JPS63240281A - Television signal transmitter - Google Patents

Television signal transmitter

Info

Publication number
JPS63240281A
JPS63240281A JP62074712A JP7471287A JPS63240281A JP S63240281 A JPS63240281 A JP S63240281A JP 62074712 A JP62074712 A JP 62074712A JP 7471287 A JP7471287 A JP 7471287A JP S63240281 A JPS63240281 A JP S63240281A
Authority
JP
Japan
Prior art keywords
signal
circuit
modulation
television
carrier wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62074712A
Other languages
Japanese (ja)
Inventor
Yoshio Abe
阿部 能夫
Yoshio Yasumoto
安本 吉雄
Hideo Inoue
井上 秀士
Teiji Kageyama
定司 影山
Hideyo Uehata
秀世 上畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62074712A priority Critical patent/JPS63240281A/en
Publication of JPS63240281A publication Critical patent/JPS63240281A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To expand an aspect ratio while providing compatibility to an existing television system by superimposing a video signal at both sides of the screen to make the screen aspect ratio longer laterally within a band of a television signal subjected to residual-side band amplitude modulation and inverting alternately the positive modulation and negative modulation of the superimposed signal. CONSTITUTION:A carrier wave P1 obtained from an oscillator 24 of an orthogonal modulation circuit 4 is subjected to amplitude modulation by an amplitude modulator 22. The amplitude modulation wave is subjected to band limit by a 1st filter 23 and formed in the residual-side band and the result is fed to an adder 29. The carrier wave P1 is shifted in terms of phase by 90 deg. by a phase shifter 25 as a carrier wave P2. A multiplex signal inputted from a multiplex signal input terminal 26 is used to apply double-side band amplitude positive modulation to the carrier wave P2 by the positive modulation circuit 27 and negative modulation is applied by a negative modulation circuit 28. The modulated signal is selected alternately by each horizontal period or a field by a selection circuit 29. The selected signal is subjected to band limit by a 2nd filter 30 and fed to an adder 31. Thus, a multiplex signal is superimposed on a conventional video signal to form the synthesized television signal.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、現行のテレビジョン放送信号に別の映像信号
を多重伝送し、従来よりも横長の画面を提供するテレビ
ジョン信号送信装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a television signal transmitting device that multiplexes and transmits a separate video signal to a current television broadcast signal to provide a screen that is wider than ever before. .

従来の技術 わが国の現在のNTSCrナショナルテレビジョンシス
テムコミッテイ(National Televisi
onSystem Comm1ttee) j方式によ
るカラーテレビジョン放送が昭和35年に開始されて以
来、25年以上が経過した。その間、高精細な画面に対
する要求と、テレビジョン受信機の性能向上にともない
、各種の新しいテレビジョン方式が提案されている。
Conventional technology Our country's current NTSCr National Television System Committee (National Television System Committee)
More than 25 years have passed since color television broadcasting using the J format began in 1960. Meanwhile, with the demand for high-definition screens and improvements in the performance of television receivers, various new television systems have been proposed.

また、サービスされる番組の内容自体も単なるスタジオ
番組や中継番組などから、シネマサイズの映画の放送な
ど、より高画質で臨場感を伴う映像を有する番組へと変
化してきている。
Furthermore, the content of the programs provided is changing from simple studio programs and relay programs to programs with higher quality and more realistic images, such as cinema-sized movie broadcasts.

現行放送は、走査線数525本、2:1飛び越し走査、
輝度信号水平帯域幅4.2MHzアスペクト比4:比色
:3諸仕様(例えば、文献放送技術双書、カラーテレビ
ジョン日本放送協会績、日本放送出版協会、1961年
参照)を有している。
Current broadcasting uses 525 scanning lines, 2:1 interlaced scanning,
It has a luminance signal horizontal bandwidth of 4.2 MHz, an aspect ratio of 4: colorimetry, and three specifications (for example, see Literature Broadcasting Technology Bibook, Color Television Japan Broadcasting Corporation Report, Japan Broadcasting Publishing Association, 1961).

この様な背景のもとて現行放送との両立性をたもち、ア
スペクト比の拡大を可能とするテレビジョン信号構成方
法が提案されている。−例を以下に述べる。
Against this background, a method of configuring a television signal has been proposed that is compatible with current broadcasting and allows an enlargement of the aspect ratio. - Examples are given below.

従来のアスペクト比4:3で解像度が十分あるテレビジ
ョン撮像カメラの前に横方向だけを縮小する特殊なレン
ズを取り付けることにより、例えばアスペクト比5:3
の通常より横長の画面の映像信号で、水平周波数は通常
のテレビジョン信号と同じであるワイドアスペクト映像
信号を得ることができる(第2図(a))。この信号は
中央のアスペクト比4:3の部分(第2図(b))とそ
の両側の部分(第2図(C))に時間軸で分けられる。
For example, by attaching a special lens that reduces only the horizontal direction to the front of a television imaging camera that has sufficient resolution with a conventional aspect ratio of 4:3, it is possible to achieve an aspect ratio of, for example, 5:3.
It is possible to obtain a wide aspect video signal whose horizontal frequency is the same as that of a normal television signal (FIG. 2(a)). This signal is divided on the time axis into a central portion with an aspect ratio of 4:3 (FIG. 2(b)) and portions on both sides thereof (FIG. 2(C)).

