JPS63241504A - Production of single crystal fiber - Google Patents

Production of single crystal fiber

Info

Publication number
JPS63241504A
JPS63241504A JP62076824A JP7682487A JPS63241504A JP S63241504 A JPS63241504 A JP S63241504A JP 62076824 A JP62076824 A JP 62076824A JP 7682487 A JP7682487 A JP 7682487A JP S63241504 A JPS63241504 A JP S63241504A
Authority
JP
Japan
Prior art keywords
rod
crystal
single crystal
outside diameter
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62076824A
Other languages
Japanese (ja)
Inventor
Takao Shioda
塩田 孝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP62076824A priority Critical patent/JPS63241504A/en
Publication of JPS63241504A publication Critical patent/JPS63241504A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obviate fluctuation in the outside diameter of a single crystal fiber and to improve the quality thereof by preparing a columnar base crystal rod, melting the end of the base crystal rod while etching the outer circumference thereof to control the outside diameter of the rod and pulling up the single crystal fiber continuously. CONSTITUTION:A seed crystal is brought into contact with the melt of a starting raw material and is grown to prepare the base crystal rod 1. The outside diameter of the resultant base crystal rod 1 is continuously controlled by etching the outer circumference thereof. The rod 1 controlled in the outside diameter is delivered upward by delivery belts 5, 5 and the top end of the rod 1 is heated and melted by a heating means 6. The seed crystal of a prescribed size is brought into contact with the molten part and is continuously pulled upward by pulling up belts 7, 7. The single crystal fiber 8 having the stable outside diameter and the high quality is thereby obtd.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、例えばレーザ索子、光アイソレータ等の高
機能光素子、超耐熱性ファイバなどとして使用される単
結晶ファイバの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for producing a single crystal fiber used as, for example, a laser cord, a high-performance optical device such as an optical isolator, a super heat-resistant fiber, or the like.

「従来技術とその問題点」 従来、このような単結晶ファイバは、種々の方法により
製造されている。
"Prior Art and its Problems" Conventionally, such single crystal fibers have been manufactured by various methods.

例えば、浮遊帯溶融法(Float Zone法:以下
、FZ法と言う。)は、L i N bOs、LiTa
O5などの酸化物からなる円柱状の母結晶の端部を部分
的に加熱溶融し、この融液に種結晶を接触させ、徐々に
種結晶を引上げることによって単結晶ファイバか得られ
る方法である。
For example, the floating zone melting method (hereinafter referred to as FZ method) uses LiN bOs, LiTa
A method in which a single crystal fiber is obtained by partially heating and melting the end of a cylindrical mother crystal made of an oxide such as O5, bringing a seed crystal into contact with this melt, and gradually pulling up the seed crystal. be.

しかしながら、このようなFZ法では、細径でかつ長尺
の単結晶ファイバが得られない問題がある。すなわち、
一般に、上記FZ法のような結晶成長法では、単結晶フ
ァイバの外径が、母結晶の端部における融液の表面張力
と引上げ種結晶の融液保持力との関係から、母結晶の外
径の1/3程度に制限されることから、細径でかつ長尺
の単結晶ファイバを得ようとする場合、母結晶を細径化
しかつ長尺化する必要がある。ところが、このFZ法に
おいては、種結晶を引上げてゆ(と、母結晶が細径の場
合、特にその結晶軸が曲線化し易く、直線の結晶軸を有
する母結晶が得られない問題かある。このため、得られ
る母結晶の長さに限界があるため、このような母結晶か
ら一段引きして得られる単結晶ファイバの長さにもやは
り限界がある。
However, such an FZ method has a problem in that a long single crystal fiber with a small diameter cannot be obtained. That is,
In general, in crystal growth methods such as the FZ method described above, the outer diameter of the single crystal fiber is determined by the relationship between the surface tension of the melt at the end of the mother crystal and the melt holding power of the pulling seed crystal. Since it is limited to about 1/3 of the diameter, in order to obtain a long single crystal fiber with a small diameter, it is necessary to make the mother crystal thinner and longer. However, this FZ method has the problem that when the seed crystal is pulled up, the crystal axis tends to curve, especially when the parent crystal has a small diameter, making it impossible to obtain a parent crystal with a straight crystal axis. Therefore, since there is a limit to the length of the mother crystal that can be obtained, there is also a limit to the length of the single crystal fiber that can be obtained by pulling one step from such a mother crystal.

