JPS63241732A - Focus servo device for optical disk device - Google Patents

Focus servo device for optical disk device

Info

Publication number
JPS63241732A
JPS63241732A JP7472487A JP7472487A JPS63241732A JP S63241732 A JPS63241732 A JP S63241732A JP 7472487 A JP7472487 A JP 7472487A JP 7472487 A JP7472487 A JP 7472487A JP S63241732 A JPS63241732 A JP S63241732A
Authority
JP
Japan
Prior art keywords
gain
circuit
servo
focus
focus error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7472487A
Other languages
Japanese (ja)
Inventor
Akira Kawano
晃 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic System Solutions Japan Co Ltd
Original Assignee
Matsushita Graphic Communication Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Graphic Communication Systems Inc filed Critical Matsushita Graphic Communication Systems Inc
Priority to JP7472487A priority Critical patent/JPS63241732A/en
Publication of JPS63241732A publication Critical patent/JPS63241732A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the asymmetric property of a servo gain due to an operating direction, by providing a gain correcting means, responding to positive and negative asymmetric properties in the sensitivity characteristic of a focus error detecting means, and changing the amplifying gain of a focus error signal. CONSTITUTION:A gain correction circuit 15 amplifies the focus error signal FE4 passing through a phase compensation circuit 10, and supplies its output FE5 to a driving circuit 11. At the circuit 15, the gain is changed corresponding to the polarity of the signal FE4. And it is possible to adjust at least either a gain of positive input or a gain of negative input. In such constitution, by adjusting the gains of operational amplifiers 3 and 4 so as to be different from each other, the zero point of an error is aligned to that of a signal. Thereby, it is possible to obtain different inclination of sensitivity characteristic of the signal FE on a positive side and a negative side. The gain of the circuit 15 is adjusted corresponding to the asymmetric property. Thus, adjustment is performed so as to eliminate the positive and the negative asymmetric properties as a whole of servo loop. In such a way, it is possible to obtain the optimum servo gain in spite of the displacing direction of an objective lens.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、光ディスクに対して情報の記録や再生を行
なう光ディスク装置において、光ヘッドからのレーザビ
ームを光ディスクの情報記録層に正確に紋りこむだめの
フォーカスサーボ装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to an optical disc device for recording and reproducing information on an optical disc, in which a laser beam from an optical head is accurately applied to an information recording layer of an optical disc. This invention relates to an improvement of a focus servo device.

従来の技術 光ヘッドに組込まれているフォーカス調整機構の原理的
な構成を第5図に示している。レーザビーム頒は対物レ
ンズ14によって紋りこまれ、光ディスク13上にフォ
ーカシングされる。対物レンズ14はその鏡胴21とと
もに光ヘッドのベースに上下動可能に取付けられており
、鏡胴21は駆動コイル12と磁石やバネを用いた電磁
アクチェータによって上下方向に変位させられる。その
変位量はコイル12に供給する電流によって制御される
。次に説明するフォーカスサーボ系は、対物レンズ14
と光ディスク13との間隔を一定に保ち、光ディスク1
3の情報記録層にビーム20を常に正しくフォーカシン
グするように、コイル12の電流を調整する制御系であ
る。
FIG. 5 shows the basic structure of a focus adjustment mechanism incorporated in a conventional optical head. The laser beam is reflected by an objective lens 14 and focused onto the optical disk 13. The objective lens 14 and its lens barrel 21 are attached to the base of the optical head so as to be vertically movable, and the lens barrel 21 is vertically displaced by a drive coil 12 and an electromagnetic actuator using a magnet or a spring. The amount of displacement is controlled by the current supplied to the coil 12. The focus servo system, which will be explained next, uses the objective lens 14.
The distance between the optical disc 13 and the optical disc 13 is kept constant, and the optical disc 1
This is a control system that adjusts the current of the coil 12 so that the beam 20 is always correctly focused on the information recording layer No. 3.

従来のフォーカスサーボ装置の一般的な構成を第4図に
示している。
FIG. 4 shows a general configuration of a conventional focus servo device.