中央部分は時間軸を通常のテレビジョン信号となるよう
約5/4倍に伸長し、通常の映像信号とする。この信号
は従来のテレビジョン信号として送られる。
In the central part, the time axis is expanded by about 5/4 times to make it a normal television signal, making it a normal video signal. This signal is sent as a conventional television signal.

両側部分も時間軸で約4倍に伸長し、画面アスペクト比
を横長とするための画面両側の映像信号として映像搬送
波を直交変調し多重して伝送される(例えば、特願昭6
1−180336号、特願昭61−231667号)。
Both side parts are also expanded by about 4 times on the time axis, and the video carrier waves are orthogonally modulated and multiplexed to be transmitted as video signals on both sides of the screen to make the screen aspect ratio horizontally long (for example,
No. 1-180336, Japanese Patent Application No. 1983-231667).

発明が解決しようとする問題点 以上のように現行のテレビジョン放送は、信号の帯域が
規格で制限されており、更に何等かの多量情報を付加す
ることは容易ではない。例えば、現行のテレビジョン放
送に対する両立性の観点からすると上記従来例は旧式の
包絡線検波方式のテレビジョンに妨害を生じると言う問
題がある。すなわち直交搬送波により新たな多重信号を
重畳するために同期検波方式では問題無いが、包絡線検
波では直交成分を分離できないため主信号と多重信号の
クロストークを生じ画面上に妨害となって現れる。
Problems to be Solved by the Invention As described above, in current television broadcasting, the signal band is limited by the standard, and it is not easy to add a large amount of information. For example, from the viewpoint of compatibility with current television broadcasting, the above-mentioned conventional example has a problem in that it causes interference with old envelope detection type televisions. In other words, there is no problem with the synchronous detection method because a new multiplexed signal is superimposed using orthogonal carrier waves, but because envelope detection cannot separate orthogonal components, crosstalk between the main signal and the multiplexed signal occurs, which appears as interference on the screen.

電波資源の有効利用という観点からすると問題点を解決
するためにいたずらに伝送帯域を拡張するわけには行か
ない。
From the perspective of effective use of radio wave resources, it is not possible to expand the transmission band unnecessarily to solve the problem.

本発明はかかる問題点に鑑みてなされたもので、現行の
テレビジョン方式と両立性があり、規格で定められた帯
域内で旧式の受信機にも大きな妨害を与えること無く、
アスペクト比の拡大を可能とするテレビジョン信号送信
装置を提供することを目的とする。
The present invention was made in view of these problems, and is compatible with the current television system, and does not cause significant interference to older receivers within the band specified by the standard.
It is an object of the present invention to provide a television signal transmitting device that enables expansion of the aspect ratio.

問題点を解決するための手段 上記問題点を解決するための本発明のテレビジョン信号
送信装置は、時間軸映像信号切り出し回路と時間軸伸長
回路と直交変調回路を具備し、残留側波帯振幅変調され
たテレビジョン信号の帯域内に前記搬送波と同一な周波
数でかつ位相が±90度異l6搬送波を前記テレビジョ
ン信号とは異なる多重信号で変調した信号を前記直交変
調回路で生成し、伝送し、前記多重信号は、前記時間軸
映像信号切り出し回路と時間軸伸長回路により作成した
画面アスペクト比を横長とするための画面両側の映像信
号であり、前記直交変調回路には正変調回路と負変調回
路を具備し水平走査線毎にまたはフィールド毎に正変調
と負変調を交互に行うことを特徴とする。
Means for Solving the Problems In order to solve the above problems, the television signal transmitting device of the present invention includes a time-domain video signal extraction circuit, a time-domain expansion circuit, and an orthogonal modulation circuit, and has a residual sideband amplitude. The orthogonal modulation circuit generates and transmits a signal in which a 16 carrier wave having the same frequency as the carrier wave and having a phase difference of ±90 degrees is modulated with a multiplexed signal different from the television signal within the band of the modulated television signal. The multiplexed signal is a video signal on both sides of the screen to make the screen aspect ratio horizontally elongated, which is created by the time-domain video signal extraction circuit and the time-domain expansion circuit, and the orthogonal modulation circuit includes a positive modulation circuit and a negative modulation circuit. It is characterized in that it includes a modulation circuit and alternately performs positive modulation and negative modulation for each horizontal scanning line or for each field.

作用 本発明は、上記した送信装置によって、現行テレビジョ
ン放送の規格の帯域内で画面アスペクト比を横長とする
ための画面両側の映像信号を多重伝送可能とするテレビ
ジョン信号を生成することにより、専用の受信機では従
来のテレビジョン放送の映像のみならず多重されたワイ
ドアスペクト映像をも得ることができ、更に既存の包絡
線検波型テレビジョン受信機でも、多重信号によるクロ
ストークを目だた無くし、従来のテレビジョン放送の映
像を殆ど支障なく受信することができる。
The present invention uses the above-described transmitting device to generate a television signal that enables multiplex transmission of video signals on both sides of the screen in order to make the screen aspect ratio horizontally elongated within the band of the current television broadcasting standard. With a dedicated receiver, it is possible to obtain not only conventional television broadcast images but also multiplexed wide aspect images, and even with existing envelope detection type television receivers, crosstalk caused by multiplexed signals is noticeable. It is possible to receive conventional television broadcast images without any problems.

