JPS63240845A - Apparatus for quantitative measurement of bone salt - Google Patents

Apparatus for quantitative measurement of bone salt

Info

Publication number
JPS63240845A
JPS63240845A JP62074945A JP7494587A JPS63240845A JP S63240845 A JPS63240845 A JP S63240845A JP 62074945 A JP62074945 A JP 62074945A JP 7494587 A JP7494587 A JP 7494587A JP S63240845 A JPS63240845 A JP S63240845A
Authority
JP
Japan
Prior art keywords
fat
water
bone mineral
ray
bone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62074945A
Other languages
Japanese (ja)
Inventor
真浩 尾嵜
好男 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62074945A priority Critical patent/JPS63240845A/en
Publication of JPS63240845A publication Critical patent/JPS63240845A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明はX線CT装置を用いて被検体の骨塩母を定量測
定する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a device for quantitatively measuring bone mineral density of a subject using an X-ray CT device.

(従来技術及びその問題点) 代謝性骨症患を早期に診断し、進行状況を正確に把握す
るためには骨塩但の定量測定が最も有効である。
(Prior art and its problems) Quantitative measurement of bone mineral density is the most effective way to diagnose metabolic osteopathy at an early stage and accurately grasp the progress status.

現在X線CT装置を利用してを椎海綿骨のX線吸収係数
を計測し、これに基づいて骨塩但を推定する方法がある
。これについて第5図及び第6図を参照して説明する。
Currently, there is a method of measuring the X-ray absorption coefficient of vertebrocancellous bone using an X-ray CT device and estimating bone mineral density based on this. This will be explained with reference to FIGS. 5 and 6.

この方法は第5図のように、キャリプレーラミンファン
トム10上に被検体Mを臥床させ、被検体Mの第3腰椎
中央部をX線によりスキャンしてこの被検体Mの腰椎海
綿骨部TのX線吸収係数(CT値)を求めるとともに、
キヤリプレーションフ1ントム10における各ロッド1
2a乃至12eのCT ifiをもそれぞれ求める。こ
の各ロッド12a乃至12eは、それぞれ骨塩等何物質
が異なる比率で配合された棒状の放射線吸収部材でおる
As shown in FIG. 5, this method involves placing a subject M lying down on a Caliprelamin phantom 10, scanning the center of the third lumbar vertebrae of the subject M with X-rays, and scanning the lumbar cancellous bone region of the subject M. Find the X-ray absorption coefficient (CT value) of
Each rod 1 in the calibration phantom 10
The CT ifi of 2a to 12e is also determined. Each of the rods 12a to 12e is a rod-shaped radiation-absorbing member containing different substances such as bone mineral in different ratios.

そして、第6図に示すように各ロッド12a乃¥126
のそれぞれの骨塩等何物質の配合比と求めた各CT値と
により回帰直線Loを作成し、この回帰直線Loと上述
した腰椎海綿骨部TのCT直Koとの関係から、この腰
椎海綿骨部Tの配合比Goを求める。このようにして求
めた配合比Goがこの場合の腰椎海綿骨部Tの骨塩量を
示している。
Then, as shown in Fig. 6, each rod 12a~¥126
A regression line Lo is created based on the blending ratio of each substance such as bone mineral and each calculated CT value, and from the relationship between this regression line Lo and the above-mentioned CT scan Ko of the lumbar cancellous bone T, this lumbar cancellous bone The blending ratio Go of the bone portion T is determined. The blending ratio Go determined in this manner indicates the bone mineral content of the lumbar cancellous bone T in this case.

しかしながら、このようなX線CT装置では尚棉骨中に
含まれる水分や脂肪を除いて測定することができず、脂
肪その個人差により測定誤差が生じてしまうという問題
がある。  。
However, such an X-ray CT apparatus cannot measure water and fat contained in the incision, and there is a problem in that measurement errors occur due to individual differences in fat content. .

