%の値が入力された時
を例にとって説明すると、 制御則1ではμ、1=0.7.μΔo1=0 で、μM
 I N、=0制御則2ではμ。2=0.7.μΔ。、
=0.5で、μM I N、=0.5制御則3では/j
ei”o−2yμΔo3=0.2で、 μMIN3=0
.2制御則4ではμQ4”OtμΔe4=0で、μMI
N4=02制御則5では+uos”0−2y μΔes
”oで、μM I N、=0となり、制御則2および制
御則3のみが適用可能となる。これら制御則についてP
BΔUを取ったのが、第2図における斜線部PBΔU2
 とPBΔU3である。このPBΔU□とPBΔU、に
ついて最大値μMAXを演算したのが第2図の斜線部P
μMAXΔUで、この平均値から制御器25の出力dF
Iiを算出する6 第1図の26は可変ゲインの比例器で、ゲインは直流電
流により変化させるものである。
For example, when the values of e=40% and Δe=30% are input, in control law 1, μ, 1=0.7. μΔo1=0, μM
I N, = 0 In control law 2, μ. 2=0.7. μΔ. ,
=0.5, μM I N, =0.5 control law 3 /j
ei”o−2yμΔo3=0.2, μMIN3=0
.. 2 In control law 4, μQ4”OtμΔe4=0, μMI
In N4=02 control law 5, +uos"0-2y μΔes
”, μM I N, = 0, and only control law 2 and control law 3 can be applied. Regarding these control laws, P
BΔU was taken from the shaded area PBΔU2 in Figure 2.
and PBΔU3. The maximum value μMAX for these PBΔU□ and PBΔU was calculated at the shaded area P in Figure 2.
From this average value, the output dF of the controller 25 is μMAXΔU.
Calculating Ii 6 Reference numeral 26 in FIG. 1 is a variable gain proportional device, and the gain is changed by direct current.

第3図はその一例を示したもので、出力および直流電圧
に対するゲインに□は低電流で大きく、極間差圧に対す
るゲインに2と空気極出口水素量に対するゲインに3 
は中間電流から高電流で大きくとっである。
Figure 3 shows an example. The gain for the output and DC voltage is large at low currents, the gain for the electrode differential pressure is 2, and the gain for the air electrode outlet hydrogen amount is 3.
is large at intermediate to high currents.

最後に、27は出力および直流電圧、極間差圧。Finally, 27 is the output, DC voltage, and differential pressure between poles.

空気極出口水素量に関する各制御器出力を加算する加算
器で、この出力が従来の空気流量補正に相当し、第5図
のAの代りに用いる・ 以上の構成で、直流電流IDCが与えられると極間差圧
のスケジュールメモリ22より電流に応じた極間差圧目
標値DPPが算出される。出力指令ACW、直流電圧設
定VDC,上記の極間差圧目標値DPPおよび空気極出
口水素量設定CGHの各目標値は、加算121A、21
B、21C,21Dで、実際のプラントの現在の状態量
である出力 ACW′、直流電圧VDC’ 、極間差圧
DPP’ および空気振出日水素量CGH’ と比較さ
れてそのフィードバック偏差EAC=ACW−ACW’
 、EVD=VDC−VDC’ 、PPP=DPP−D
PP’ 、ECH=CGH−CGH’が演算され、更に
出力偏差EACと電圧偏差EVDとは、加算器23テ加
算され電気量偏差EDP=EAC+EVDが演算される
。また微分器24A、24B、24Gで、各偏差の時間
微分dEDP=dEDP/dt、dEPP=dEPP/
dtおよびdEcH=dEcH/dtが演算される。こ
の偏差と偏差の微分値をe=EDP、Δe=dEDPと
して制御器25Aへ、e=EPP、Δe = d E 
P Pとして制御器25Bへ、e = E CH、Δe
=dECHとして制御器25Cへ各々入力することによ
り、各々入力することにより、各制御出力dFI、、d
FI、、  dFI、が得られる。
This is an adder that adds the outputs of each controller related to the amount of hydrogen at the air electrode outlet. This output corresponds to the conventional air flow rate correction and is used in place of A in Figure 5. With the above configuration, the DC current IDC is given. An inter-electrode differential pressure target value DPP corresponding to the current is calculated from the inter-electrode differential pressure schedule memory 22. The target values of the output command ACW, the DC voltage setting VDC, the above-mentioned electrode differential pressure target value DPP, and the air electrode outlet hydrogen amount setting CGH are calculated by adding 121A, 21
At B, 21C, and 21D, the output ACW', the DC voltage VDC', the interelectrode differential pressure DPP', and the daily hydrogen amount CGH', which are the current state quantities of the actual plant, are compared and the feedback deviation EAC=ACW is compared. -ACW'
, EVD=VDC-VDC', PPP=DPP-D
PP', ECH=CGH-CGH' are calculated, and the output deviation EAC and voltage deviation EVD are added by an adder 23 to calculate the electric quantity deviation EDP=EAC+EVD. In addition, differentiators 24A, 24B, and 24G calculate the time differentiation of each deviation dEDP=dEDP/dt, dEPP=dEPP/
dt and dEcH=dEcH/dt are calculated. This deviation and the differential value of the deviation are sent to the controller 25A as e=EDP, Δe=dEDP, e=EPP, Δe=dE
To the controller 25B as P P, e = E CH, Δe
=dECH to the controller 25C, each control output dFI,, d
FI,, dFI, are obtained.