実施例 以下本発明のテレビジョン信号送信装置の−実雄側につ
いて、図面を参照しながら説明する。
EMBODIMENTS Below, the real side of the television signal transmitting apparatus of the present invention will be explained with reference to the drawings.

第1図は、本発明の一実施例に関わる送信側のテレビジ
ョン信号送信装置を説明するブロック図である。1は時
間軸映像信号切り出し回路、2は時間軸伸長回路1.3
は時間軸伸長回路2.4は直交変調回路、5はタイミン
グ制御回路である。
FIG. 1 is a block diagram illustrating a television signal transmitting device on the transmitting side according to an embodiment of the present invention. 1 is a time axis video signal extraction circuit, 2 is a time axis expansion circuit 1.3
2 is a time axis expansion circuit, 4 is an orthogonal modulation circuit, and 5 is a timing control circuit.

6はワイドアスペクト映像信号、7は通常映像信号、8
は画面両端映像信号、9は合成テレビジョン信号、10
は左右位置制御信号である。
6 is a wide aspect video signal, 7 is a normal video signal, and 8 is a wide aspect video signal.
is a video signal at both ends of the screen, 9 is a composite television signal, and 10 is a composite television signal.
are left and right position control signals.

ワイドアスペクト映像信号6は、例えばアスペクト比5
:3の通常より横長の画面の映像信号であり、水平周波
数は通常のテレビジョン信号と同じである。(第2図(
a))この信号は中央のアスペクト比4:3の部分(第
2図伯))とその両側の部分(第2図(C))に時間軸
映像信号切り出し回路1で分けられる。中央部分は時間
軸伸長回路12で通常のテレビジョン信号となるよう約
5/4倍に伸長し、通常映像信号となる。両側部分は時
間軸伸長回路23で約4倍に伸長し画面両端映像信号8
となる。画面両端映像信号8は多重信号として直交変調
回路4に入力する。直交変調回路4は前記通常映像信号
7と合わせて直交変調し合成テレビジョン信号9を出力
する。以下各ブロック別に説明する。
The wide aspect video signal 6 has an aspect ratio of 5, for example.
:3 is a video signal with a screen that is wider than usual, and the horizontal frequency is the same as a normal television signal. (Figure 2 (
a)) This signal is divided by the time-domain video signal cutting circuit 1 into a central portion with an aspect ratio of 4:3 (FIG. 2(C)) and portions on both sides thereof (FIG. 2(C)). The central portion is expanded by about 5/4 times in the time axis expansion circuit 12 to become a normal television signal, and becomes a normal video signal. Both side parts are expanded by about 4 times by the time axis expansion circuit 23, and the image signals 8 at both ends of the screen are expanded.
becomes. The image signals 8 at both ends of the screen are input to the orthogonal modulation circuit 4 as multiplexed signals. The orthogonal modulation circuit 4 performs orthogonal modulation together with the normal video signal 7 and outputs a composite television signal 9. Each block will be explained below.

まず時間軸映像信号切り出し回路1、時間軸伸長回路1
2、時間軸伸長回路23について説明する。これらの回
路はラインメモリを用い書き込みクロックと読みだしク
ロックを変えることにより容易に実現できるので詳細な
構成は省略する。
First, time axis video signal extraction circuit 1, time axis expansion circuit 1
2. The time axis expansion circuit 23 will be explained. These circuits can be easily realized by using a line memory and changing the write clock and read clock, so detailed configurations will be omitted.

動作については前記したが更に第3図にその画像例をし
めす。第3図はこの動作を画像の位置で表わしたもので
ある。第3図(alはワイドアスペクト映像信号6、(
b)は通常映像信号7、fc)は画面両端映像信号8で
ある。第3図では画面両端の信号は左右同じ幅としたが
、左右位置制御信号10によりその幅を変えることも可
能である。左右位置制御信号10は必要に応じて例えば
垂直帰線期間にディジタルデータとして伝送することが
できる。
Although the operation has been described above, FIG. 3 further shows an example of the image. FIG. 3 shows this operation by the position of the image. FIG. 3 (al is wide aspect video signal 6, (
b) is a normal video signal 7, and fc) is a screen both-ends video signal 8. In FIG. 3, the signals at both ends of the screen have the same width on the left and right sides, but it is also possible to change the width using the left and right position control signals 10. The left/right position control signal 10 can be transmitted as digital data, for example, during the vertical retrace period, if necessary.

次に第1図の直交変調回路4について説明する。Next, the orthogonal modulation circuit 4 shown in FIG. 1 will be explained.

第4図は、第1図の直交変調回路4で変調されるテレビ
ジョン信号変調方法を示すスペクトル図である。
FIG. 4 is a spectrum diagram showing a method of modulating a television signal modulated by the orthogonal modulation circuit 4 of FIG.

第4図(alは現行テレビジョン方式における残留側波
帯振幅変調されたテレビジョン信号のスペクトル図であ
る。ここでは映像搬送波P1の下側帯波が残留側帯波と
なっている場合を示す。第4図Tblは第4図(a)で
示したテレビジョン信号とは別の多重信号で、映像搬送
波P1と同一周波数でかつ位相が90度異なる搬送波P
2を、帰線期間で搬送波P2を除去するように残留側帯
波振幅変調としたものである。第4図To)の信号を第
4図(a)のテレビジョン信号に多重したものが第4図
(C1であり、本発明により合成されるテレビジョン信
号となる。
FIG. 4 (al) is a spectrum diagram of a television signal subjected to vestigial sideband amplitude modulation in the current television system. Here, a case is shown in which the lower sideband of the video carrier P1 is a vestigial sideband. Tbl in FIG. 4 is a multiplexed signal different from the television signal shown in FIG.
2, residual sideband amplitude modulation is performed so as to remove the carrier wave P2 during the retrace period. FIG. 4 (C1) is a signal obtained by multiplexing the signal of FIG. 4 To) with the television signal of FIG. 4(a), and becomes the television signal synthesized according to the present invention.

