JPS63240854A - Composite member for prosthesis of living body - Google Patents

Composite member for prosthesis of living body

Info

Publication number
JPS63240854A
JPS63240854A JP62077214A JP7721487A JPS63240854A JP S63240854 A JPS63240854 A JP S63240854A JP 62077214 A JP62077214 A JP 62077214A JP 7721487 A JP7721487 A JP 7721487A JP S63240854 A JPS63240854 A JP S63240854A
Authority
JP
Japan
Prior art keywords
composite member
strength
layer
alumina
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62077214A
Other languages
Japanese (ja)
Inventor
牧野内 謙三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP62077214A priority Critical patent/JPS63240854A/en
Publication of JPS63240854A publication Critical patent/JPS63240854A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は整形外科、脳外科、口腔外科、歯科等における
医療分野で使用される生体補綴用複合部材に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a bioprosthetic composite member used in medical fields such as orthopedics, neurosurgery, oral surgery, and dentistry.

〔従来技術及びその問題点〕[Prior art and its problems]

従来から使用されている生体補綴用複合部材には金属、
セラミックなどの高強度基体の表面に生体親和性材を被
着せしめた種々なタイプがある。
Conventionally used composite members for bioprosthetics include metal,
There are various types in which a biocompatible material is adhered to the surface of a high-strength substrate such as ceramic.

例えば、セラミックポーラス層−セラミック基体、セラ
ミックビーズ層−セラミック基体、セラミックポーラス
層−ガラス接着材層−セラミック基体、金属ビーズ層−
金属基体、金属ファイバーメタル−金属基体などを組合
せた材質が使用されている。
For example, ceramic porous layer - ceramic base, ceramic bead layer - ceramic base, ceramic porous layer - glass adhesive layer - ceramic base, metal bead layer -
Materials that are a combination of metal base, metal fiber metal-metal base, etc. are used.

ところが、この様な生体補綴用複合部材は、材質的には
いずれもセラミックーセラミック、セラミックーガラス
、金属−金属の接合である。そのため、これらの生体補
綴用複合部材は外力を受けると、先ず生体親和性材層よ
り破壊が始まり発生したクランクは接合界面をほとんど
抵抗を受けずに貫通し、基体の破局的な破壊を導く、実
際、生体親和性材層が接合されたこの用な生体補綴用複
合部材は基体だけのものに比し強度が30〜70χ低下
している。
However, all of these bioprosthetic composite members are ceramic-ceramic, ceramic-glass, or metal-metal bonded materials. Therefore, when these bioprosthetic composite members are subjected to an external force, the biocompatible material layer first breaks down, and the generated crank passes through the joint interface with almost no resistance, leading to catastrophic destruction of the base. In fact, the strength of this bioprosthetic composite member to which the biocompatible material layer is bonded is 30 to 70x lower than that of a base body alone.

また、これらの生体補綴用複合部材は生体親和性材層と
基体の接合の為に800℃〜1700℃位の高温熱処理
が必要である。この為、接合時の高温熱処理により下地
の材質劣化(例えば、強度や耐食性低下、寸法変化など
)が発生する。
Furthermore, these bioprosthetic composite members require high-temperature heat treatment at about 800° C. to 1700° C. for bonding the biocompatible material layer and the base body. For this reason, the high-temperature heat treatment during bonding causes deterioration of the underlying material (for example, a decrease in strength and corrosion resistance, dimensional changes, etc.).

これらの欠点の為に従来の生体補綴用複合部材は強度が
不十分であり、基体材質も本来の特性が発揮されておら
ず生体への応用部位も非常に限定されている。
Due to these drawbacks, conventional composite members for bioprosthesis have insufficient strength, the base material does not exhibit its original characteristics, and the areas where it can be applied to living organisms are extremely limited.

〔問題点を解決するための手段〕[Means for solving problems]

上記に鑑みて、強度が大きく基体の材質劣化が生じない
様に有機ポリマー層を介して、生体親和性材を被着せし
めて生体補綴用複合部材を構成する。
In view of the above, a composite member for bioprosthesis is constructed by attaching a biocompatible material via an organic polymer layer so as to have high strength and prevent material deterioration of the base material.