ところで、従来、脂肪の影響を受けずに骨塩量を測定す
るために異なるX線エネルギーを利用して2種類のデー
タを得て、このデータを処理していた(Dual En
erc+y法)。しかし、この方法によるとX線スキャ
ン回数が2回必要となり、被検体への被曝最が増大する
という問題を有していた。
By the way, in the past, in order to measure bone mineral content without being affected by fat, two types of data were obtained using different X-ray energies, and this data was processed (Dual En
erc+y method). However, this method requires two X-ray scans and has the problem of increasing radiation exposure to the subject.

本発明は前記事情に鑑みてなされたものであり、脂肪の
影響を受けず、かっ被@徂の少ない骨塩定量測定装置を
提供する−ことを目的とするものである。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a bone mineral quantitative measurement device that is not affected by fat and has less thickness.

[発明の構成] (問題点を解決するための手段) 前記目的を達成するために本発明は、MRI装置によっ
て水、脂肪分離画像を得、水、脂肪の体積比を計測し、
これを用いてX線CT装置で得た海綿骨部のX線吸収係
数に補正を加えて骨塩はを測定するようにした。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention obtains water and fat separated images using an MRI apparatus, measures the volume ratio of water and fat,
Using this, the bone mineral content was measured by correcting the X-ray absorption coefficient of the cancellous bone obtained with an X-ray CT device.

(作 用) \4RIによって脂肪に関するデータを求め、これを補
正値としてX線吸収データに加味することかできるので
、正確な骨塩量を求めることができる。
(Function) Since data regarding fat can be determined using 4RI and can be added to the X-ray absorption data as a correction value, accurate bone mineral content can be determined.

(実施例) 以下、実施例により本発明を具体的に説明する。(Example) Hereinafter, the present invention will be specifically explained with reference to Examples.

第1図は本発明の一実施例を示すブロック図であり、被
検体の水、脂肪分離画像データを作成するMRI(fn
気共鳴イメージング)装置1と、X線照射内に被検体と
キャリブレーションファントムを配置して被検体の水、
脂肪を含む骨部に関するX線透過データを作成するX線
CT装置2と、この骨部に関するデータに基づいて骨塩
量を算出すると共に、このようにして求められた骨塩量
データに対して前記入/IRI装置によって得られる水
FIG. 1 is a block diagram showing one embodiment of the present invention, in which an MRI (fn
(air resonance imaging) apparatus 1, the subject and the calibration phantom are placed inside the X-ray irradiation, and the subject's water,
An X-ray CT device 2 that creates X-ray transmission data regarding bone parts containing fat, calculates bone mineral content based on the data regarding this bone part, and calculates bone mineral content data based on the bone mineral content data obtained in this way. Water obtained by said In/IRI device.

脂肪のデータにより補正を加えて真の骨塩ωを求める骨
塩量計算回路3とによって構成される。
The bone mineral content calculation circuit 3 calculates the true bone mineral content ω by applying correction based on fat data.

次に、MRI装置1による水、脂肪分離データを作成す
る手法について第2図を参照して説明する。
Next, a method for creating water and fat separation data using the MRI apparatus 1 will be described with reference to FIG. 2.

第2図に示すように、π/2パルス(90°パルス)の
T E 、/ 2−Δを時間後にπパルス(180’パ
ルス)を印加すると、 π/2−π間はTE/2−ΔT(これをτ1とする)π
/2−エコー間はTE/2+Δ丁(これをτ2とする)
となり、τ2−で1=2Δ丁となる。
As shown in Fig. 2, when a π pulse (180' pulse) is applied after a time of TE, /2-Δ of a π/2 pulse (90° pulse), between π/2 and π, TE/2- ΔT (take this as τ1) π
The distance between /2 and echo is TE/2 + ΔT (this is defined as τ2)
Therefore, at τ2-, 1=2Δt.