多重信号はアナログに限らずディジタル信号でもよい。The multiplexed signal is not limited to analog signals, but may also be digital signals.

第5図は、第1図の直交変調回路4の詳細を示すブロッ
ク図である。21は通常映像信号入力端子、22は振幅
変調器、23は第1フイルタ、24は発振器、25は位
相器、26は多重信号入力端子、27は正変調回路、2
8は負変調回路、29は選択回路、30は第2フイルタ
、31は加算器、32は合成テレビジョン信号出力端子
である。通常映像信号入力端子21から入力される通常
映像信号で、発振器24から得られる搬送波P1を振幅
変調器22により振幅変調する。得られた振幅変調波を
第1フイルタ23で帯域制限し残留側波帯にした後に加
算器29に加える。発振器24から得られる搬送波P1
を位相器25により90度位相シフトさせたものを搬送
波P2とする。多重信号入力端子26から入力された多
重信号で、搬送波P2を正変調回路27で両側波帯振幅
正変調し、負変調回路28で負変調する。なお、位相器
25の位相シフト方向は固定でもよいが、例えば−水平
走査期間毎に位相シフト方向を変えてやってもよい。変
調された信号は選択回路29で水平期間毎またはフィー
ルド毎に交互に選択される。この制御に必要なタイミン
グは第1図のタイミング制御回路5から供給される。受
信側との同期を取るために例えば垂直帰線期間に制御信
号を入れておくこともできる。選択された信号を第2フ
イルタ30で帯域制限した後に加算器31に加える。加
算器31の出力が合成テレビジョン信号となる。即ち通
常映像信号に多重信号が重畳されて合成されてテレビジ
ョン信号となる。なお第2フイルタ28の周波数特性に
より、多重される信号は第4図(blの様な帯域を有す
る信号となる。
FIG. 5 is a block diagram showing details of the orthogonal modulation circuit 4 of FIG. 1. 21 is a normal video signal input terminal, 22 is an amplitude modulator, 23 is a first filter, 24 is an oscillator, 25 is a phase shifter, 26 is a multiple signal input terminal, 27 is a positive modulation circuit, 2
8 is a negative modulation circuit, 29 is a selection circuit, 30 is a second filter, 31 is an adder, and 32 is a composite television signal output terminal. A carrier wave P1 obtained from an oscillator 24 is amplitude-modulated by an amplitude modulator 22 using a normal video signal inputted from a normal video signal input terminal 21. The obtained amplitude modulated wave is band-limited by the first filter 23 to form a residual sideband, and then added to the adder 29. Carrier wave P1 obtained from oscillator 24
The carrier wave P2 is obtained by shifting the phase of the signal by 90 degrees by the phase shifter 25. With the multiplexed signal input from the multiplexed signal input terminal 26, the carrier wave P2 is subjected to positive modulation in both side band amplitude by the positive modulation circuit 27, and negatively modulated by the negative modulation circuit 28. Note that the phase shift direction of the phase shifter 25 may be fixed, but it may also be changed, for example, every -horizontal scanning period. The modulated signals are alternately selected by the selection circuit 29 for each horizontal period or for each field. The timing necessary for this control is supplied from the timing control circuit 5 shown in FIG. In order to synchronize with the receiving side, a control signal may be inserted, for example, during the vertical retrace period. The selected signal is band-limited by a second filter 30 and then added to an adder 31 . The output of adder 31 becomes a composite television signal. That is, the multiplexed signal is superimposed and synthesized on the normal video signal to form a television signal. Note that due to the frequency characteristics of the second filter 28, the multiplexed signal becomes a signal having a band as shown in FIG. 4 (bl).

次にタイミング制御回路5は、水平垂直同期信号等を出
力し各回路を制御する。
Next, the timing control circuit 5 outputs horizontal and vertical synchronization signals and controls each circuit.

画面両端の画像は一般的に上下方向の相関が多いと考え
られるので、−ライン毎にまたは1フイールド毎に変調
を反転すると全体的な相関が減りよいと考えられる。つ
まり受像機側で多重信号によるクロストークがある場合
多重した画像の形が見えると目につき易いが、形を崩し
てあれば、目につき難くなると考えられるのでなるべく
相関を無くしておくのがよい。正変調と負変調を交互に
操り返せばクロストークによる出力は短い空間周波数或
は時間で反転し目の特性により目につきにくくなると考
えられる。
Since images at both ends of the screen are generally considered to have a lot of correlation in the vertical direction, it is considered that the overall correlation can be reduced by inverting the modulation every -line or every field. In other words, if there is crosstalk due to multiplexed signals on the receiver side, it will be easy to notice if the shape of the multiplexed image is visible, but if the shape is distorted, it will be difficult to notice, so it is better to eliminate the correlation as much as possible. It is thought that if positive modulation and negative modulation are alternately manipulated, the output due to crosstalk will be reversed in a short spatial frequency or time, making it less noticeable due to the characteristics of the eye.