これに対して、単結晶ファイバの長尺化が可能な方法と
しては、溶融引上げ法(Czochralski法:以
下、CZ法と言う。)、E F G (Edge−de
finedFilm−fed Growth)法などが
ある。これら画法によれば、いずれも有機金属化合物等
の出発原料を溶融ルツボ内に溶融状態で満たし、この融
液にCZ法では種結晶を直接接触させ、EFG法では融
液に浸漬した円筒状のダイスの上端開口部に種結晶を接
触させ、画法とも種結晶を引上げることによって長尺の
単結晶ファイバが得られ、さらに溶融ルツボ内に融液を
適宜供給することで単結晶ファイバを連続製造でき、単
結晶ファイバの長尺化を容易に図ることができる。
On the other hand, methods that can lengthen single-crystal fibers include melt-pulling method (Czochralski method: hereinafter referred to as CZ method), E F G (Edge-de-pulling method),
There is a fine film-fed Growth) method. According to these drawing methods, a starting material such as an organometallic compound is filled in a molten state in a melting crucible, and in the CZ method, a seed crystal is brought into direct contact with this melt, and in the EFG method, a cylindrical shape immersed in the melt is brought into direct contact with the melt. A long single-crystal fiber is obtained by bringing a seed crystal into contact with the upper end opening of the die and pulling up the seed crystal.Furthermore, by appropriately supplying the melt into the melting crucible, the single-crystal fiber is produced. Continuous production is possible, and single crystal fibers can be easily made longer.

しかしながら、これらの方法では、いずれも得られる単
結晶ファイバの外径が変動し易く、この外径変動により
単結晶ファイバの品質が低下する問題がある。
However, in all of these methods, the outer diameter of the obtained single crystal fiber tends to fluctuate, and this outer diameter variation causes a problem in that the quality of the single crystal fiber deteriorates.

「問題点を解決するための手段」 そこで、この発明においては、単結晶ファイノ(の前駆
体として円柱状の母結晶ロッドを作製し、該母結晶ロッ
ドの外周をエツチングしてロッドの外径を制御しながら
該母結晶ロッドの端部を溶融して単結晶ファイバを連続
的に引上げることにより、上記の問題の解決を図った。
"Means for Solving the Problems" Therefore, in this invention, a cylindrical host crystal rod is prepared as a precursor of single crystal phino, and the outer circumference of the host crystal rod is etched to change the outer diameter of the rod. The above problem was solved by controlling and melting the end of the host crystal rod and continuously pulling the single crystal fiber.

この発明では、出発原料融液に種結晶を接触させこれを
成長させて母結晶ロッドlを作製する。
In this invention, a seed crystal is brought into contact with a starting material melt and grown to produce a host crystal rod 1.

出発原料としては、L+NbO3、LiTaO3等の金
属酸化物、YAG、Nd−YAG%YIG、GSGG(
ガドリニウム・スカンジウム・ガリウム・ガーネット)
等の化合物半導体、サファイア、ルビー等のアルミナ結
晶体などが好適に用いられるが、これに限定されるもの
ではない。また、上記母結晶ロッドlの作製方法として
は、例えば第1図に示すように母結晶ロッドlの前駆母
材2を作製する方法が用いられる。すなわち、この前駆
母材2は、例えば上記の金属酸化物、金属酸素酸塩など
からなる大口径の多結晶あるいは単結晶を、グラインダ
等により所定の大きさに切削研摩してなるものである。
Starting materials include metal oxides such as L+NbO3 and LiTaO3, YAG, Nd-YAG%YIG, and GSGG (
gadolinium, scandium, gallium, garnet)
Compound semiconductors such as sapphire, alumina crystals such as ruby, etc. are preferably used, but the material is not limited thereto. Further, as a method for producing the above-mentioned mother crystal rod 1, for example, a method of producing a precursor base material 2 of the mother crystal rod 1 as shown in FIG. 1 is used. That is, the precursor base material 2 is obtained by cutting and polishing a large-diameter polycrystal or single crystal made of, for example, the above-mentioned metal oxide, metal oxyacid, etc., to a predetermined size using a grinder or the like.