さて水と脂肪のプロトンの化学シフトをδとするとこの
2ΔTの時間差によって、水と脂肪は、Δψ=δγHa
(2Δ丁)    ・・・(1)だけ位相差をもつ。こ
こにγはラーモア定数、Hoは静滋楊強度でおる。今、
Δ丁=π/(2δγト1o )とすると、Δψ=πとな
り、水と脂肪の位相は反転する。このとき得られる画像
(OPPO8E[)画像)をfFとすると、fFは、 fπ=fw−fF        ・・・(2)となる
。ここにfwは水の分布、fFは脂肪の分イhである。
Now, if the chemical shift of protons of water and fat is δ, then due to this time difference of 2ΔT, water and fat will be Δψ=δγHa
(2Δd) ...Has a phase difference of (1). Here, γ is the Larmor constant, and Ho is the static strength. now,
When Δι=π/(2δγt1o), Δψ=π, and the phases of water and fat are reversed. If the image obtained at this time (OPPO8E[ ) image) is fF, then fF is fπ=fw−fF (2). Here, fw is the distribution of water, and fF is the distribution of fat.

ところでΔT=Oに相当するとき得られる通常の画像(
IN−PHASE画e)foは、fO= f W+f 
F          ・”(3)でおるから、(fo
 +fπ)2/2および(fo −fF)/2によりf
w、fFが求められる。この方法は1984年にW、 
T、 D i xonにより提案されている(W、T、
Dixon Radiology 153P、 198
4)方法である。
By the way, the normal image obtained when ΔT=O (
IN-PHASE picture e) fo is fO=f W+f
F ・”(3), so (fo
+fπ)2/2 and (fo −fF)/2 give f
w and fF are calculated. This method was introduced in 1984 by W.
proposed by T, D i xon (W, T,
Dixon Radiology 153P, 198
4) It is a method.

さて以上、水、脂肪分離イメージングの原理についての
べたが、その中で、水はfw、脂肪はfFなどかいてき
たが、実際にはこれらはプロトン密度ρの池に緩和時定
数T1 、T2の情報をも含んでいる。
So far, we have talked about the principles of water and fat separation imaging, and in that we have used terms such as fw for water and fF for fat, but in reality, these are expressed in a pond with proton density ρ and relaxation time constants T1 and T2. It also contains information.

したがって、正確な密度ρを求めるためには、いわゆる
″計算画像゛の技術を用い、下式のようにスキャンパラ
メータを変えた複数枚の画像からの密度ρの計算をする
必要がある。
Therefore, in order to obtain an accurate density ρ, it is necessary to use the so-called "calculated image" technique and calculate the density ρ from a plurality of images with different scanning parameters as shown in the following equation.

fl (Tt 、T2 、ρ) f2 (T1 、T2 、ρ) f3 (Tt 、T2 、ρ) 例 の6画像にDIXON法、計算画像の方法を適用し水及
び脂肪の真の密度をうる。
fl (Tt, T2, ρ) f2 (T1, T2, ρ) f3 (Tt, T2, ρ) The DIXON method and the computational image method are applied to the six images in the example to obtain the true densities of water and fat.

水、脂肪lの算出には、前述の手法を用いればよいが、
よりスキャン及び計算時間を減らすために、次の様に局
所励起技術を利用した、イメージングをともなわない手
法も考えられる。
The above-mentioned method can be used to calculate water and fat l, but
In order to further reduce scanning and calculation time, a method that does not involve imaging using local excitation technology may also be considered, as described below.

位置決め用にスキャンをする →画像をうる ↓ ROIを指定する ↓ この部分を局所励起し、そのFI[)またはエコーを得
る。
Scan for positioning → Obtain image ↓ Specify ROI ↓ Locally excite this part and obtain its FI[) or echo.

このとき例えば先の例のように6つの条件のデータをと
るが、イメージングをともなわないのでデータ収集はそ
れぞれ1excitationのみで大巾な収集時間矧
縮が可能である。結果として、数種のスキャンパラメー
タから“真の″あるいは“近似の゛′水、脂肪の密度を
MRIによって算出することができる。
At this time, for example, as in the previous example, data for six conditions are collected, but since imaging is not involved, each data collection requires only one excitation, making it possible to significantly reduce the collection time. As a result, "true" or "approximate" water and fat densities can be calculated by MRI from several scan parameters.

