JPS63239410A - Automatic focusing device - Google Patents

Automatic focusing device

Info

Publication number
JPS63239410A
JPS63239410A JP7146687A JP7146687A JPS63239410A JP S63239410 A JPS63239410 A JP S63239410A JP 7146687 A JP7146687 A JP 7146687A JP 7146687 A JP7146687 A JP 7146687A JP S63239410 A JPS63239410 A JP S63239410A
Authority
JP
Japan
Prior art keywords
light
holder
light receiving
receiving element
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7146687A
Other languages
Japanese (ja)
Inventor
Isao Kito
鬼頭 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7146687A priority Critical patent/JPS63239410A/en
Publication of JPS63239410A publication Critical patent/JPS63239410A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To correct the position shift of a light reception spot due to temperature variation and to perform accurate focusing over the entire temperature range by using a temperature sensing member as part of the holding member for the light reception part of an automatic focusing device, and shifting the position of the optical axis of the light reception part according to the temperature variation. CONSTITUTION:A light emitting element 2 is arranged opposite the projection lens 1 of a home video camera, a light receiving element 4 is arranged opposite a light reception lens 3, and the elements 2 and 4 are connected to an automatic focusing circuit 11. This light receiving element 4 is fitted to a substrate 15 fixed to a substrate holder 13 and the fitting position of the holder 13 is adjusted by an adjusting screw 12. Further, a bimetal 17 is fixed to the holder 13 with a screw 19 and an adjusting screw 14 is rotated to move and align the bimetal 17 coupled with the holder 13 with the optical axis of the lens 3 at room temper ature. Then the bimetal 17 corrects an error in distance measurement caused by the extension or contraction of a subject distance measuring mechanism part due to the temperature variation to stabilize the operation of the circuit 11.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ビデオカメラrjどに用0て好適な目入勘合
焦装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an eye-based focusing device suitable for use in video cameras, etc.

? 〔従来の技術〕 家庭用−ビデオカメラにおいては、その操作性を高める
ために、目動的に被写体に合焦する手段が設けられてい
るものが多くなり九。かかる手段の一例としては、被写
体までの距*1−測定して、合焦用レンズの合焦位置か
らのずれ′t″慣出し、この検出結果によりモータ等に
よp合焦用レンズを駆動し合焦位置まで、合焦用レンズ
を移動する。
? [Prior Art] In order to improve the operability of home-use video cameras, many of them are equipped with means for visually focusing on a subject. An example of such means is to measure the distance *1 to the subject, adjust the deviation 't'' of the focusing lens from the in-focus position, and drive the p focusing lens using a motor or the like based on this detection result. and move the focusing lens to the in-focus position.