そして、この前駆母材2の上端部を例えばマイクロバー
ナなどの適宜の加熱手段により加熱溶融し、この融液に
所定の大きさの種結晶を接触させこの種結晶を引上げる
ことによって母結晶ロッド1を連続的に作製する。
Then, the upper end of this precursor base material 2 is heated and melted using an appropriate heating means such as a micro burner, and a seed crystal of a predetermined size is brought into contact with this melt and the seed crystal is pulled up to form a base crystal rod. 1 are produced continuously.

次に、このようにして得られた母結晶ロッドlの外周を
エツチングしてロッドの外径を連続的に制御する。この
外径制御にあたっては、第1図に示すように、外径計測
装置3により母結晶ロッド1の外径を計測し、この計測
データに基づいて外径制御装置4により母結晶ロッド2
の外径を所定の範囲内で制御する。ここで、上記外径計
測器3には、レーザ式外径計測器、後方散乱光による外
径計測器、計測用テレビカメラ等による計測システムな
どが好適に用いられる。また、外径制御装置4には、気
相エツチング装置が用いられる。この気相エツチング装
置に用いられるエツチングガスとしては、F7、Cb 
、B rt 、HF 1CF 4、CCQtPtなどの
ハロゲン化合物含有ガスが好適であり、これらエツチン
グガスの加熱源としては、マイクロバーナを始め、エキ
シマレーザ、アルゴンガスレーザ、炭酸ガスレーザ、色
素レーザ、YAGレーザ等の各種レーザ、アークイメー
ジングなどを用いることができる。
Next, the outer periphery of the thus obtained host crystal rod 1 is etched to continuously control the outer diameter of the rod. For this outer diameter control, as shown in FIG.
control the outer diameter within a predetermined range. Here, as the outer diameter measuring device 3, a laser type outer diameter measuring device, an outer diameter measuring device using backscattered light, a measuring system using a measuring television camera, etc. are suitably used. Furthermore, a gas phase etching device is used as the outer diameter control device 4. Etching gases used in this gas phase etching apparatus include F7, Cb
Gases containing halogen compounds such as , B rt , HF 1CF 4 and CCQtPt are suitable, and heating sources for these etching gases include micro burners, excimer lasers, argon gas lasers, carbon dioxide lasers, dye lasers, YAG lasers, etc. Various lasers, arc imaging, etc. can be used.

次に、このようにして外径が制御された母結晶ロッドl
を送出しベルト5.5により上方に送出し、この母結晶
ロッドlの上端部を例えば炭酸ガスレーザによる加熱手
段6などにより加熱溶融するとともに、この溶融部分に
所定の大きさの種結晶を接触させこの種結晶を引上げベ
ルト7.7により上方に連続的に引上げることによって
、外径の安定した目的の単結晶ファイバ8を得る。
Next, the mother crystal rod l whose outer diameter is controlled in this way
is sent upward by a delivery belt 5.5, and the upper end of this mother crystal rod l is heated and melted by heating means 6 using a carbon dioxide laser, for example, and a seed crystal of a predetermined size is brought into contact with this melted portion. By continuously pulling this seed crystal upward by a pulling belt 7.7, a desired single crystal fiber 8 with a stable outer diameter is obtained.

このような方法によれば、単結晶ファイバ8の前駆体と
して母結晶ロッド1を作製し、この母結晶ロッドlの外
周をエツチングしてロッドの外径を制御しながらこの母
結晶ロッド1の端部から単結晶ファイバ8を連続的に引
上げるようにしたので、外径制御された母結晶ロッドl
から外径の安定した高品質の単結晶ファイバ8を得るこ
とができる。また、母結晶ロッドlの作製工程およびそ
の外径制御を数段に亙って行なえば、細径でかつ長尺の
単結晶ファイバ8を連続的に製造することら可能である
According to this method, a host crystal rod 1 is produced as a precursor of a single crystal fiber 8, and the outer circumference of the host crystal rod 1 is etched to control the outer diameter of the rod while the end of the host crystal rod 1 is etched. Since the single crystal fiber 8 is continuously pulled up from
A high quality single crystal fiber 8 with a stable outer diameter can be obtained from the above. Further, by performing the manufacturing process of the host crystal rod l and controlling its outer diameter in several stages, it is possible to continuously manufacture a long single crystal fiber 8 with a small diameter.