〔実施例〕〔Example〕

以下、本発明を実施例により具体的に詳述する。 Hereinafter, the present invention will be specifically explained in detail with reference to Examples.

(実施例1) 平均粒径300μmに造粒分級されたアルミナグリーン
顆粒に平均粒径150μmに分級されたナフタリンある
いは黒鉛の粒子を混ぜ、これを金型へ充填し加圧成形す
る。これを1400〜1700 ”Cで焼結させて15
xlOx 0.8tのポーラスアルミナシートを作製す
る。
(Example 1) Naphthalene or graphite particles classified to have an average particle size of 150 μm are mixed with alumina green granules that have been granulated and classified to have an average particle size of 300 μm, and the mixture is filled into a mold and pressure-molded. Sinter this at 1400-1700"C and
A porous alumina sheet of xlOx 0.8t is produced.

一方、下地はラバープレス成形されたアルミナ成形体を
用いて、機械加工により表面に対して直径約1.2mm
 、深さ約1 、2mmの多数の穴をピッチ約5mmの
間隔であける。これを1400〜1700 ℃で焼結さ
せて第1図(イ)(ロ)に示すような表面に無数の穴H
を有するアルミナセラミック+ffAを得る。
On the other hand, the base is made of rubber press-molded alumina molded body, and is machined to a diameter of approximately 1.2 mm from the surface.
, a large number of holes with a depth of about 1 and 2 mm are drilled at intervals of about 5 mm. This is sintered at 1,400 to 1,700°C to form countless holes H on the surface as shown in Figure 1 (a) and (b).
An alumina ceramic +ffA having the following properties is obtained.

これを基体タイプ1とする。This is called base type 1.

同時に、同一寸法で穴のあけてない平板を同様の方法で
作製した。これを基体タイプ2とする。
At the same time, a flat plate with the same dimensions and no holes was fabricated using the same method. This is called base type 2.

次にポーラスアルミナシートと、基体タイプ1の間に1
cm”当たり0.05gのポリエチレンパウダーを一様
にはさみ込み、1cが当たり数gの荷重をかけて100
〜200℃で熱処理してポリエチレンを溶融させ、ポー
ラスアルミナシートPを基体タイプ1のアルミナセラミ
ック板Aに被着せしめた。
Next, between the porous alumina sheet and the base type 1,
Evenly sandwich 0.05g of polyethylene powder per cm and apply a load of several g per 1c to 100
The polyethylene was melted by heat treatment at ~200° C., and the porous alumina sheet P was adhered to the alumina ceramic plate A of substrate type 1.

この複合部材の断面を第2図に示した。これから判る通
り複合部材は溶融したポリエチレンによるポーラスアル
ミナの細孔及び下地の穴11へ侵入することによって保
たれている。これをポリエチレンから成る有機ポリマー
層を介した複合部材と呼ぶ。
A cross section of this composite member is shown in FIG. As can be seen, the composite member is maintained by the penetration of the molten polyethylene into the pores of the porous alumina and the holes 11 in the substrate. This is called a composite member with an organic polymer layer made of polyethylene interposed therebetween.

比較サンプルとして下地タイプ2のアルミナセラミック
板AとポーラスアルミナシートPの間に、SiO□−B
203を主成分とするガラス粉末Gを塗布し1100℃
で熱処理し被着せしめる。こうして、得られたガラス層
を介した複合部材の断面を第3図に示す。
As a comparison sample, SiO
Apply glass powder G containing 203 as the main component and heat to 1100℃
heat-treated and coated. A cross section of the composite member thus obtained through the glass layer is shown in FIG.