ところで被写体までの距離を測定する手段としては、友
とえば特公昭45−32747号公報や特公昭46−2
850号公報に開示されているように、光を利用でる方
法が知られている。fなわち、かかる手段tS、投射レ
ンズと発光素子とからなる発元部と受光レンズと受光素
子からなる受光部とを備えて町り発元部から被写体Kj
tを照射して被写体からの反射光を受光部で受光する工
5rL、受光素子上での受光状態KJ、って被写体まで
の距11!を測定でるものである。この場合1党元素子
での反射光の受光状態に応じて合焦用レンズを移動させ
るのであるが、被写体までの距@に応じて受元素子での
反射光の受光状態が異なり、この受光状態が、特定の状
態となるように発光部を動かしく特公昭45−5274
7号公報)、あろ(・は、受光sima−t、c特公昭
46−28500号公報)、Cれらの動きに応じて合焦
用レンズを移動させる工5にしている。し九がって、被
写体かいずれの距離にあっても、こrに合焦しt状態に
合焦用レンズが位置づけられたとぎには、受光素子での
受光状態は、上記の同じ特定状態にある、 受光素子は、2分割になっており、この特定状態では、
2分割Vr、なっている受光素子の各部に受ける受光ス
ポットの元素が均等になろ状態である、通常、受光スポ
ットは、円状である九め第5図に示て如く、2分割され
九各受光iilに受光スポットが均等になろ工5な状態
となる。
By the way, as a means of measuring the distance to the subject, there are some methods such as those disclosed in Japanese Patent Publication No. 45-32747 and Japanese Patent Publication No. 46-2.
A method using light is known, as disclosed in Japanese Patent No. 850. In other words, such a means tS is equipped with a light emitting part made up of a projection lens and a light emitting element, and a light receiving part made up of a light receiving lens and a light receiving element, and a subject Kj is emitted from the light emitting part.
The distance to the subject is 5rL, the light receiving state KJ on the light receiving element, and the distance to the subject is 11! It is something that can be measured. In this case, the focusing lens is moved according to the state of reception of the reflected light by the first party element, but the state of reception of the reflected light by the receiving element differs depending on the distance to the subject. Special Publication No. 45-5274 that moves the light emitting part so that the state becomes a specific state
The focusing lens is moved in accordance with the movements of the following: Japanese Patent Publication No. 7 (Japanese Patent Publication No. 46-28500); Therefore, no matter what distance the subject is, when the focusing lens is positioned in the t state to focus on this object, the light receiving state at the light receiving element will be in the same specific state as above. The light-receiving element in is divided into two parts, and in this particular state,
The element of the light receiving spot received by each part of the light receiving element is divided into two parts Vr, and the elements of the light receiving spot are equal.Normally, the light receiving spot is circular.As shown in Fig. 5, the light receiving spot is divided into two parts. The light-receiving spots become even on the light-receiving spots, resulting in a rough state.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、以下の点について配慮かなされていな
かりた、てなわちビテオカメラ等の使用環境、特に、夏
の直射口元のあたる所<aa″c以上)あるいは、冬の
野外での使用(0′C以下)K於いて、目動合焦装置に
よる被写体距離の測距誤差を生じることの配慮がされて
いない。こり測距誤差は。
The above conventional technology does not take into account the following points: the environment in which the video camera is used, especially in areas exposed to direct sunlight in summer <aa''c or higher) or outdoor use in winter ( (below 0'C) K, no consideration is given to the occurrence of distance measurement errors in subject distance due to the eye movement focusing device.Distance measurement errors.

撮影レンズの絞りが小さく絞られている場合は撮影レン
ズの被写体深度が深くなっており、測距誤差があっても
、ある程度被写体に合焦した状態を保するが、絞り込ま
れていない状態では、被写界深度が浅くなっているため
測距誤差の生じた外被写体に合焦しな(なる。このため
、高温度又は。
When the aperture of the photographic lens is narrowed down, the depth of field of the photographic lens is deep, and even if there is a distance measurement error, the subject remains in focus to some extent, but when the aperture is not apertured, Because the depth of field is shallow, it is difficult to focus on the outside subject, which causes a distance measurement error.

低温での使用に於いて目動合焦装置を作wJさせた状態
での撮影に間@がありた。
When using the camera at low temperatures, there was a delay in taking pictures with the eye movement focusing device activated.

上記問題点の原因に、自動含焦装#、全構成する構成部
品の温度変化による伸縮によって生ずる。
The above problem is caused by the expansion and contraction of all constituent parts of the autofocus # due to temperature changes.

特に軽量化、低コスト化のために構成部品をプラスチ7
り材にて構成し九時、プラスチック材の線膨張係数は、
金属のそれに比較して約2倍大きい几め、温度変化に対
して大さく伸縮しこれが原因となりて測距誤差をてろ。
In particular, plastic parts are used to reduce weight and cost.
The coefficient of linear expansion of the plastic material is
The diameter is about twice as large as that of metal, and it expands and contracts greatly in response to temperature changes, which can cause distance measurement errors.

第4図に被写体測距部の概略内を示す。1は投射レンズ
、2は発光素子。
FIG. 4 schematically shows the inside of the object distance measuring section. 1 is a projection lens, and 2 is a light emitting element.