上記の実施例では、母結晶ロッドlを得るのに曲部母材
2を作成したが、例えばCZ法あるいはEFG法などを
用いて母結晶ロッド1を作製する構成であってもよい。
In the above embodiment, the curved part base material 2 was created to obtain the host crystal rod 1, but the host crystal rod 1 may also be created using, for example, the CZ method or the EFG method.

すなわち、CZ法では、第2図に示すように、出発原料
をルツボ9内に溶融し、この融液10に直接種結晶を接
触させこれを引上げて母結晶ロッドlを得る。また、E
FG法では、第3図に示すように、ルツボ9内に清心し
た出発原料融液10に所定の大きさのダイス11を介し
て種結晶を接触させこれを引上げてやはり母結晶ロッド
lを得ろ。そして、これらの方法では、いずれし出発原
料融液を追加供給することによって細径の単結晶ファイ
バ8の連続製造が可能となる。
That is, in the CZ method, as shown in FIG. 2, a starting material is melted in a crucible 9, and a seed crystal is brought into direct contact with this melt 10 and pulled up to obtain a host crystal rod 1. Also, E
In the FG method, as shown in FIG. 3, a seed crystal is brought into contact with a starting material melt 10 that has been cleared in a crucible 9 through a die 11 of a predetermined size and pulled up to obtain a host crystal rod l. . In these methods, continuous production of small-diameter single crystal fiber 8 becomes possible by additionally supplying the starting material melt.

「実施例」 外径I■、内径0.7Rm、長さLOxxの円筒状のダ
イス(モリブデン製)を用いたEFG法によりCrドー
プサファイアからなる円柱状の母結晶ロッドを引上げ、
この母結晶ロッドの外径を連続的に計測したところ、そ
の外径は0.8〜1.2yRの範囲で変動していた。次
いで、上記計測データに基づいて母結晶ロッドに対して
ガスエツチングによる外径制御を行なった。すなわち、
母結晶ロッドの表面に出力8wの炭酸ガスレーザによる
レーザ光を直径40μ肩の円形領域内に集光して、この
領域を温度約1200〜1600℃程度に加熱するとと
もに、この加熱領域に、CCσF、ガス(10cc/分
)からなるエツチングガスをキャリアガス(Arガス2
0cc/分)とともにあてた。そして、レーザ出力を変
化させることにより、エツチングレートを10〜40μ
l/分の範囲で制御した。このエツチング処理により、
母結晶ロッドの外径を750±10μ次に制御でき、こ
の母結晶ロッドから外在的250μlである品質の安定
した単結晶ファイバが得られた。
"Example" A cylindrical host crystal rod made of Cr-doped sapphire was pulled up by the EFG method using a cylindrical die (made of molybdenum) with an outer diameter of I, an inner diameter of 0.7 Rm, and a length LOxx.
When the outer diameter of this host crystal rod was continuously measured, the outer diameter varied within a range of 0.8 to 1.2 yR. Next, based on the above measurement data, the outer diameter of the host crystal rod was controlled by gas etching. That is,
Laser light from a carbon dioxide gas laser with an output of 8 W is focused on the surface of the host crystal rod in a circular area with a diameter of 40 μm, and this area is heated to a temperature of about 1200 to 1600°C, and CCσF, CCσF, Etching gas (10 cc/min) is mixed with carrier gas (Ar gas 2
0cc/min). By changing the laser output, the etching rate was adjusted to 10 to 40μ.
It was controlled within the range of 1/min. With this etching process,
The outer diameter of the host crystal rod could be controlled to 750±10 μm, and a single crystal fiber of stable quality and an external volume of 250 μl was obtained from this host crystal rod.