次に本発明の一実施例における受信側のテレビジョン信
号受信装置について説明する。第6図は、本発明の一実
施例に関わる受信側のテレビジョン信号受信装置を説明
するブロック図である。61は受信復調回路、62は時
間軸圧縮回路1.63は時間軸圧縮回路2.64はワイ
ドアスペクト合成回路、65は表示器、66は復元用タ
イミング制御回路である。40は伝送合成テレビジョン
信号、41は復調通常映像信号、42は復元画像両端映
像信号、43は復元ワイドアスペクト映像信号、44は
復元左右位置制御信号である。
Next, a television signal receiving device on the receiving side in an embodiment of the present invention will be described. FIG. 6 is a block diagram illustrating a television signal receiving device on the receiving side according to an embodiment of the present invention. 61 is a reception demodulation circuit, 62 is a time axis compression circuit 1, 63 is a time axis compression circuit 2, 64 is a wide aspect synthesis circuit, 65 is a display, and 66 is a restoration timing control circuit. 40 is a transmission synthesis television signal, 41 is a demodulated normal video signal, 42 is a restored image both-end video signal, 43 is a restored wide aspect video signal, and 44 is a restored left and right position control signal.

本発明の一実施例として合成され伝送された伝送テレビ
ジョン信号40は受信復調回路61で直交検波され復調
通常映像信号41と復調多重信号として復元画面両端映
像信号42を得る。復調通常映像信号41は送信側とは
逆に415に時間軸を圧縮し復元画面両端映像信号42
は1/4に圧縮して合成し、復元ワイドアスペクト映像
信号43となり、例えばアスペクト比5:4のCRTを
用いた表示器65でテレビジョン画面として表示する。
As an embodiment of the present invention, a transmitted television signal 40 synthesized and transmitted is subjected to orthogonal detection in a reception demodulation circuit 61 to obtain a demodulated normal video signal 41 and a restored screen both-end video signal 42 as a demodulated multiplexed signal. The demodulated normal video signal 41 compresses the time axis to 415, contrary to the transmission side, and restores the restored screen both ends video signal 42
are compressed to 1/4 and synthesized, resulting in a restored wide aspect video signal 43, which is displayed as a television screen on a display 65 using, for example, a CRT with an aspect ratio of 5:4.

以下各ブロック別に詳細に説明する。Each block will be explained in detail below.

まず第6図の受信復調回路61について説明する。以下
では地上放送の場合を例にとる。本発明の一実施例にお
ける受信側での多重信号復調方法について説明する。チ
ューナの出力である映像中間周波帯の信号を第7図(a
)のように映像ベースバンド信号が両側波帯となるよう
にフィルタで帯域制限する。これをベクトル表示すると
第7図(blのようになる。ここで1)は映像ベースバ
ンド信号の映像搬送波、I2は多重信号の搬送波で1)
と同一周波数でかつ位相が90度異なる搬送波である。
First, the reception demodulation circuit 61 shown in FIG. 6 will be explained. In the following, we will take the case of terrestrial broadcasting as an example. A multiplex signal demodulation method on the receiving side in an embodiment of the present invention will be described. The video intermediate frequency band signal output from the tuner is shown in Figure 7 (a).
), the video baseband signal is band-limited using a filter so that it becomes a double-sided band. If this is expressed as a vector, it will look like Figure 7 (bl).Here, 1) is the video carrier wave of the video baseband signal, and I2 is the carrier wave of the multiplexed signal.1)
This is a carrier wave that has the same frequency as , but a phase difference of 90 degrees.

多重信号は搬送波■2を中心に考えると残留側波帯とな
っているので、上下側波帯はベクトルbu、bβとなり
直交ベクトルに分解するとベクトルbl、b2となる。
Since the multiplexed signal has residual sidebands when considering the carrier wave 2 as the center, the upper and lower sidebands become vectors bu and bβ, and when decomposed into orthogonal vectors, they become vectors bl and b2.

また映像ベースバンド信号はフィルタによりほぼ両側帯
波となるので、上下側波帯をベクトルau、aAとすれ
ばそれらの合成ベクトルはalとなり、ベクトル■2と
直交する成分だけとなる。即ち搬送波I2で同期検波す
るとベクトルal、bl成分による直交歪は発生せず、
多重信号成分のみを復調することができる。次に主信号
の復調について述べる。主信号は映像中間周波帯の信号
を第7図(C1のように制限する。即ち映像搬送波■1
のところで振幅が6dB減衰し、映像搬送波■1に関し
てほぼ対称な振幅特性を有するようなナイキストフィル
タ特性となっている。一方第4図(blで示したように
、多重信号を前記受信機の映像中間周波フィルタの周波
数特性とは逆の特性を持つフィルタで帯域制限すれば、
第7図(C)の斜線部分の多重信号成分はほぼ両側波帯
となる。これをベクトル表示すると第7図Tdlのよう
になる。映像ベースバンド信号は搬送波IIを中心に考
えると残留側波帯となっているので、上下側帯波はベク
トルau、ベクトルallとなり直交ベクトルに分解す
るとベクトルal、ベクトルa2となる。また多重信号
はほぼ両側波帯となっているので、上下側波帯をベクト
ルbu。
Furthermore, since the video baseband signal becomes substantially double-sided band waves due to the filter, if the upper and lower side bands are vectors au and aA, their combined vector is al, and only the component orthogonal to vector 2 is present. That is, when synchronously detecting the carrier wave I2, orthogonal distortion due to the vector al and bl components does not occur,
Only multiplexed signal components can be demodulated. Next, we will discuss the demodulation of the main signal. The main signal limits the video intermediate frequency band signal as shown in Figure 7 (C1. That is, the video carrier ■1
At this point, the amplitude is attenuated by 6 dB, resulting in a Nyquist filter characteristic having almost symmetrical amplitude characteristics with respect to the video carrier wave (1). On the other hand, as shown in FIG. 4 (bl), if the multiplexed signal is band-limited by a filter with a frequency characteristic opposite to that of the video intermediate frequency filter of the receiver,
The multiplexed signal components shown in the shaded area in FIG. 7(C) are substantially double-sided bands. When this is expressed as a vector, it becomes as shown in FIG. 7 Tdl. Since the video baseband signal has residual sidebands when considering carrier wave II as the center, the upper and lower sidebands become vector au and vector all, and when decomposed into orthogonal vectors, they become vector al and vector a2. Also, since the multiplexed signal has almost both sidebands, the upper and lower sidebands are vector bu.