この装置は、光ヘッドから光ディスクに照射されたレー
ザビームの反射光を受光するように光ヘッドに設けられ
た1組の光検出器1および2と、光検出器1と2の出力
を増幅するプリアンプ3および4と、プリアンプ3と4
の差動出力をと9フオ一カス誤差信号FEIを得る差動
アンプ5と、プリアンプ3と4の出力を加算して受光レ
ベル信号FSIを得る和アンプ6と、記録時と再生時と
でフォーカス誤差信号FBIおよび受光レベル信号FS
Iの増幅ゲインを切り換えるゲイン切り換え回路7およ
び8と(出力をそれぞれFE2.FS2とする)、受光
レベル信号FS2に基づいてフォーカス誤差信号FE2
の増幅ゲインを変化させて光ディスクの反射率の変化を
補償したフォーカス誤差信号FE3を得るAGC(自動
利得制御)回路9と、フォーカスサーボのゲイン交点に
おける位相余裕を大きくとってサーボを安定化するとと
もに低周波におけるサーボゲインを高めるための位相補
償回路10と、この回路10を経たフォーカス誤差信号
FE4を電流増幅してフォーカス調整用の前記コイル1
2に励磁電流を供給する駆動回路11とを備えている。
This device includes a pair of photodetectors 1 and 2 provided on the optical head to receive the reflected light of the laser beam irradiated from the optical head to the optical disk, and amplifies the outputs of the photodetectors 1 and 2. Preamps 3 and 4 and Preamps 3 and 4
A differential amplifier 5 obtains a focus error signal FEI by adding the differential output of the preamplifiers 3 and 4, and a sum amplifier 6 obtains a received light level signal FSI by adding the outputs of the preamplifiers 3 and 4. Error signal FBI and received light level signal FS
Gain switching circuits 7 and 8 (outputs are respectively FE2 and FS2) that switch the amplification gain of I, and a focus error signal FE2 based on the received light level signal FS2.
An AGC (automatic gain control) circuit 9 obtains a focus error signal FE3 that compensates for changes in the reflectance of the optical disk by changing the amplification gain of the focus servo, and stabilizes the servo by increasing the phase margin at the gain intersection of the focus servo. A phase compensation circuit 10 for increasing the servo gain at low frequencies, and the coil 1 for focus adjustment by current amplifying the focus error signal FE4 that has passed through this circuit 10.
The drive circuit 11 supplies excitation current to the drive circuit 2.

情報記録時と再生時とでは、光ディスクに照射するレー
ザビームのパワーを切シ換えるので、光検出器1.2の
受光強度も当然変化する。この違いを補償するのがゲイ
ン切シ換え回路7,8で、記録時と再生時とでゲインが
切シ換えられる。なお再生専用の装置では、この回路7
.8は無い。
Since the power of the laser beam irradiated to the optical disc is switched between recording and reproducing information, the intensity of light received by the photodetector 1.2 naturally changes as well. Gain switching circuits 7 and 8 compensate for this difference, and the gain is switched between recording and reproduction. Note that in a playback-only device, this circuit 7
.. There is no 8.

光ディスク13の情報記録層にレーザビーム加のフォー
カスが正確に合っていれば、フォーカス誤差信号FE 
(FEI、FE2.FE3.FE4)のレベルはゼロで
、情報記録層の前後にフォーカスがずれていると、その
方向およびずれ量に応じてフォーカス誤差信号FEのレ
ベルが正または負に増大する。
If the laser beam is accurately focused on the information recording layer of the optical disc 13, the focus error signal FE
The level of (FEI, FE2.FE3.FE4) is zero, and if the information recording layer is out of focus before or after the information recording layer, the level of the focus error signal FE increases to be positive or negative depending on the direction and amount of shift.