即ち、出力および直流電圧に関しては、前述したように
、e=EDP、Δe = d E D Pを入力して、
第2図に示す各パターンP。、〜po、、pΔ0工〜P
Δ0.からそれぞれの測度μ。1〜μOS+ μΔei
〜μΔ。、を算出する。更にそれらの各車さい方の値μ
MIN□〜μMIN、を求め、それらから制御器カバタ
ーンPΔU□〜PΔUsの基底部パターンPBΔU1〜
PBΔU、が得られる。更に、それらの基底部パターン
PBΔU工〜PBΔU5を組み合わせて得られる最大値
パターンPμMAXΔUを算出し、このパターンの平均
値つまりある範囲で広がる制御出力ΔUの重み平均値を
演算して、最終的制御出力dF11が得られる。
That is, regarding the output and DC voltage, as mentioned above, input e=EDP, Δe=dEDP,
Each pattern P shown in FIG. ,~po,,pΔ0tech~P
Δ0. from each measure μ. 1~μOS+ μΔei
~μΔ. , is calculated. Furthermore, the value μ of each of those cars is
Find MIN□~μMIN, and from them calculate the base pattern PBΔU1~ of the controller cover turn PΔU□~PΔUs.
PBΔU is obtained. Furthermore, the maximum value pattern PμMAXΔU obtained by combining these base patterns PBΔU-PBΔU5 is calculated, and the average value of this pattern, that is, the weighted average value of the control output ΔU spread over a certain range, is calculated to calculate the final control output. dF11 is obtained.

このようにして得られた各制御器25A、25B。Each controller 25A, 25B obtained in this way.