以上、2例について説明したが、ここで大切なのはMR
I装置を用いて水と脂肪の密度比を求めることにある。
I have explained two examples above, but what is important here is MR.
The purpose of this method is to determine the density ratio of water and fat using an I-device.

従って、同一目的を遠戚するためには上記方法以外にも (1)  ()iXOn法の変形法(同一出願人による
昭和60年8月7日出願の特願昭60−174892の
内容)(2)局所励起法を併用したプロトンスペクトロ
スコピー等がある。
Therefore, in order to achieve the same purpose by distant relatives, there are other methods other than the above: 2) There is proton spectroscopy that uses a local excitation method.

以上のようにして水、脂肪分離画像を得て、関心領域内
のMRI値より水に含まれるプロトンと、脂肪に含まれ
るプロトンとの比を計測する。この比と水、脂肪の組成
式及びそれぞれの密度から水と脂肪の体積比を求めるこ
とができる。
A water and fat separated image is obtained as described above, and the ratio of protons contained in water to protons contained in fat is measured from the MRI values in the region of interest. The volume ratio of water and fat can be determined from this ratio, the compositional formulas of water and fat, and their respective densities.

一方X線CT装置2により例えばを椎海綿青の脂肪、水
、骨を含んだ平均X線吸収係数(CT値)mが求まる。
On the other hand, the average X-ray absorption coefficient (CT value) m, which includes fat, water, and bone, of, for example, vertebra cancellous blue is determined by the X-ray CT apparatus 2.

これと同時にCT値の変動を補正するためにキャリブレ
ーションファントムによるデータを収集する。
At the same time, data is collected using a calibration phantom in order to correct changes in CT values.

前記骨塩量計算装置は以下に詳述する計算式に従って前
記MRI装置1からのデータに基づく補正を行ってX線
吸収係数を求め、かつCT値変動の補正を行って骨塩量
を求める。
The bone mineral content calculation device performs correction based on the data from the MRI apparatus 1 according to the formula described in detail below to obtain the X-ray absorption coefficient, and also performs correction for CT value fluctuation to obtain the bone mineral content.

以下第3図及び第4図を参照して脂肪補正の原理につい
て説明する。第3図はを椎海綿骨部4を示すもので、ハ
ツチング部5が物質の体積比(平均CTlam>を表わ
す。第4図は水の領域をa。
The principle of fat correction will be explained below with reference to FIGS. 3 and 4. Fig. 3 shows the vertebrocancellous bone region 4, where the hatched part 5 represents the volume ratio of the substance (average CTlam>). Fig. 4 shows the water region a.

脂肪のそれをす、骨のそれをCとした模式図である。It is a schematic diagram with "A" for fat and "C" for bone.

以下の説明において、CTWは水のCT値、CTfは脂
肪のCT値、CTbは骨のCT値でおる。
In the following explanation, CTW is the CT value of water, CTf is the CT value of fat, and CTb is the CT value of bone.

前記第4図の各部の関係を次式とする。The relationship between each part in FIG. 4 is expressed by the following equation.

a+b+c=1         ・・・(4)そして
、各部のCT illと平均CTf直mの関係は次式と
なる。
a+b+c=1 (4) Then, the relationship between CTill and average CTf directm of each part is as follows.

m=CTw−a+CTf −b+cTb −c    
−(5)また、MRI装置による水、脂肪分離画像デー
タは次式の関係が得られる。
m=CTw-a+CTf-b+cTb-c
-(5) Furthermore, the relationship of the following equation is obtained for the water and fat separation image data obtained by the MRI apparatus.

a:b=に:1−に ここで、前記水と脂肪をまとめて水と仮定する。a:b=to:1-to Here, it is assumed that the water and fat are collectively referred to as water.