この様にして得られた寸法10X15X 2〜3tの■
基体タイプl、■基体タイプ2、■ポリエチレンを介し
た複合部材、■ガラスを介した複合部材について3点曲
げ試験による強度評価とポーラスアルミナ層の基体に対
する接着力の評価を行った。
Dimensions obtained in this way: 10X15X 2~3t■
Strength evaluation by three-point bending test and adhesive strength of the porous alumina layer to the substrate were performed on substrate type 1, (i) substrate type 2, (i) composite member using polyethylene, and (ii) composite member using glass.

3点曲げ試験は第4図の様にスパン10mm、上パンチ
降下速度0.5mm/分の条件で実施した。
The three-point bending test was carried out under the conditions of a span of 10 mm and an upper punch lowering speed of 0.5 mm/min as shown in FIG.

またポーラスアルミナ層の基体に対する被着力は垂直方
向及び剪断方向について評価した。方法はポーラスアル
ミナ層をポリメチルメタアクリレートにより固定して、
各々鉛直上方への引張試験、押し抜き試験として実施し
た。被着強度は接合界面の破断荷重をポーラス層の存在
する面積で除した値として評価した。これらの結果を一
括して第1表に示した。但し、3点曲げ強度は破壊荷重
値に対してスパン10n+lI+、断面は全て一定の2
mmX10−の長方形断面として算出したものである。
Furthermore, the adhesion strength of the porous alumina layer to the substrate was evaluated in the vertical direction and in the shear direction. The method is to fix the porous alumina layer with polymethyl methacrylate,
Each test was conducted as a vertically upward tensile test and a push-out test. Adhesion strength was evaluated as the value obtained by dividing the breaking load at the bonding interface by the area where the porous layer is present. These results are collectively shown in Table 1. However, the three-point bending strength is the span 10n+lI+ for the fracture load value, and the cross section is all constant 2.
It is calculated as a rectangular cross section of mm x 10-.

これから判る遺り、ポリエチレンを介して複合部材の強
度はガラスを介した接合体のそれに比較し、約70χ強
い。また接着力については、この両者はほぼ同等である
と言える。
As can be seen from this, the strength of the composite member using polyethylene is approximately 70x stronger than that of the joined body using glass. In addition, it can be said that the two are almost equivalent in terms of adhesive strength.

次に生体親和性を評価する為に同時に作製したポリエチ
レンを介した複合部材と比較サンプルとしてガラスを介
した複合部材を試験片として雑種成人の大腿骨顆部に埋
入した。埋入後、4週間、8週間、12週間経った時期
にテトラサイクリンラベリング後、層殺し、試験片を含
む生骨を取り出して、ホルマリン固定後、非脱灰標本と
し、光学顕微鏡等を用いて天然骨との結合状態を観察し
た。
Next, in order to evaluate biocompatibility, a composite member made with polyethylene and a composite member made with glass as a comparison sample were implanted as test pieces into the femoral condyle of an adult mongrel. After 4 weeks, 8 weeks, and 12 weeks after implantation, after tetracycline labeling, delayering, and fresh bone containing the test piece were taken out, fixed in formalin, made into a non-decalcified specimen, and examined using an optical microscope, etc. The bonding state with the bone was observed.

これによれば、埋入後、4週間のものでは両者共に差は
認められず、いずれの材料もポーラスアルミナ層への骨
の侵入が認められた。8週間のものにおいても、両者の
差は認められず、骨侵入が更に進行していた。12週間
のものでは侵入した骨組織はポーラスアルミナ層を埋め
尽くしていた。
According to this, no difference was observed between the two after 4 weeks of implantation, and bone intrusion into the porous alumina layer was observed in both materials. Even after 8 weeks, no difference was observed between the two, indicating that bone invasion had progressed further. At 12 weeks, the invading bone tissue filled the porous alumina layer.

ここにおいても両者の差はなかった。There was no difference between the two here as well.