フォーカス誤差信号FEの極性とレベルに応じてコイル
12に供給される電流が調整され、対物レンズ14の位
置が変化し、対物レンズ14と光ディスク13との間隔
が一定に保たれる。このようにフォーカス誤差信号FE
が最小となるようにサーボループが機能して、光ディス
ク130面振れに追従し、レーザビーム加を情報記録層
に常に紋りこむことができる。
The current supplied to the coil 12 is adjusted according to the polarity and level of the focus error signal FE, the position of the objective lens 14 is changed, and the distance between the objective lens 14 and the optical disk 13 is kept constant. In this way, the focus error signal FE
The servo loop functions in such a way that the optical disc 130 surface runout is minimized, and the laser beam application can always be imprinted on the information recording layer.

フォーカス誤差信号FEの特性について詳述する。第6
図のグラフにおいては、対物レンズ14と光ディスク1
3との間隔の適正値(フォーカスが正しく合う間隔ンか
らの誤差を横軸にとり、縦軸をフォーカス誤差信号FE
のレベルとしている。
The characteristics of the focus error signal FE will be described in detail. 6th
In the graph shown, the objective lens 14 and the optical disc 1
The appropriate value of the distance from
level.

第6図囚における特性■が理想的な特定である。Characteristic ■ of prisoners in Figure 6 is an ideal specification.

特性■では、レンズ/ディスク間の実際の間隔誤差がゼ
ロの点で誤差信号FEが正しくゼロになり、正負の間隔
誤差に対する誤差信号FEの変化は対称な特性を示す。
In characteristic (2), the error signal FE becomes exactly zero at the point where the actual distance error between the lens and the disk is zero, and the change in the error signal FE with respect to positive and negative distance errors exhibits symmetrical characteristics.

このような理想的な特性■を実際の装置上で実現するの
は非常に困難なことである。光検出器1゜2の取付は位
置の精度、光検出器1,2に関連したフォーカス誤差検
出用の光学系の取付は位置の精度、これらの相対的位置
関係などにより、実際に組立てられた装置上では、通常
、フォーカス誤差信号の特性は例えば第6図囚の特性■
のように、理想特性■に対しである程度のオフセットを
もったものになる。
It is extremely difficult to realize such ideal characteristics (1) on an actual device. The mounting of photodetectors 1 and 2 depends on the accuracy of the position, the mounting of the optical system for detecting focus errors related to photodetectors 1 and 2 depends on the accuracy of the position, and the relative positional relationship of these, etc. On the device, the characteristics of the focus error signal are usually as shown in Figure 6.
As shown in FIG.

オフセントのある特性■では、間隔誤差がゼロの点で誤
差信号FEがゼロにならないので、このままでは正しい
フォーカスサーボを行なうことはできない。組立てた個
々の装置について、光検出器1や光学系の位置の微調整
と特性の測定を繰返し、最終的に理想特性■を実現する
ことは不可能なことではない。しかし実際の量産体制の
下では、それを行なうことは時間およびコストの面で無
理である。そのために、よシ簡単に実施できる回路上の
対策で上記オフセットを補正している。
In characteristic (2) with an offset, the error signal FE does not become zero at the point where the interval error is zero, so correct focus servo cannot be performed as is. For each assembled device, it is not impossible to repeatedly fine-tune the positions of the photodetector 1 and the optical system and measure the characteristics, and finally achieve the ideal characteristics (2). However, in an actual mass production system, this is impossible in terms of time and cost. To this end, the above-mentioned offset is corrected by circuit countermeasures that can be implemented easily.

上記オフセットを回路的に補正する手段としては、第1
に、上記サーボループに対して上記オフセント量に見合
うだけの補正電圧を外部から加えることが考えられる。
As means for correcting the above-mentioned offset using a circuit, the first method is as follows.
Another possibility is to externally apply a correction voltage corresponding to the offset amount to the servo loop.

しかし、具体的なオフセット量は光ディスクからの反射
光量に応じて変動する値なので、一定の電圧を加えるこ
とではこれを補正できず、また変動するオフセット量を
常に正確に補正することは回路的にも非常に複雑になる
However, since the specific amount of offset varies depending on the amount of light reflected from the optical disc, it cannot be corrected by applying a constant voltage, and it is difficult to always accurately correct the varying amount of offset due to the circuit. also becomes very complicated.