ベクトルb!とすればそれらの合成ベクトルはb2とな
り、ベクトル■1と直交する成分だけとなる。即ち搬送
波■1で同期検波するとベクトルa2.b2成分による
直交歪は発生せず、映像同期検波を行っている現行のテ
レビジョン受信機に対する多重信号による妨害は原理的
に起こらない。
Vector b! If so, their combined vector will be b2, which will contain only the component orthogonal to vector 1. That is, when carrier wave 1 is used for synchronous detection, vector a2. Orthogonal distortion due to the b2 component does not occur, and interference due to multiplexed signals to current television receivers that perform video synchronous detection does not occur in principle.

第7図(e)は第6図に示す多重信号を復調するテレビ
ジョン受信機の受信復調回路61のブロック図の一例で
ある。131はアンテナ、132はチューナ、133は
映像中間周波フィルタ、134は映像検波器、135は
搬送波再生回路、137はフィルタ、138は位相器、
139は正復調回路、140は負復調回路、141は復
調選択回路である。送信側から送出された信号はアンテ
ナ131で受信され、チューナ132で中間周波数帯に
周波数変換され、映像中間周波フィルタで帯域制限され
る。帯域制限された信号は、映像検波器134、搬送波
再生回路135に供給される。
FIG. 7(e) is an example of a block diagram of a reception demodulation circuit 61 of a television receiver that demodulates the multiplexed signal shown in FIG. 6. 131 is an antenna, 132 is a tuner, 133 is a video intermediate frequency filter, 134 is a video detector, 135 is a carrier regeneration circuit, 137 is a filter, 138 is a phase shifter,
139 is a positive demodulation circuit, 140 is a negative demodulation circuit, and 141 is a demodulation selection circuit. A signal sent from the transmitting side is received by an antenna 131, frequency-converted to an intermediate frequency band by a tuner 132, and band-limited by a video intermediate frequency filter. The band-limited signal is supplied to a video detector 134 and a carrier recovery circuit 135.

搬送波再生回路135では、同期検波用の搬送波■1を
再生する。多重信号の重畳されていない帰線期間を基準
として搬送波を正確に再生することができる。帯域制限
された信号は、搬送波■1で映像検波器134において
検波され、映像ベースバンド信号となる。またチューナ
132の出力はフィルタ137で第7図(alのように
帯域制限する。
The carrier wave regeneration circuit 135 regenerates carrier wave 1 for synchronous detection. The carrier wave can be accurately reproduced based on the retrace period in which multiplexed signals are not superimposed. The band-limited signal is detected by the video detector 134 using the carrier wave 1, and becomes a video baseband signal. Further, the output of the tuner 132 is band-limited by a filter 137 as shown in FIG. 7 (al).

搬送波再生回路135から得られる搬送波■1を位相器
138により90度位相シフトさせた搬送波I2で、帯
域制限された信号を正復調回路139と負復調回路14
0において同期検波する。
A carrier wave I2 obtained by shifting the phase of the carrier wave ■1 obtained from the carrier wave regeneration circuit 135 by 90 degrees by a phase shifter 138 is used to convert the band-limited signal to the positive demodulation circuit 139 and the negative demodulation circuit 14.
Synchronous detection is performed at 0.

検波出力を復調選択回路141で送信側に応じて水平期
間毎またはフィールド毎に交互に選択し復調多重信号と
して復元画面両端映像信号42が得られる。必要なタイ
ミング制御信号は第6図の復元用タイミング制御回路6
6から供給される。
The demodulation selection circuit 141 selects the detection output alternately for each horizontal period or each field depending on the transmitting side, and a restored screen both-ends video signal 42 is obtained as a demodulated multiplexed signal. The necessary timing control signal is provided by the restoration timing control circuit 6 shown in FIG.
Supplied from 6.

以上述べたように多重信号復調用の受信復調回路61で
は、通常映像信号(映像ベースバンド信号)だけでなく
、フィルタリング及び映像搬送波I2で同期検波するこ
とにより、多重信号も直交歪なく取り出すことができる
As described above, in the reception demodulation circuit 61 for multiplexed signal demodulation, not only the normal video signal (video baseband signal) but also the multiplexed signal can be extracted without orthogonal distortion by filtering and synchronous detection using the video carrier wave I2. can.