(実施例2) 線径250μmの線チタン線材を加圧成形して真空焼結
させる事により10X15X 0.8tのファイバーメ
タルポーラスシートを作製した。一方、基体として直径
約0.3mm 、深さ約0 、5mmの穴のあいた10
 x15x 2tのジルコニアセラミック板を実施例1
のそれと同様に製作した。そして、ポーラス層と基体の
間に有機ポリマー層を成すウレタンモノマーを1cm”
当たり0.05g程度塗布し接合して、紫外線をファイ
バーメタルポーラスシート側から照射して重合させた。
(Example 2) A 10 x 15 x 0.8 t fiber metal porous sheet was produced by pressure forming a wire titanium wire with a wire diameter of 250 μm and vacuum sintering. On the other hand, as a base, a hole with a diameter of about 0.3 mm, a depth of about 0, and 5 mm was made.
Example 1: x15 x 2t zirconia ceramic plate
It was made in the same way as that of . Then, add 1 cm of urethane monomer to form an organic polymer layer between the porous layer and the substrate.
Approximately 0.05 g of each sheet was applied and bonded, and ultraviolet rays were irradiated from the fiber metal porous sheet side to polymerize.

こうして得られたウレタン樹脂を介した複合部材を実施
例1におけるそれと同一の方法で強度、ポーラス層の接
着力を評価した。
The strength and adhesive force of the porous layer of the thus obtained composite member using the urethane resin were evaluated in the same manner as in Example 1.

その結果を第1表に示した。ポリエチレンを介した複合
部材のそれと同等であった。
The results are shown in Table 1. It was equivalent to that of a composite member using polyethylene.

(以下余白) (実施例3) 平均粒径600.+1mのア?レミナグリーン顆粒を1
500℃で焼成、分級して得られた平均粒500μmの
アルミナ粒子を準備する。並行して10x15x 2t
のチタン合金板を準備し、表面にシリコーン樹脂接着剤
を塗布し、その上にアルミナビーズを蒔き、その後、シ
リコーン樹脂を硬化させアルミナビーズと基体のチタン
合金と接着せしめた。
(Left below) (Example 3) Average particle size 600. +1m a? 1 Remina Green Granules
Alumina particles with an average grain size of 500 μm obtained by firing at 500° C. and classification are prepared. 10x15x 2t in parallel
A titanium alloy plate was prepared, a silicone resin adhesive was applied to the surface, alumina beads were sown on it, and the silicone resin was then cured to bond the alumina beads to the titanium alloy base.

これを、シリコーン樹脂より成る有機ポリマー層を介し
た複合部材と名づける。
This is called a composite member with an organic polymer layer made of silicone resin interposed therebetween.

比較サンプルとして、平均粒径約500μmのチタン合
金の球形ビーズを作製し、10x15x 2tのチタン
合金板の上に蒔き、真空度10−’torr、 130
0℃の条件下で焼結し、ビーズをチタン合金板表面へ被
着させた。これをチタン合金ビーズ焼結複合部材と名づ
ける。これら両者と基体のチタン合金板(形状は基体タ
イプ2と同一である。)の強度及びチタン合金ビーズ焼
結複合部材とシリコーン樹脂を介した複合部材における
ビーズ層と基体の被着力を測定した。但し強度はセラミ
ックの場合と異なり、スパン10mmの3点曲げ形式の
片振り曲)デ疲労試験を周波数20Hzの条件で室温中
で実施して、繰り返し数107回での破断応力をもって
3点曲げ疲労限、即ち強度とした。この時、接合体は、
ビーズコート側に引張応力が発生する様に3点曲)デ治
具にセントした。(治具の寸法は第4図に示したものと
同一である。)尚、応力は3点曲げ強度の場合と同様に
、荷重値に対してスパン10mm、折面2m X 5m
の長方形断面として、算出した。
As a comparison sample, titanium alloy spherical beads with an average particle diameter of about 500 μm were prepared, sown on a 10 x 15 x 2 t titanium alloy plate, and placed under a vacuum of 10-'torr at 130 m.
The beads were sintered at 0° C. and adhered to the surface of the titanium alloy plate. This is called a titanium alloy bead sintered composite member. The strength of both of these and the titanium alloy plate of the substrate (the shape is the same as substrate type 2) and the adhesion force between the bead layer and the substrate in the titanium alloy bead sintered composite member and the composite member via silicone resin were measured. However, the strength is different from that of ceramics, and a de-fatigue test (3-point bending type oscillation bending with a span of 10 mm) was carried out at room temperature at a frequency of 20 Hz, and the rupture stress after 107 repetitions was determined to be 3-point bending fatigue. strength. At this time, the zygote is
It was placed in a 3-point bending jig so that tensile stress was generated on the bead coat side. (The dimensions of the jig are the same as those shown in Figure 4.) The stress is the same as in the case of 3-point bending strength, with a span of 10 mm and a folded surface of 2 m x 5 m for the load value.
Calculated as a rectangular cross section.