5は受光レンズ、4は受光面が二つに分かit fi 
2分割受元素子である。今距離りの被写体を測距し、被
写体に合焦しているとする。この状態では、前記2分割
受元素子に受光する被写体からの反射光の光量が均等に
入射しt状g1丁なわち第5囚に示で如くの状態にある
。この状態で、温度変化により受光部、投射部壽を保持
している保持部材が伸縮する。このため投射レンズと受
光レンズとの距@C基線長り、受光レンズと受光素子と
の距離、投射レンズと発光素子との距離f及び受光素子
と発光素子との距離mが伸縮″V′る。例えば、投射レ
ンズ元軸を基準として発光素子と受光素子との距離mが
、温度変化により6m伸びたとする、この状態では、受
光スポットの受光素子へ入る位置は、一定であるのに受
光素子がΔ?Pl−移動するため。
5 is a light-receiving lens, 4 is a light-receiving surface divided into two parts.
It is a two-part receiving element. Assume that you are currently measuring the distance to a subject and are focusing on the subject. In this state, the amount of reflected light from the object received by the two-split receiving element is uniformly incident on the two-part receiving element, resulting in a T-shape g1, ie, a state as shown in the fifth row. In this state, the holding member that holds the light receiving section and the projection section expands and contracts due to temperature changes. Therefore, the distance between the projection lens and the light-receiving lens @ C base line length, the distance between the light-receiving lens and the light-receiving element, the distance f between the projection lens and the light-emitting element, and the distance m between the light-receiving element and the light-emitting element expand and contract ``V'. For example, suppose that the distance m between the light emitting element and the light receiving element with respect to the original axis of the projection lens increases by 6 m due to temperature change.In this state, although the position of the light receiving spot entering the light receiving element remains constant, Because Δ?Pl− moves.

第6図に示て如(受光スポットが2分割受光素子に光量
が均等に入らな(なる。即ち、受光スポットは、受光素
子面B工り、受光素子面Aの万によジ多く受光される九
め、受光素子面AとBに当たる元素に差が生ずる。この
ため被写体合焦しているにもか\わらす、非合焦状態と
回路で判定し、前記第5図に示す如くのスポット状態に
なる工5に測距動作する九め、被写体との合焦状態がく
ずれ、測距誤差を生ずるe、P1様に、基線長りが温度
変化により伸縮し几場合も、上記と同様の現象が生ずる
。次に受光レンズと受光素子との距離が、Δ]伸び7t
s合を考える。第7図に示で如(、C−工基準状態での
受光素子位置、C!&工、温度変化により基準状態から
Δ)だけ伸びた状態を示で。受光スポットの主光線の方
向は不変であるたぬ、C°′1とC!とでは受光スポッ
トが変化する、 第3囚に各位置での受光スポット状態を示−f。
As shown in Fig. 6, the amount of light does not enter the two-split light-receiving element equally. Finally, there is a difference in the elements that hit the light-receiving element surfaces A and B. Therefore, even though the subject is in focus, the circuit determines that it is out of focus, as shown in Figure 5 above. In step 5, when the distance measurement is performed in the spot state, the focus state with the subject is lost and a distance measurement error occurs.If the base line length expands or contracts due to temperature changes, as in P1, the same as above. The following phenomenon occurs.Next, the distance between the light-receiving lens and the light-receiving element increases by 7t.
Consider the s combination. As shown in FIG. 7, the position of the light receiving element in the reference state is shown as being extended by Δ from the reference state due to temperature change. The direction of the chief ray of the receiving spot remains unchanged, C°′1 and C! The light receiving spot changes in and, and the light receiving spot status at each position is shown in the third column.-f.

C′1 の位置では、合焦状態にあるがC!の位置では
受光素子面Aの万[より多(受光さjろ。従ってC1の
状態では非合焦状態と回路で判定し、被写体にピントが
合っていたにもかかわらす測距誤差を生ずる方向に移動
する、 上記のように、被写体の距離を測距する測距部を構成す
る部材が温度変化により、その位置が変化するtめ1合
焦動作に不都合を生じる問題点があっte。
At position C'1, it is in focus, but C! At the position , the light receiving element surface A is more than 10,000 (light receiving point j). Therefore, in the state of C1, the circuit determines that it is out of focus, and the direction that causes a distance measurement error even though the subject is in focus is determined by the circuit. As mentioned above, there is a problem in that the position of the members constituting the distance measuring section that measures the distance to the subject changes due to temperature changes, which causes inconvenience in the focusing operation.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、温度変化に工り測距部構成部材が伸縮して
も、合焦判定の状態が変化しないように、2分割受光素
子で受ける受光スポットの光量を、各受光素子面で均等
に保つようにすることにより達成される、こrを達成で
るために、受光部の保rfs材の一部分に温度感応部材
例えばバイメタルを使用し温度変化に応じて受光部1−
の位置全変化させる構成とした。
The above purpose is to equalize the light intensity of the light receiving spot received by the two-split light receiving element on each light receiving element surface so that the state of focus judgment does not change even if the distance measuring unit components expand and contract due to temperature changes. In order to achieve this, a temperature-sensitive member such as a bimetal is used as a part of the RFS material of the light receiving part, and the light receiving part 1-
The configuration is such that the entire position of the sensor can be changed.