したがって、この方式による補正は現実には採用されて
いない。
Therefore, correction using this method is not actually adopted.

実際に行なわれている対策は、第4図におけるプリアン
プ3および4の増幅ゲインを個別に調整することで、フ
ォーカス誤差信号FEの特性を変化させ、オフセットを
解消する方法である。具体的には第6図(4)における
オフセットのある特性■に対し、プリアンプ3および4
のゲインを不等に調整し、第6図03)の特性■のよう
に間隔誤差ゼロの点で誤差信号FEもゼロになるように
する。
The countermeasure actually taken is to individually adjust the amplification gains of preamplifiers 3 and 4 shown in FIG. 4 to change the characteristics of focus error signal FE and eliminate the offset. Specifically, for the characteristic ■ with offset in Figure 6 (4), preamplifiers 3 and 4
The gains are adjusted unequally so that the error signal FE also becomes zero at the point where the interval error is zero, as shown in characteristic (3) in FIG. 6 (03).

この方法では、プリア/プ3,4のゲインを調整可能に
しておくだけで、特別な補正用の回路を追加する必要は
ない。また調整作業も容易である。
In this method, it is only necessary to make the gains of the preamplifiers 3 and 4 adjustable, and there is no need to add a special correction circuit. Further, adjustment work is also easy.

そこでこの方法が一般に採用されている。Therefore, this method is generally adopted.

発明が解決しようとする問題点 前述したように、プリアンプ3と4のゲインを異ならせ
ることでフォーカス誤差信号FEのオフセットを解消す
ると、当然第6図の特性■のように誤差信号FEの正側
と負側で変化率が異なシ、非対称な特性になる。このこ
とは、レンズ/ディスク間隔が過大の場合と過小の場合
とで検出感度が異なることを意味し、さらには対物レン
ズ14を光ディスク13に近づける動作と遠ざける動作
のサーボゲインが異なることを意味する。これはフォー
カスサーボの致命的な欠陥ではないけれど、よシ高性能
なサーボを実現する上での障害の1つである。
Problems to be Solved by the Invention As mentioned above, if the offset of the focus error signal FE is eliminated by making the gains of the preamplifiers 3 and 4 different, the positive side of the error signal FE will naturally appear as shown in the characteristic (■) in FIG. The rate of change is different on the negative side, resulting in asymmetrical characteristics. This means that the detection sensitivity is different depending on whether the lens/disk distance is too large or too small, and furthermore, the servo gain is different for the operation of moving the objective lens 14 closer to the optical disk 13 and the operation of moving it away from it. . Although this is not a fatal flaw in the focus servo, it is one of the obstacles to realizing a high-performance servo.

この発明は上述した従来の問題点に鑑みなされたもので
、その目的は、動作方向によるサーボゲインの非対称性
を解消し、よシ高精度、高性能なフォーカスサーボを実
現できるようにすることにある。
This invention was made in view of the above-mentioned conventional problems, and its purpose is to eliminate the asymmetry of servo gain depending on the direction of operation, and to realize a focus servo with high precision and high performance. be.

問題点を解決するための手段 そこで本発明では、フォーカス誤差検出手段の感度特性
の正負の非対称性に対応し、レンズ/ディスク間隔を大
きくする方向に駆動するときと小さくする方向に駆動す
るときとでフォーカス誤差信号の増幅ゲインを異ならせ
るゲイン補正手段を設けた。
Means for Solving the Problems Therefore, in the present invention, in response to the positive/negative asymmetry of the sensitivity characteristics of the focus error detection means, the lens/disk distance is driven in the direction of increasing it and when it is driven in the direction of decreasing it. A gain correction means is provided to vary the amplification gain of the focus error signal.