「発明の効果」 以上説明したように、この発明7こよれば、単結晶ファ
イバの前駆体として母結晶ロッドを作製し、該母結晶ロ
ッドの外周をエツチングしてロッドの外径を制御しなが
らこの母結晶ロッドの端部から単結晶ファイバを連続的
に引上げるようにしたので、外径制御された母結晶ロッ
ドから外径の安定した高品質の単結晶ファイバを得るこ
とができる。
"Effects of the Invention" As explained above, according to this invention 7, a host crystal rod is produced as a precursor of a single crystal fiber, and the outer circumference of the host crystal rod is etched to control the outer diameter of the rod. Since the single crystal fiber is continuously pulled up from the end of the mother crystal rod, a high quality single crystal fiber with a stable outer diameter can be obtained from the mother crystal rod whose outer diameter is controlled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の第1実施例を示す概略構成図、第
2図は、この発明の第2実施例を示す一部を省略した概
略構成図、第3図は、この発明の第3実施例を示す一部
を省略した概略構成図である。 l・・・母結晶ロッド、8・・・単結晶ファイバ。
FIG. 1 is a schematic block diagram showing a first embodiment of the present invention, FIG. 2 is a partially omitted schematic block diagram showing a second embodiment of the present invention, and FIG. 3 is a schematic block diagram showing a second embodiment of the present invention. FIG. 3 is a partially omitted schematic configuration diagram showing a third embodiment. l...Mother crystal rod, 8...Single crystal fiber.

Claims (1)

【特許請求の範囲】[Claims] 出発原料融液に種結晶を接触させこれを成長させて母結
晶ロッドを作製し、該母結晶ロッドの外周をエッチング
してロッドの外径を制御しながら該母結晶ロッドの端部
を溶融して単結晶ファイバを連続的に引上げることを特
徴とする単結晶ファイバの製造方法。
A seed crystal is brought into contact with the starting material melt and allowed to grow to produce a host crystal rod, and the outer periphery of the host crystal rod is etched to control the outer diameter of the rod while melting the end of the host crystal rod. 1. A method for manufacturing a single crystal fiber, which comprises continuously pulling a single crystal fiber.
JP62076824A 1987-03-30 1987-03-30 Production of single crystal fiber Pending JPS63241504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62076824A JPS63241504A (en) 1987-03-30 1987-03-30 Production of single crystal fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62076824A JPS63241504A (en) 1987-03-30 1987-03-30 Production of single crystal fiber

Publications (1)

Publication Number Publication Date
JPS63241504A true JPS63241504A (en) 1988-10-06

Family

ID=13616425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62076824A Pending JPS63241504A (en) 1987-03-30 1987-03-30 Production of single crystal fiber

Country Status (1)

Country Link
JP (1) JPS63241504A (en)

Similar Documents

Publication Publication Date Title
KR101997565B1 (en) Method for producing monocrystalline silicon
US4944925A (en) Apparatus for producing single crystals
US4957712A (en) Apparatus for manufacturing single silicon crystal
EP1234899A2 (en) A single crystal and method of manufacturing same
US3261722A (en) Process for preparing semiconductor ingots within a depression
JPS63241504A (en) Production of single crystal fiber
JPH04139092A (en) Production of silicon single crystal and seed crystal
US5968260A (en) Method for fabricating a single-crystal semiconductor
JP2006327874A (en) Method for production of silicon single crystal
JPH07300388A (en) Production of silicon single crystal
JP4341379B2 (en) Single crystal manufacturing method
JP2809364B2 (en) Method for producing lithium tetraborate single crystal
JP6954083B2 (en) Method for manufacturing silicon raw material rod for FZ and method for manufacturing FZ silicon single crystal
JPH1192271A (en) Production of bulk, single crystal
JP2018203563A (en) Production method of magnetostrictive material
JPS63242989A (en) Production of single crystal fiber
KR100414519B1 (en) method of growing rutile single crystal under high oxygen pressure
JP2809363B2 (en) Method for producing lithium tetraborate single crystal
KR20230063864A (en) Method for manufacturing a monocrystalline sapphire seed as well as a sapphire single-crystal with a preferred crystallographic orientation and external part and functional components for watchmaking and jewellery
JP2535773B2 (en) Method and apparatus for producing oxide single crystal
JP2005097049A (en) Method for manufacturing silicon single crystal
JPS58176197A (en) Preparation of silicon single crystal and preparation apparatus
JPH0280391A (en) Method for adding dopant in pulling up semiconductor single crystal
JPH0648889A (en) Production of single crystal
JPH05246797A (en) Production of lithium tetraborate single crystal