すなわち、水=a+b この結果補正されたCT値m′は次式となる。That is, water = a + b As a result, the corrected CT value m' is expressed by the following equation.

m’   =   CTw−(a+b)+CTb   
−C−(刀そして(7)式から前記(5)式を引くと次
式となる。
m' = CTw-(a+b)+CTb
-C-(sword) Then, subtracting the above equation (5) from equation (7) yields the following equation.

m’  −m=b(CTw−c丁r) 従って次式によりm′が表わされる。m' - m = b (CTw - c t r) Therefore, m' is expressed by the following equation.

m’ =m+b(CTw−CTf)       ・・
・(8)前記(4)式を変形し、前記(6)式を代入す
ると、c=’l−(a十b) =1−(−b+b) ’l−k =1−□        ・・・(9)1−に となる。
m' = m + b (CTw - CTf) ・・
・(8) Transforming the above equation (4) and substituting the above equation (6), c='l-(a + b) =1-(-b+b)'l-k =1-□... (9) It becomes 1-.

前記(5)式に(9)式、(6)式を代入すると、とな
る。
Substituting equations (9) and (6) into equation (5) gives the following equation.

よって補正されたCHI直m′は次式となる。Therefore, the corrected CHI direct m' is given by the following equation.

以上の補正によって脂肪の影響を受けない真の骨塩♀を
求めることができる。
Through the above corrections, true bone mineral density ♀, which is not affected by fat, can be determined.

[発明の効果] 以上詳述した本発明によれば、脂肪の影響を受けずに真
の骨塩量の定量測定ができると共に、X線CT装置のス
キャンは1回で済むので、被検体への被曝保母を減少さ
せることができる。
[Effects of the Invention] According to the present invention described in detail above, true bone mineral content can be quantitatively measured without being affected by fat, and only one scan with an X-ray CT device is required. This can reduce the number of carriers exposed to radiation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロック図、第2図は
MRI装置による水、脂肪分離画像を求める原理説明図
、第3図及び第4図は本発明装置による補正の原理説明
図、第5図及び第6図は従来の骨塩量定量測定の原理説
明図である。 1・・・MRI装置、 2・・・X線CT装置、3・・
・骨塩量計算装置。 第1図 弔2図 第5図 第  6 図
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is an explanatory diagram of the principle of obtaining water and fat separated images using an MRI device, and Figs. 3 and 4 are explanatory diagrams of the principle of correction by the inventive device. , FIG. 5, and FIG. 6 are explanatory diagrams of the principle of conventional bone mineral content quantitative measurement. 1... MRI device, 2... X-ray CT device, 3...
・Bone mineral density calculation device. Figure 1 Funeral Figure 2 Figure 5 Figure 6

Claims (3)

【特許請求の範囲】[Claims] (1)X線CT装置のX線照射野内に被検体とファント
ムを配置し、得られた収集データに基づいて被検体の骨
塩量を定量測定する装置において、MRI装置により化
学シフトを用いて水、脂肪分離画像データを求めこの画
像データに基づいて前記X線収集データに補正を加える
ことを特徴とする骨塩定量測定装置。
(1) In a device that places a subject and a phantom within the X-ray irradiation field of an X-ray CT machine and quantitatively measures the bone mineral content of the subject based on the collected data, an MRI machine uses chemical shift. A bone mineral quantitative measuring device characterized in that water and fat separation image data are obtained and correction is applied to the collected X-ray data based on this image data.
(2)前記MRI装置による画像データの収集は、複数
回のスキャンパラメータを変えた画像から水、脂肪の体
積比を求めるものである特許請求の範囲第1項記載の骨
塩定量測定装置。
(2) The bone mineral quantitative measurement device according to claim 1, wherein the image data is collected by the MRI device by determining the volume ratio of water and fat from images obtained by changing scan parameters a plurality of times.
(3)前記MRI装置による画像データの収集は、局所
励起法を用いて体積比を求める特許請求の範囲第1項記
載の骨塩定量測定装置。
(3) The bone mineral quantitative measurement device according to claim 1, wherein the image data is collected by the MRI device and the volume ratio is determined using a local excitation method.
JP62074945A 1987-03-28 1987-03-28 Apparatus for quantitative measurement of bone salt Pending JPS63240845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62074945A JPS63240845A (en) 1987-03-28 1987-03-28 Apparatus for quantitative measurement of bone salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62074945A JPS63240845A (en) 1987-03-28 1987-03-28 Apparatus for quantitative measurement of bone salt