作用 フォーカス誤差検出手段の特性が例えば第6図の特性■
のように、誤差信号FEの傾きが正の領域(レンズ/デ
ィスク間隔が過大)で大きく、負の領域(間隔が過l」
りで小さいとする。本発明による上記ゲイン補正手段が
無いとすれば、過小な間隔を大きくする駆動時のサーボ
ゲインが反対の場合より小さくなる。そこで本発明では
上記ゲイン補正手段により、間隔を大きくする方向の駆
動時の増幅ゲインを反対の場合よシ大きくなるようにし
ておく。そうすると、サーボループ全体としての正負の
ゲインの非対称性が解消される。
The characteristics of the action focus error detection means are, for example, the characteristics shown in FIG.
As shown in the figure, the slope of the error signal FE is large in the positive region (the lens/disc distance is too large) and is large in the negative region (the distance is too large).
Suppose that it is small. If the gain correction means according to the present invention were not provided, the servo gain during driving that increases an excessively small interval would be smaller than in the opposite case. Therefore, in the present invention, the gain correction means is used to make the amplification gain during driving in the direction of increasing the distance larger than in the opposite case. This eliminates the asymmetry in the positive and negative gains of the servo loop as a whole.

実施例 第1図はこの発明の一実施によるフォーカスサーボ装置
の全体的な構成を示している。第1図において、光検出
器1と2、プリアンプ3と4、差動アンプ5、和アンプ
6、ゲイン切り換え回路7と8、AGC回路9、位相補
償回路10、駆動回路11、フォーカス調整用コイル1
2の構成と動作は第4図の従来例と同じなので、これら
については先の説明を援用する。
Embodiment FIG. 1 shows the overall structure of a focus servo device according to one embodiment of the present invention. In FIG. 1, photodetectors 1 and 2, preamplifiers 3 and 4, differential amplifier 5, sum amplifier 6, gain switching circuits 7 and 8, AGC circuit 9, phase compensation circuit 10, drive circuit 11, focus adjustment coil 1
Since the configuration and operation of 2 are the same as those of the conventional example shown in FIG. 4, the previous explanation will be used for these.

この実施例において第4図と異なるのは、位相補償回路
10と駆動回路11との間に、前述のゲイン補正手段で
あるゲイン補正回路15を挿入した点である。
This embodiment differs from FIG. 4 in that a gain correction circuit 15, which is the aforementioned gain correction means, is inserted between the phase compensation circuit 10 and the drive circuit 11.

ゲイン補正回路15は、フォーカス誤差信号FE4を増
幅し、その出力FE5を駆動回路11に供給する回路で
あって、特徴的なのは、入力信号FE4の極性に応じて
そのゲインが異なることである。
The gain correction circuit 15 is a circuit that amplifies the focus error signal FE4 and supplies its output FE5 to the drive circuit 11, and is characterized in that its gain differs depending on the polarity of the input signal FE4.

正入力のゲインおよび負入力のゲインの少なくとも一方
を適宜に調整することができる。
At least one of the positive input gain and the negative input gain can be adjusted as appropriate.

ゲイン補正回路15の2つの具体例を第2図と第3図に
示している。
Two specific examples of the gain correction circuit 15 are shown in FIGS. 2 and 3.

第2図の例では、ダイオードD1を介して正入力のみを
増幅するオペアンプ16と、ダイオードD2を介して負
入力のみを増幅するオペアンプ17とを並列的に設けて
おり、オペアンプ17のゲインが可変抵抗VRIで調整
可能となっている。
In the example shown in FIG. 2, an operational amplifier 16 that amplifies only the positive input through the diode D1 and an operational amplifier 17 that amplifies only the negative input through the diode D2 are provided in parallel, and the gain of the operational amplifier 17 is variable. It can be adjusted by resistor VRI.

第3図の例は1つのオペアンプ18からなり、その帰還
路に負入力のときだけ電流が流れるダイオードD3と可
変抵抗VR2の直列回路を設けている。負入力のゲイン
が可変抵抗VR2で調整可能である。
The example shown in FIG. 3 consists of one operational amplifier 18, and its feedback path is provided with a series circuit of a diode D3 and a variable resistor VR2 through which current flows only when there is a negative input. The gain of the negative input can be adjusted with a variable resistor VR2.