なお、現行のPLL同期検波方式及び搬送波再生方式受
信復調回路では、前記と同様に映像搬送波1)で同期検
波することにより、多重信号はほぼ打ち消されるので、
多重信号による妨害は殆ど発生しない。しかしながら旧
式の包路線検波方式受信復調回路では、前記のようにベ
クトルを分離しないため主信号と多重信号の間でクロス
トークを生じ、画面に妨害となって現れる。但し本発明
では目につ力)ない。
In addition, in the current PLL synchronous detection system and carrier wave regeneration system receiving and demodulating circuit, multiplexed signals are almost canceled by performing synchronous detection using the video carrier wave 1) as described above.
Interference due to multiplexed signals hardly occurs. However, in the old-style envelope detection type receiving and demodulating circuit, since the vectors are not separated as described above, crosstalk occurs between the main signal and the multiplexed signal, which appears as interference on the screen. However, in the present invention, there is no visible force.

次に時間軸圧縮回路162、時間軸圧縮回路263、ワ
イドアスペクト合成回路64について説明する。時間軸
圧縮回路162の入力画像は、第3図fb)であり、時
間軸圧縮回路263の入力は第3図(C)であり、ワイ
ドアスペクト合成回路64の出力は第3図(a)となり
復元ワイドアスペクト映像信号43である。第2図、第
3図で示した送信側と逆の操作を行って復元する。復元
された信号は通常より横長の画面として表示される。
Next, the time axis compression circuit 162, time axis compression circuit 263, and wide aspect synthesis circuit 64 will be explained. The input image of the time axis compression circuit 162 is as shown in FIG. 3(fb), the input of the time axis compression circuit 263 is as shown in FIG. 3(C), and the output of the wide aspect synthesis circuit 64 is as shown in FIG. 3(a). This is a restored wide aspect video signal 43. Restoration is performed by performing the operation opposite to that on the sending side shown in FIGS. 2 and 3. The restored signal is displayed on a screen that is wider than usual.

両側に付加する信号の左右の幅は必要に応じて、前記し
た様に例えば垂直帰線期間に重畳された復元左右位置制
御信号44を使い制御することができるのは言うまでも
ない。
It goes without saying that the left and right widths of the signals added to both sides can be controlled as necessary using, for example, the restored left and right position control signal 44 superimposed on the vertical retrace period as described above.

次に復元用タイミング制御回路66は水平垂直同期信号
などを出力し各回路のタイミングを制御する。
Next, the restoration timing control circuit 66 outputs horizontal and vertical synchronization signals and controls the timing of each circuit.

発明の効果 以上の説明から明らかなように、残留側波帯振幅変調さ
れたテレビジョン信号の帯域内に、画面アスペクト比を
横長とするだめの画面両側の映像信号を重畳させ、重畳
信号の正変調と負変調を交互に反転することにより、旧
式の包路線検波型テレビジョン受信機で受信した場合も
妨害が目につかず両立性のあるテレビジョン信号を得る
ことができる。また専用の受信機では多重した信号を直
交歪なく取り出しアスペクト比の拡大を可能としたテレ
ビジョンシステムを提供し、臨場感と迫力のある画面を
楽しむことができ、電波資源の有効利用という観点から
しても非常に効果がある。
Effects of the Invention As is clear from the above explanation, by superimposing video signals on both sides of the screen with a horizontally elongated screen aspect ratio within the band of a television signal subjected to vestigial sideband amplitude modulation, the correctness of the superimposed signal is By alternately inverting modulation and negative modulation, it is possible to obtain a compatible television signal with no visible interference even when received by an older envelope detection type television receiver. In addition, we provide a television system that allows a dedicated receiver to extract multiplexed signals without orthogonal distortion and expand the aspect ratio, allowing you to enjoy a realistic and powerful screen, and from the perspective of effective use of radio wave resources. However, it is very effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における送信側のテレビジョ
ン信号送信装置を示すブロック図、第2図はワイドアス
ペクト映像信号を説明する波形図、第3図はワイドアス
ペクト映像信号の処理を説明する画像図、第4図は残留
側波帯振幅変調されたテレビジョン信号の説明の為のス
ペクトル図、第5図は直交変調回路のブロック図、第6
図は本発明の一実施例に関わる受信側のテレビジョン信
号受信装置を説明するブロック図、第7図は受信復調回
路のスペクトル図とベクトル図とブロック図である。 1・・・・・・時間軸映像信号切り出し回路、2・・・
・・・時間軸伸長回路1.3・・・・・・時間軸伸長回
路2.4・・・・・・直交変調回路、61・・・・・・
受信復調回路、62・・・・・・時間軸圧縮回路1.6
3・・・・・・時間軸圧縮回路2.64・・・・・・ワ
イドアスペクト合成回路。 代理人の氏名 弁理士 中尾敏男 はか1名第2図 第3図 第4図      Pl−映傳軽沢 S−責芦歇乏亥 う    島−Nは似 ■ 第7図     12−1送7 C−一一色瞥遺8欠 S−一一昔一を送氷 す−昔P−微迭濃
FIG. 1 is a block diagram showing a television signal transmitting device on the transmitting side in an embodiment of the present invention, FIG. 2 is a waveform diagram explaining a wide aspect video signal, and FIG. 3 is a diagram explaining processing of a wide aspect video signal. 4 is a spectrum diagram for explaining a television signal subjected to residual sideband amplitude modulation. FIG. 5 is a block diagram of a quadrature modulation circuit.
FIG. 7 is a block diagram illustrating a television signal receiving apparatus on the receiving side according to an embodiment of the present invention, and FIG. 7 is a spectral diagram, a vector diagram, and a block diagram of a reception demodulation circuit. 1... Time axis video signal extraction circuit, 2...
... Time axis expansion circuit 1.3... Time axis expansion circuit 2.4... Quadrature modulation circuit, 61...
Reception demodulation circuit, 62...Time axis compression circuit 1.6
3...Time axis compression circuit 2.64...Wide aspect synthesis circuit. Name of agent Patent attorney Toshio Nakao 1 person Figure 2 Figure 3 Figure 4 Pl-Eiden Karusawa S-Responsibility and N is similar■ Figure 7 12-1 Sent 7 C -Ichishikibetsu 8 Missing S-Eleven Ago Ichi is sent to ice-Ago P-Mitsuenno