Publications (1)

Publication Number Publication Date
JPS63240845A true JPS63240845A (en) 1988-10-06

Family

ID=13561977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62074945A Pending JPS63240845A (en) 1987-03-28 1987-03-28 Apparatus for quantitative measurement of bone salt

Country Status (1)

Country Link
JP (1) JPS63240845A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993024055A1 (en) * 1992-05-29 1993-12-09 Ge Yokogawa Medical Systems, Ltd. Method of quantitative determination of bone salt with ct equipment
WO1993024054A1 (en) * 1992-05-26 1993-12-09 Ge Yokogawa Medical Systems, Ltd. Method of imaging fat distribution with ct equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993024054A1 (en) * 1992-05-26 1993-12-09 Ge Yokogawa Medical Systems, Ltd. Method of imaging fat distribution with ct equipment
WO1993024055A1 (en) * 1992-05-29 1993-12-09 Ge Yokogawa Medical Systems, Ltd. Method of quantitative determination of bone salt with ct equipment

Similar Documents

Publication Publication Date Title
Nuzzo et al. Quantification of the degree of mineralization of bone in three dimensions using synchrotron radiation microtomography
Kühn et al. Proton-density fat fraction and simultaneous R2* estimation as an MRI tool for assessment of osteoporosis
US4788706A (en) Method of measurement of x-ray energy
US7856134B2 (en) Method for generating image data relating to a virtually prescribable X-ray tube voltage from first and second CT image data
Li et al. Comparison of chemical shift‐encoded water–fat MRI and MR spectroscopy in quantification of marrow fat in postmenopausal females
Wong A comparison of peripheral imaging technologies for bone and muscle quantification: a technical review of image acquisition
JP2009285356A (en) Image capturing system for medical use, image processing apparatus, image processing method, and program
Guo et al. Magnetic susceptibility and fat content in the lumbar spine of postmenopausal women with varying bone mineral density
US11517278B2 (en) System and method for basis material decomposition with general physical constraint for multi-energy computed tomography
US5123037A (en) Method for calibrating the measuring system of an x-ray apparatus
Desponds et al. Image quality index (IQI) for screen-film mammography
Colevray et al. Convolutional neural network evaluation of over-scanning in lung computed tomography
CN110720940A (en) Die body and application thereof in CT detection system
Gulam et al. Bone mineral measurement of phalanges: comparison of radiographic absorptiometry and area dual X-ray absorptiometry
JPS63240845A (en) Apparatus for quantitative measurement of bone salt
Webber et al. Predicting osseous changes in ankle fractures
Zhu et al. Trabecular bone micro‐architecture and bone mineral density in adolescent idiopathic and congenital scoliosis
US20160245761A1 (en) Method of determination of physical parameters of an object imaged using computer tomograph and equipment for implementation of said method
Kogon et al. The effects of processing variables on the contrast of type D and type E dental film
VOGT et al. Use of a digital computer in the measurement of roentgenographic bone density
JP2983421B2 (en) Bone measurement method and device
Faul et al. IV. Tomochemistry: Tissue Sensitive CT Techniques: COMPOSITION-SELECTIVE RECONSTRUCTION FOR MINERAL CONTENT IN THE AXIAL AND APPENDICULAR SKELETON.
JPS62148658A (en) Examination method using nuclear magnetic resonance
Tanioka et al. Radiolucent zone around screws is associated with position change of screw-rod constructs
Chen et al. Detecting bone marrow infiltration in nonosteolytic multiple myeloma through separation of hydroxyapatite via the two-material decomposition technique in spectral computed tomography