25Cからの制御出力d F I、、d F 1.、d
 F I□を可変ゲイン比例器26A 、 26B 、
 26Gに入力し、加算器27を通して重み平均値dF
Iが clFI=に□Xd F 1.+に、Xd F I、+
に、Xd F Lとして算出される。従って、このdF
Iを第5図に示した破線ブロックAの出力の代りとして
制限器に入力し、得られた出力を補正前空気流量指令3
8に加えて空気流量指令39とし、空気制御弁13を制
御することにより、出力、直流電圧、極間差圧および空
気振出日水素量といったプラント状態量を自動的に安定
して制御することができるようになる。
Control output d F I,, d F 1. from 25C. ,d
F I □ variable gain proportional device 26A, 26B,
26G and passes through the adder 27 to obtain the weighted average value dF.
I becomes clFI=□Xd F 1. +, Xd F I, +
, it is calculated as Xd F L. Therefore, this dF
I is input to the limiter in place of the output of the broken line block A shown in FIG. 5, and the obtained output is used as the pre-correction air flow rate command 3.
By using the air flow rate command 39 in addition to the air flow rate command 39 and controlling the air control valve 13, it is possible to automatically and stably control plant state quantities such as output, DC voltage, interelectrode differential pressure, and daily hydrogen amount of air discharge. become able to.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、直流電流から空気流量指
令を算出する際の補正量として出力および直流電圧の他
に、極間差圧、空気振出日水素量をも考慮するようにし
たので、運転上の外乱により出力、直流電圧、極間差圧
および空気振出日水素量が振られても、自動的に空気流
量を調節することによって安定したプラント運転ができ
るようになる。更に、従来のPID制御器と異なり、偏
差が大きく出ても微分積分器の飽和によるハンチングを
引き起こすことがなく、安定、迅速な制御動作7をもた
らすことが可能となる。
As described above, according to the present invention, in addition to the output and DC voltage, the interelectrode pressure difference and the daily hydrogen amount of the air are taken into consideration as correction amounts when calculating the air flow rate command from the DC current. Even if the output, DC voltage, interelectrode differential pressure, and air discharge daily hydrogen amount fluctuate due to operational disturbances, stable plant operation can be achieved by automatically adjusting the air flow rate. Further, unlike conventional PID controllers, hunting due to saturation of the differential integrator does not occur even if a large deviation occurs, and stable and quick control operation 7 can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る燃料電池の空気流量制
御装置の構成図、第2図は第1図の空気流量制御装置の
制御器の動作説明図、第3図は第1図の空気流量制御装
置の各比例器の内容を示す図、第4図は一般的な水冷式
燃料電池の説明図、第5図は第4図の燃料電池の一般的
な空気流量制御装置のブロック図である。 21・・・加算器。 22・・・極間差圧のスケジュールメモリ。 23 、29・・・加算器、24・・・微分器。 25:・・制御器、26・・・比例器。 代理人 弁理士 則 近 憲 佑 同 三俣弘文 第3図 第4図
FIG. 1 is a configuration diagram of an air flow control device for a fuel cell according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of the operation of the controller of the air flow control device of FIG. 1, and FIG. 3 is a diagram similar to the one shown in FIG. Figure 4 is an explanatory diagram of a general water-cooled fuel cell, and Figure 5 is a block diagram of a general air flow control apparatus for the fuel cell shown in Figure 4. It is a diagram. 21... Adder. 22...Schedule memory for differential pressure between poles. 23, 29...adder, 24...differentiator. 25:...Controller, 26...Proportional device. Agent Patent Attorney Noriyuki Chika Yudo Hirofumi MitsumataFigure 3Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)燃料電池の出力電流に応じて燃料電池空気極に供
給する空気流量を制御する燃料電池の空気流量制御装置
において、少くとも出力指令と実出力との偏差を算出す
る手段と、 直流電圧設定値と実直流電圧との偏差を算出する手段と
、 極間差圧設定値と実差圧との偏差を算出する手段と、空
気極出口の水素量設定値と実水素量との偏差を算出する
手段と、前記各偏差を基に空気流量指令に対する補正量
を算出する手段と、出力電流に対じた空気流量指令に前
記補正量を加えて空気流量指令を算出する手段と、この
空気流量指令に応じて実空気流量を調節する手段とを設
けたことを特徴とする燃料電池の空気流量制御装置。
(1) In a fuel cell air flow control device that controls the air flow rate supplied to the fuel cell air electrode according to the output current of the fuel cell, a means for calculating at least a deviation between an output command and an actual output; and a DC voltage. A means for calculating the deviation between the set value and the actual DC voltage, a means for calculating the deviation between the set value of the interelectrode differential pressure and the actual differential pressure, and a means for calculating the deviation between the set value of the hydrogen amount at the air electrode outlet and the actual hydrogen amount. means for calculating, means for calculating a correction amount for the air flow rate command based on each of the deviations, means for calculating the air flow rate command by adding the correction amount to the air flow rate command for the output current; 1. An air flow control device for a fuel cell, comprising means for adjusting an actual air flow rate in accordance with a flow rate command.
(2)燃料電池の出力電流に応じて燃料電池空気極に供
給する空気流量を制御する燃料電池の空気流量制御装置
において、少くとも出力指令と実出力との偏差を算出す
る手段と、 直流電圧設定値と実直流電圧との偏差を算出する手段と
、 極間差圧設定値と実差圧との偏差を算出する手段と、空
気極出口の水素量設定値との偏差を算出する手段と、前
記各偏差を時間微分する手段と、前記各偏差とその時間
微分を入力し、その各入力に対して、予め「正方向に大
」、「正方向に小」、「零」、「負方向に小」および「
負方向に大」という運転員の概念を測度パラメータで与
え、更に前記各概念の組合せに対し、制御出力を「正方
向に大」、「正方向に小」、「零」、「負方向に小」お
よび「負方向に大」にする運転員の制御則にも測度パラ
メータを与え、前記各偏差およびその時間微分が入力す
るとき、各制御則毎に偏差およびその時間微分の対応す
る測度の最小値を選び、各制御則の制御出力の測度分布
を最小値以下のもののみ有効とし底度分布をとり直し、
その結果得られる各制御出力の測度分布を最大値を選択
するように重ね合わせた後、平均して制御出力を決定す
る制御手段と、これら各制御手段の出力に係数を乗じて
加算することにより空気流量指令に対する補正量を算出
する手段と、出力電流に応じた空気流量指令に前記補正
量を加えて空気流量指令を算出する手段と、この空気流
量指令に応じて実空気流量を調節する手段とを設けたこ
とを特徴とする燃料電池の空気流量制御装置。
(2) In a fuel cell air flow control device that controls the air flow rate supplied to the fuel cell air electrode according to the output current of the fuel cell, a means for calculating at least a deviation between an output command and an actual output; and a DC voltage. means for calculating the deviation between the set value and the actual DC voltage; means for calculating the deviation between the electrode differential pressure set value and the actual differential pressure; and means for calculating the deviation between the hydrogen amount set value at the air electrode outlet. , a means for time-differentiating each of the deviations, inputting each of the deviations and their time derivatives, and specifying in advance "greater in the positive direction", "smaller in the positive direction", "zero", and "negative". direction small” and “
The operator's concept of ``greater in the negative direction'' is given as a measurement parameter, and the control output is further set as ``larger in the positive direction'', ``smaller in the positive direction'', ``zero'', and ``in the negative direction'' for combinations of the above concepts. A measure parameter is also given to the operator's control law that makes it "small" and "large in the negative direction," and when each deviation and its time derivative are input, the corresponding measure of the deviation and its time derivative is calculated for each control law. Select the minimum value, set the measure distribution of the control output of each control law to be valid only for those below the minimum value, and recalculate the bottom degree distribution.
After superimposing the measurement distributions of each control output obtained as a result so as to select the maximum value, the control means determines the control output by averaging, and the output of each of these control means is multiplied by a coefficient and added. means for calculating a correction amount for an air flow rate command; means for calculating an air flow rate command by adding the correction amount to an air flow rate command corresponding to an output current; and means for adjusting an actual air flow rate in accordance with the air flow rate command. An air flow control device for a fuel cell, characterized by comprising:
JP62074342A 1987-03-30 1987-03-30 Air flow controller for fuel cell Pending JPS63241873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62074342A JPS63241873A (en) 1987-03-30 1987-03-30 Air flow controller for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62074342A JPS63241873A (en) 1987-03-30 1987-03-30 Air flow controller for fuel cell