結果は第2表に示した。チタンビーズのポーラス層の接
着力はシリコーン樹脂を介した接合体のそれに比較し6
〜7倍強いが強度は逆に半分以下である。
The results are shown in Table 2. The adhesion strength of the porous layer of titanium beads is compared to that of the bonded body using silicone resin6.
~7 times stronger, but on the other hand, the strength is less than half.

(以下余白) (実施例4) 水酸化アパタイト粉末を成形圧100100O/cm”
で乾式プレス成形した後、大気中1300度で焼結させ
緻@質水酸化アパタイトを得る。これをダイヤモンド砥
石で研削加工し、10X15X 0.5tのアパタイト
薄板を作る。一方、実施例1で説明した基体タイプ2の
アルミナ板へ有機ポリマー層を成すα−シアノアクリレ
ート系接着剤を用いて10 X 15 X005tの緻
密質水酸化アパタイト薄板を接着せしめた。こうして得
られたα−シアノアクリレート系接着材を介した複合部
材を実施例1におけるそれと同一の方法で強度、アパタ
イト層の基体に対する接着力を評価した。結果は第1表
に示した。
(Left below) (Example 4) Hydroxylated apatite powder was molded at a pressure of 100,100 O/cm"
After dry press molding, it is sintered at 1300 degrees in the atmosphere to obtain dense hydroxide apatite. This is ground with a diamond grindstone to produce a 10x15x 0.5t apatite thin plate. On the other hand, a dense hydroxyapatite thin plate of 10 x 15 x 005t was adhered to the alumina plate of substrate type 2 described in Example 1 using an α-cyanoacrylate adhesive forming an organic polymer layer. The strength of the thus obtained composite member using the α-cyanoacrylate adhesive was evaluated in the same manner as in Example 1, and the adhesive force of the apatite layer to the substrate was evaluated. The results are shown in Table 1.

基体タイプ2のアルミナ強度に比較しても強度は低下せ
ず、逆に厚さが増えた分強くなっている。
Compared to the alumina strength of substrate type 2, the strength does not decrease, and on the contrary, it becomes stronger as the thickness increases.

〔発明の効果〕〔Effect of the invention〕

畝上の様に、金属、セラミック等の様な高強度材質から
成る基体の表面に有機ポリマー層を介して、生体親和性
材を被着せしめる事により、生体親和性を有し高強度な
生体補綴用複合部材を提供することができる。
By applying a biocompatible material to the surface of a base made of a high-strength material such as metal, ceramic, etc. through an organic polymer layer, as in the case of ridges, a biocompatible and high-strength material can be created. A prosthetic composite component can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)は本発明に係る生体補綴用複合部材を構成
するための基体のみの平面図、第1図(ロ)は同図(イ
)におけるX−X線断面図、第2図は本発明実施例によ
る生体補綴用複合材の断面図、第3図は従来の生体補綴
用複合部材の断面図であり、第4図は生体補綴用複合部
材の強度を測定するための3点曲げ強度試験方法を説明
するための装置の斜視図である。 A:アルミナセラミック板 B:有機ポリマー層 p:ボーラスアルミナシート
FIG. 1(a) is a plan view of only the base for constructing the composite member for bioprosthesis according to the present invention, FIG. 1(b) is a sectional view taken along the line X-X in FIG. is a sectional view of a composite material for bioprosthesis according to an embodiment of the present invention, FIG. 3 is a sectional view of a conventional composite member for bioprosthesis, and FIG. 4 is a cross-sectional view of a composite material for bioprosthesis at three points for measuring the strength of the composite member for bioprosthesis. FIG. 2 is a perspective view of an apparatus for explaining a bending strength testing method. A: Alumina ceramic plate B: Organic polymer layer p: Bolus alumina sheet