以上の構成において、前述したように光ヘッドを組立て
てフォーカス誤差信号FEの感度特性を実際に測定し、
第6図の特性■のようなオフセットが普通であるので、
オペアンプ3と4のゲインを異ならせるように調整し、
特性■のように誤差ゼロ点と信号ゼロ点とを合わせる。
In the above configuration, the optical head was assembled as described above, and the sensitivity characteristics of the focus error signal FE were actually measured.
Since an offset like the characteristic ■ in Figure 6 is normal,
Adjust the gains of operational amplifiers 3 and 4 to be different,
Match the error zero point and the signal zero point as shown in characteristic ■.

そうすると、誤差信号FEの感度特性の傾きが正側と負
側とで異なってくる。
Then, the slope of the sensitivity characteristic of the error signal FE becomes different between the positive side and the negative side.

この非対称性に合わせてゲイン補正回路15のゲイン調
整を行なう。例えば特性■のように負側(間隔が過小)
の感度が小さい場合、ゲイン補正回路15の負入力(間
隔を広げる方向の駆動指令)のゲインを適宜に大きくす
る。このようにしてサーボループ全体として正負の非対
称性を無くすように調整する0 なおゲイン補正回路15の機能は、駆動回路11に含め
ても良いし、またAGC回路9と位相補償回路10との
間に設けても問題はない。
The gain of the gain correction circuit 15 is adjusted in accordance with this asymmetry. For example, the negative side (the interval is too small) as in characteristic ■
If the sensitivity is small, the gain of the negative input (drive command in the direction of increasing the interval) of the gain correction circuit 15 is increased appropriately. In this way, the function of the gain correction circuit 15 may be included in the drive circuit 11, or between the AGC circuit 9 and the phase compensation circuit 10. There is no problem even if it is set to .

発明の効果 以上詳細に説明したように、この発明によれば、フォー
カス誤差検出部のプリアンプのゲイン調整で生じた感度
特性の正負非対称性を、ごく簡単なゲイン補正回路を付
加して簡単なゲインを調整を行なうことで解消すること
ができ、対物レンズの変位方向にかかわらず常に安定し
た最適なサーボゲインを得ることができる。
Effects of the Invention As described in detail above, according to the present invention, the positive and negative asymmetry of the sensitivity characteristics caused by the gain adjustment of the preamplifier of the focus error detection section can be corrected by adding a very simple gain correction circuit and adjusting the gain. This can be resolved by making adjustments, and a stable and optimal servo gain can always be obtained regardless of the direction of displacement of the objective lens.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例によるフォーカスサーボ装置
のブロック図、第2図と第3図は同装置におけるゲイン
補正回路の2つの具体例を示す回路図、第4図は従来装
置のブロック図、第5図はフォーカス調整機構の概略図
、第6図はフォーカス誤差信号の特性図である。 1.2・・・光検出器、3,4・・・プリアンプ、5・
・・差動アンプ、6・・・和アンプ、7,8・・・ゲイ
ン切り換え回路、9・・・AGC回路、10・・・位相
補償回路、11・・・駆動回路、12・・・フォーカス
調整用コイル、13・・・光ディスク、14・・・対物
レンズ、15・・・ゲイン補正回路
FIG. 1 is a block diagram of a focus servo device according to an embodiment of the present invention, FIGS. 2 and 3 are circuit diagrams showing two specific examples of a gain correction circuit in the same device, and FIG. 4 is a block diagram of a conventional device. 5 is a schematic diagram of the focus adjustment mechanism, and FIG. 6 is a characteristic diagram of the focus error signal. 1.2...Photodetector, 3,4...Preamplifier, 5.
... Differential amplifier, 6 ... Sum amplifier, 7, 8 ... Gain switching circuit, 9 ... AGC circuit, 10 ... Phase compensation circuit, 11 ... Drive circuit, 12 ... Focus Adjustment coil, 13... Optical disk, 14... Objective lens, 15... Gain correction circuit

Claims (1)