Publications (1)

Publication Number Publication Date
JPS63241873A true JPS63241873A (en) 1988-10-07

Family

ID=13544353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62074342A Pending JPS63241873A (en) 1987-03-30 1987-03-30 Air flow controller for fuel cell

Country Status (1)

Country Link
JP (1) JPS63241873A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004134361A (en) * 2002-06-11 2004-04-30 General Electric Co <Ge> Method and device for detecting fault in fuel cell system
WO2017060962A1 (en) * 2015-10-05 2017-04-13 日産自動車株式会社 Fuel cell state determination method and state determination device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004134361A (en) * 2002-06-11 2004-04-30 General Electric Co <Ge> Method and device for detecting fault in fuel cell system
US6835478B2 (en) * 2002-06-11 2004-12-28 General Electric Company Method and apparatus for fuel cell system fault detection
WO2017060962A1 (en) * 2015-10-05 2017-04-13 日産自動車株式会社 Fuel cell state determination method and state determination device
JPWO2017060962A1 (en) * 2015-10-05 2018-07-12 日産自動車株式会社 Fuel cell state determination method and state determination device

Similar Documents

Publication Publication Date Title
AU2011320054B2 (en) Method for integrating controls for captive power generation facilities with controls for metallurgical facilities
EP0067497B1 (en) Feedwater control system
CN113835372B (en) Control system and method for electrode type electric boiler to assist primary frequency modulation of thermal power generating unit
JPS6030062A (en) Output controller of fuel cell
Xing et al. Maximum production point tracking of a high-temperature power-to-gas system: A dynamic-model-based study
JPS63241873A (en) Air flow controller for fuel cell
JP3517260B2 (en) Fuel cell power generator and control method for fuel cell power generator
CN109782584B (en) Self-tuning control method for back-extraction steam turbine
JPH0461464B2 (en)
JPH06267577A (en) Control device for fuel cell
JPS6229868B2 (en)
JPS6229867B2 (en)
JPS6356674B2 (en)
JPS60172175A (en) Load control device of fuel cell system
JPH06150952A (en) Flow control method and device at fuel cell start
JPS58133775A (en) Cooling method of fuel cell power generating system
US12080837B2 (en) Power management control
JPS6180767A (en) Fuel supply system for fuel cell electric power generating plant
JP2960607B2 (en) Cogeneration system
JPS62278767A (en) Fuel cell power generating plant
JPS6030061A (en) Output controller of fuel cell
JP3915934B2 (en) Output control method and circuit of fuel cell inverter
JPS6340269A (en) Cooling line control device of fuel cell power generating plant
CN113093544A (en) Flexible coordination control method for external steam supply unit
JP2002329518A (en) Fuel cell power generating system