〔作用〕[Effect]

受尤怜゛・を保持する保持部が受光軸及び投射元軸と直
角金なて方間に移動するようにバイメタルを構成するこ
とにより、温度変化による受光スポットの位置すt′L
を補正するよう動作する。それによって、災用土全温度
範囲に?いて正確にピントが合う。
By configuring the bimetal so that the holding part that holds the receiver moves in a direction perpendicular to the light receiving axis and the projection source axis, the position of the light receiving spot due to temperature changes can be adjusted.
It operates to correct the By that, the entire temperature range of the disaster site? The focus is accurate.

〔実施例〕〔Example〕

以下、本発明の一実施例を!1因により説明する。 Below is an example of the present invention! This will be explained based on one factor.

第1[/&工、本発明による自動合焦装置の一実施例を
示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an embodiment of an automatic focusing device according to the present invention.

1は投射レンズ、2は発光素子、5は受光レンズ、4は
受光素子であジ、これらで被写体測距部を構成している
。5は平面板、6は平面板5につIIがっているレバー
、7にレバー61C設置し定カムフtロア、8はフォー
カス環端面に設けtカム面、9はカムフォロア71にカ
ム面8に当接させるtめの弾性部材である。これらKよ
り合焦機構を構成する、回路部は、発光素子2の駆動受
光素子4での受ft、光量の状態により合焦状態を判定
しAFモータ10t?駆動制御する目動合焦回路11で
構成される。AFモータ10に工9フォーカス’1J1
21に設けたギヤ201i−回動させ、合焦用レンズ2
2を保持している)を−カスJl121が矢印A7)回
に移動し。
1 is a projection lens, 2 is a light emitting element, 5 is a light receiving lens, and 4 is a light receiving element, and these constitute a subject distance measuring section. 5 is a flat plate, 6 is a lever connected to the flat plate 5, 7 is a lever 61C installed on a constant cam foot lower, 8 is a cam surface installed on the end face of the focus ring, 9 is a cam follower 71 on a cam surface 8. This is the tth elastic member that is brought into contact. The circuit section that constitutes the focusing mechanism from these K determines the focusing state based on the state of the amount of light received by the driving light receiving element 4 of the light emitting element 2, and the AF motor 10t? It is composed of an eye movement focusing circuit 11 that performs drive control. AF motor 10 to 9 focus '1J1
The gear 201i provided in 21 rotates and the focusing lens 2
2) is moved to -Cas Jl121 to arrow A7) times.

被写体にピントを合わせる。Focus on the subject.

第2図は、被写体測距部と合焦機構の詳細図である。受
光素子4は、基板15の上にノ・ンダ付けされており、
基板15は、基板ホルダー16に基板固定ネジ16で固
定されている。基板ホルダー15!工、組立時の取付位
置のバラツキを補正する友め調整ネジ12で調整できる
ようKなりている。趣整ネジ部の詳細構造を第5−にて
説明する。
FIG. 2 is a detailed diagram of the object distance measuring section and the focusing mechanism. The light receiving element 4 is soldered onto the substrate 15,
The board 15 is fixed to a board holder 16 with board fixing screws 16. Board holder 15! It is designed so that it can be adjusted using a companion adjustment screw 12 that corrects for variations in mounting position during assembly. The detailed structure of the adjustment screw portion will be explained in Section 5-.

基板ホルダー15は、回転ネジ18によりケースに取付
けられている。−万調整ネジ14は、gmuネジホルダ
ー12に取付けられており、ampネジホルダー12は
、ネジに工9ケースに取付けられている。
The board holder 15 is attached to the case by a rotating screw 18. - The ten thousand adjustment screw 14 is attached to the GMU screw holder 12, and the AMP screw holder 12 is attached to the screw case.