【特許請求の範囲】[Claims] 光ヘッドの対物レンズと光ディスクとの間隔誤差が正の
ときと負のときとで検出感度特性が非対称なフォーカス
誤差検出手段と、上記対物レンズを変位させて上記光デ
ィスクとの間隔を調整するフォーカス調整手段と、上記
検出手段からのフォーカス誤差信号に基づいて上記フォ
ーカス調整手段を駆動して上記間隔誤差を最小にするサ
ーボ増幅手段と、このサーボ増幅手段に含まれ、上記検
出手段の非対称特性に対応し、上記レンズ/ディスク間
隔を大きくする方向に駆動するときと小さくする方向に
駆動するときとで上記フォーカス誤差信号の増幅ゲイン
を異ならせるゲイン補正手段とを備えた光ディスク装置
のフォーカスサーボ装置。
a focus error detection means having asymmetrical detection sensitivity characteristics depending on whether the distance error between the objective lens of the optical head and the optical disk is positive or negative; and focus adjustment for adjusting the distance between the objective lens and the optical disk by displacing the objective lens. means, a servo amplification means for driving the focus adjustment means based on a focus error signal from the detection means to minimize the interval error, and a servo amplification means included in the servo amplification means to accommodate the asymmetrical characteristic of the detection means. A focus servo device for an optical disk device, further comprising gain correction means for varying the amplification gain of the focus error signal when driving in a direction to increase the lens/disc distance and when driving in a direction to decrease the lens/disk distance.
JP7472487A 1987-03-27 1987-03-27 Focus servo device for optical disk device Pending JPS63241732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7472487A JPS63241732A (en) 1987-03-27 1987-03-27 Focus servo device for optical disk device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7472487A JPS63241732A (en) 1987-03-27 1987-03-27 Focus servo device for optical disk device

Publications (1)

Publication Number Publication Date
JPS63241732A true JPS63241732A (en) 1988-10-07

Family

ID=13555456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7472487A Pending JPS63241732A (en) 1987-03-27 1987-03-27 Focus servo device for optical disk device

Country Status (1)

Country Link
JP (1) JPS63241732A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341625A (en) * 1989-07-07 1991-02-22 Matsushita Electric Ind Co Ltd Optical recording and reproducing device
US5384762A (en) * 1990-09-27 1995-01-24 International Business Machines Corporation Focusing servo in an optical disk drive

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341625A (en) * 1989-07-07 1991-02-22 Matsushita Electric Ind Co Ltd Optical recording and reproducing device
US5384762A (en) * 1990-09-27 1995-01-24 International Business Machines Corporation Focusing servo in an optical disk drive

Similar Documents

Publication Publication Date Title
US20070008836A1 (en) Optical disk device
US5084848A (en) Feedback control apparatus in an optical recording and reproducing device
JPS63241732A (en) Focus servo device for optical disk device
US6674696B1 (en) Focus controlling apparatus and method, and optical disc drive
US20020001262A1 (en) Optical disk device and method capable of adjusting a tilt of an object lens
JPH04113523A (en) Beam spot position detector and optical pickup
JP2772970B2 (en) Tracking servo mechanism
JPH02206024A (en) Focus servo device
JP2744655B2 (en) Automatic loop gain control circuit
JP2576217B2 (en) Tracking control device for optical disk device
JP3257655B2 (en) Optical information recording / reproducing device
JP2573175B2 (en) Actuator for optical pickup
JPH0770068B2 (en) Optical information recording / reproducing device
JP3946180B2 (en) Optical disk device and method for controlling optical disk device
JPS61104336A (en) Optical recorder
JPS62107444A (en) Servo control circuit
JPH0785483A (en) Optical disk controller
JPH11259876A (en) Tracking servo device
JP2768540B2 (en) Tracking servo device
JPS609939Y2 (en) optical information reproducing device
JPS63152030A (en) Tracking control method for optical disk
KR100243227B1 (en) An actuator for an optical pickup
JP2592050Y2 (en) Optical disk player
JPS61210528A (en) Method for adjusting offset of light spot control signal
JPH0388131A (en) Automatic loop gain control circuit