Claims (1)

【特許請求の範囲】[Claims]  金属、セラミック等の高強度材質からなる基体の表面
に有機ポリマー層を介して生体親和性材を被着せしめた
ことを特徴とする生体補綴用複合部材。
A composite member for bioprosthesis, characterized in that a biocompatible material is adhered to the surface of a base made of a high-strength material such as metal or ceramic via an organic polymer layer.
JP62077214A 1987-03-30 1987-03-30 Composite member for prosthesis of living body Pending JPS63240854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62077214A JPS63240854A (en) 1987-03-30 1987-03-30 Composite member for prosthesis of living body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62077214A JPS63240854A (en) 1987-03-30 1987-03-30 Composite member for prosthesis of living body

Publications (1)

Publication Number Publication Date
JPS63240854A true JPS63240854A (en) 1988-10-06

Family

ID=13627585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62077214A Pending JPS63240854A (en) 1987-03-30 1987-03-30 Composite member for prosthesis of living body

Country Status (1)

Country Link
JP (1) JPS63240854A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048751A (en) * 1983-08-30 1985-03-16 日本特殊陶業株式会社 Implant producing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048751A (en) * 1983-08-30 1985-03-16 日本特殊陶業株式会社 Implant producing method

Similar Documents

Publication Publication Date Title
US3852045A (en) Void metal composite material and method
Baino et al. Digital light processing stereolithography of hydroxyapatite scaffolds with bone‐like architecture, permeability, and mechanical properties
JP4385285B2 (en) Surgical implant manufacturing method and surgical implant
Fu et al. Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives
Kitsugi et al. Bone bonding behavior of MgO CaO SiO2 P2O5 CaF2 glass (mother glass of A· W‐glass‐ceramics)
CA1138153A (en) Prosthetic devices having coatings of selected porous bioengineering thermoplastics
Thomson et al. Fabrication of biodegradable polymer scaffolds to engineer trabecular bone
EP1178769B1 (en) Polymer re-inforced anatomically accurate bioactive prostheses
Xu et al. Self‐hardening calcium phosphate composite scaffold for bone tissue engineering
Kim et al. Bonding strength of bonelike apatite layer to Ti metal substrate
Raab et al. The quasistatic and fatigue performance of the implant/bone‐cement interface
JPS6131163A (en) Ceramic living body prosthetic material and its production
US4478904A (en) Metal fiber reinforced bioglass composites
WO1990003349A1 (en) Process for the production of porous ceramics using decomposable polymeric microspheres and the resultant product
Ducheyne et al. The mechanical behaviour of porous austenitic stainless steel fibre structures
Kon et al. Porous Ti‐6Al‐4V alloy fabricated by spark plasma sintering for biomimetic surface modification
Li et al. Effect of hydroxyapatite content and particle size on the mechanical behaviors and osteogenesis in vitro of polyetheretherketone–hydroxyapatite composite
KR101239112B1 (en) Method for Preparing Porous Titanium-Hydroxyapatite Composite
Rahaman et al. Preparation and bioactive characteristics of porous borate glass substrates
JP2000169251A (en) Production of ceramic complex and ceramic complex
JPS63240854A (en) Composite member for prosthesis of living body
Shinzato et al. Bone‐bonding behavior of alumina bead composite
Kitsugi et al. Analysis of A· W glass‐ceramic surface by micro‐beam X‐ray diffraction
Bojko et al. Study of the impact of incremental technology on mechanical and tribological properties of biomaterials
JP3214969B2 (en) Prosthetic components