Claims (2)

【特許請求の範囲】[Claims] (1)時間軸映像信号切り出し回路と時間軸伸長回路と
直交変調回路を具備し、残留側波帯振幅変調されたテレ
ビジョン信号の帯域内に前記搬送波と同一な周波数でか
つ位相が±90度異なる搬送波を前記テレビジョン信号
とは異なる多重信号で変調した信号を前記直交変調回路
で生成し、伝送し、前記多重信号は、前記時間軸映像信
号切り出し回路と時間軸伸長回路により作成した画面ア
スペクト比を横長とするための画面両側の映像信号であ
り、前記直交変調回路には正変調回路と負変調回路を具
備し水平走査線毎にまたはフィールド毎に正変調と負変
調を交互に行うことを特徴とするテレビジョン信号送信
装置。
(1) Equipped with a time-axis video signal extraction circuit, a time-axis expansion circuit, and an orthogonal modulation circuit, which has the same frequency as the carrier wave and a phase of ±90 degrees within the band of the residual sideband amplitude-modulated television signal. The orthogonal modulation circuit generates and transmits a signal in which a different carrier wave is modulated with a multiplexed signal different from the television signal, and the multiplexed signal has a screen aspect ratio created by the time-axis video signal extraction circuit and the time-axis expansion circuit. It is a video signal on both sides of the screen to make the ratio horizontally elongated, and the orthogonal modulation circuit is provided with a positive modulation circuit and a negative modulation circuit, and positive modulation and negative modulation are performed alternately for each horizontal scanning line or for each field. A television signal transmitting device characterized by:
(2)直交変調回路にはナイキストフィルタを具備し、
多重信号で変調した信号は前記多重信号で両側波帯振幅
変調し搬送波周波数で半分に減衰し、前記搬送波周波数
に関して対称な振幅特性を有する前記ナイキストフィル
タにより残留側波帯にし帰線期間には多重しない信号と
することを特徴とする特許請求の範囲第(1)項記載の
テレビジョン信号送信装置。
(2) The orthogonal modulation circuit is equipped with a Nyquist filter,
The signal modulated by the multiplexed signal is amplitude-modulated in both sidebands by the multiplexed signal, attenuated by half at the carrier frequency, and made into a vestigial sideband by the Nyquist filter having amplitude characteristics symmetrical with respect to the carrier frequency. The television signal transmitting apparatus according to claim 1, wherein the television signal transmitting apparatus is characterized in that the signal is a signal that does not correspond to a single signal.
JP62074712A 1987-03-27 1987-03-27 Television signal transmitter Pending JPS63240281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62074712A JPS63240281A (en) 1987-03-27 1987-03-27 Television signal transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62074712A JPS63240281A (en) 1987-03-27 1987-03-27 Television signal transmitter

Publications (1)

Publication Number Publication Date
JPS63240281A true JPS63240281A (en) 1988-10-05

Family

ID=13555108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62074712A Pending JPS63240281A (en) 1987-03-27 1987-03-27 Television signal transmitter

Country Status (1)

Country Link
JP (1) JPS63240281A (en)

Similar Documents

Publication Publication Date Title
JPH0350476B2 (en)
JPS63240281A (en) Television signal transmitter
JPS6310986A (en) Transmission method for television signal
JPS63240279A (en) Television signal processing method
JPS63240282A (en) Television signal receiver
JP2658021B2 (en) Television signal processing method
JPS63240277A (en) Television signal transmitter
JPS63240278A (en) Television signal receiver
KR910007204B1 (en) Television signal processing apparatus
JP2506957B2 (en) Multiplex television signal processor
JP2529217B2 (en) Television signal decoding device
JPH0759072B2 (en) Television signal processing device
JPH01168182A (en) Pattern magnification television signal processor
JPS6336693A (en) Television signal synthesizer
JPH0744695B2 (en) High-definition television signal processing method
JPS6336681A (en) Television signal decoder
JPH01303986A (en) Television signal processing method
JPH0759073B2 (en) Television signal receiver
JPH0350475B2 (en)
JPS63311897A (en) Television system
JPH02162884A (en) Television signal processor
JPH0817482B2 (en) Television signal processor
JPH01168184A (en) Pattern magnification television signal receiver
JPH01168189A (en) Television signal synthesizer
JPS6336694A (en) Television signal processor