−万バイメタル17ヲエ、基板ホルダー15&Cネジ1
9にて固定されている。バイメタル17 kZ、溶9に
より基板ホルダーに固定されていても機能上さしつかえ
ない61!l整ネジ14を回転させることにより、基板
ホルダー15に連結され次バイメタル17を動か丁ので
基板ホルダー15會1回転ネジ1st?中心として矢印
Cの方間に調整し、常温に於いて受光素子4を受光レン
ズ50元軸上に置くことができる、温度が変化し几場合
、バイメタル170曲率が食化し、破線の如(変形し、
基&ホルダー13を矢印Cの方間に回転させ、受光素子
4の位置t?食化させる。
-10,000 bimetal 17 pieces, board holder 15 & C screw 1
It is fixed at 9. Bimetal 17 kZ, 61 which can be functionally fixed even if it is fixed to the board holder by welding 9! By rotating the adjustment screw 14, the bimetal 17 connected to the substrate holder 15 is moved. The center can be adjusted in the direction of arrow C, and the light-receiving element 4 can be placed on the axis of the light-receiving lens 50 at room temperature; death,
Rotate the base and holder 13 in the direction of arrow C and position the light receiving element 4 at t? to be eaten.

か(して外囲温度が変化し之場合の被写体測距S構成部
品の伸縮を補償される。
(Thus, the expansion and contraction of the object ranging S component in this case is compensated for when the ambient temperature changes.

次に、定量的にこの動きを説明する、 第1−及び第2囚に示し比構成に於いてフラスチツク部
品を用いた場合、その熱変形量は形状材質、成形条件で
異なる友め計算によって把握することは困難である。実
験結果によれば、−10’Cか8506Cまでの温度変
化に対して受光スポットの移atは、1Q、cua 〜
100μ乳となり、これは各構成部品の形状、固定位置
、材質によV変化する。
Next, we will quantitatively explain this movement. When plastic parts are used in the ratio configuration shown in Parts 1 and 2, the amount of thermal deformation is determined by calculations that differ depending on the shape material and molding conditions. It is difficult to do so. According to the experimental results, the shift of the light receiving spot for temperature changes from -10'C to 8506C is 1Q, cua ~
The amount of milk is 100μ, which varies depending on the shape, fixing position, and material of each component.

但し、構成を決めればほとんどバラツキはない。However, once the configuration is determined, there is almost no variation.

次にバイメタルの動きを考察する。第5図に示す形状の
バイメタルの変形は1次式から求められる。
Next, we will consider the movement of bimetals. The deformation of the bimetal having the shape shown in FIG. 5 can be obtained from a linear equation.

ccrzハs曲糸a(1/ec、 )=14.5X 1
0Δスは、温度差(Co) Lは、作動量(?FL?FL ) 、 Dは変位量(1
m)lはバイメタルの板厚(ttstnン 〔発明の効果〕 本発明によれは、温曳食化による被写体測距部構成部品
の伸縮が夛・り1も測距誤差を生じないよ5にできるの
で、実用上全温度範囲に於いて安定。
ccrz curved thread a (1/ec, ) = 14.5X 1
0ΔS is the temperature difference (Co), L is the operating amount (?FL?FL), and D is the displacement amount (1
m) l is the thickness of the bimetallic plate (ttstn) [Effects of the Invention] According to the present invention, the expansion and contraction of the components of the subject distance measurement unit due to thermal corrosion will not cause distance measurement errors. As a result, it is practically stable over the entire temperature range.

した自動合焦装置が得られる効果がある。This has the effect of providing a highly accurate automatic focusing device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の自動合焦装置の一実施例を示す概略
図、第2図は本発明による側距部と合焦機構の詳細図、
第5図は本発明の調整機構の正面図、第4図は被写体測
距部のS成因、第5図は合焦状態の受光スポットを示す
図、第6図は受光素子移動による受光スポットの状態を
示す図、第7ポツトの受光状態を示す説明図である。 1・・・投射レンズ、   2・・・発光素子。 5・・・受光レンズ、    4・・・受光素子。 15・・・基板ホルダー、   14・・・調整ネジ。 17・・・バイメタA/。 代印へ弁坤士 小 川 勝 男゛ 第 1 図 第2 図 第 3 図 第4− 圓 第7図    葛3図
FIG. 1 is a schematic diagram showing an embodiment of the automatic focusing device of the present invention, and FIG. 2 is a detailed diagram of the side lens portion and focusing mechanism according to the present invention.
Fig. 5 is a front view of the adjustment mechanism of the present invention, Fig. 4 is the S factor of the subject distance measuring section, Fig. 5 is a diagram showing the light receiving spot in the focused state, and Fig. 6 is a diagram showing the light receiving spot due to the movement of the light receiving element. FIG. 7 is a diagram showing the state and an explanatory diagram showing the light receiving state of the seventh pot. 1... Projection lens, 2... Light emitting element. 5... Light receiving lens, 4... Light receiving element. 15... Board holder, 14... Adjustment screw. 17...Bimeta A/. Katsunoshi Ogawa to Daiin 1 Figure 2 Figure 3 Figure 4 - En Figure 7 Kuzu 3

Claims (1)

【特許請求の範囲】 投射光学系と発光素子からなり被写体に光を投射する発
光部と、受光光学系と受光素子とからなり該被写体に投
射した投射光の該被写体からの反射光を受光する受光部
を備え、該受光部での該反射光の受光素子上での受光状
態に応じて合焦用レンズを保持した保持部材を駆動する
駆動部材を制御し、該被写体に合焦するようにし、 前記受光素子を保持するホルダーと受光素子を該受光光
学系の光軸上に位置するよう調整する調整部を備え、前
記ホルダーと調整部に接合して、温度変化に際してホル
ダーと調整部を相対移動させる温度感応部材から成る自
動合焦装置。
[Scope of Claims] A light-emitting unit consisting of a projection optical system and a light-emitting element and projecting light onto a subject, and a light-receiving optical system and a light-receiving element receiving reflected light from the subject of the projection light projected onto the subject. A light receiving unit is provided, and a driving member that drives a holding member holding a focusing lens is controlled according to a light receiving state of the reflected light on the light receiving element in the light receiving unit, so as to focus on the subject. , a holder for holding the light-receiving element and an adjusting part for adjusting the light-receiving element to be positioned on the optical axis of the light-receiving optical system, and the holder and the adjusting part are joined to the holder and the adjusting part to make the holder and the adjusting part relative to each other when the temperature changes. An automatic focusing device consisting of a moving temperature-sensitive member.
JP7146687A 1987-03-27 1987-03-27 Automatic focusing device Pending JPS63239410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7146687A JPS63239410A (en) 1987-03-27 1987-03-27 Automatic focusing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7146687A JPS63239410A (en) 1987-03-27 1987-03-27 Automatic focusing device

Publications (1)

Publication Number Publication Date
JPS63239410A true JPS63239410A (en) 1988-10-05

Family

ID=13461398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7146687A Pending JPS63239410A (en) 1987-03-27 1987-03-27 Automatic focusing device

Country Status (1)

Country Link
JP (1) JPS63239410A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017111420A (en) * 2015-12-15 2017-06-22 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Image capturing lens and field depth calibration method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017111420A (en) * 2015-12-15 2017-06-22 エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. Image capturing lens and field depth calibration method therefor

Similar Documents

Publication Publication Date Title
US5825559A (en) Optical assembly having a dual purpose focus
US4462666A (en) Automatic zoom flash
US20030021600A1 (en) Autofocus sensor
JPH0690356B2 (en) Distance-measuring optical system with a mechanism for correcting focus shift due to the temperature of the taking lens
US4531822A (en) Extended sonic acceptance angle
JPH0136182Y2 (en)
JPS63239410A (en) Automatic focusing device
US3886567A (en) Optical system position controlling device
US4922281A (en) Distance measuring device for automatic focusing camera
EP1081522B1 (en) Thermal compensation system for lens focus adjustment
US4183643A (en) Automatic focusing system for use in camera
JPS55153903A (en) Angle adjusting method for plane mirror in reflecting mirror for heliostat
JPS6360416A (en) Automatic focusing device
JPH0210513Y2 (en)
US4470686A (en) Distance and light measuring device for single lens reflex camera
US5598245A (en) Flange back mechanism for photographic camera
JPH045368B2 (en)
JPS63298227A (en) Automatic focusing device
JP2999799B2 (en) Radiation thermometer
US4229087A (en) Focusing optical system for single-lens reflex
JPS59226838A (en) Temperature detecting device
JP2585804Y2 (en) Shooting lens device
JP2826618B2 (en) Rangefinder inspection equipment
JPH05188280A (en) Automatic focusing camera
JPH03119333A (en) Photographing device